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ABSTRACT
We study and formulate arbitrage in display advertising.
Real-Time Bidding (RTB) mimics stock spot exchanges and
utilises computers to algorithmically buy display ads per
impression via a real-time auction. Despite the new au-
tomation, the ad markets are still informationally inefficient
due to the heavily fragmented marketplaces. Two display
impressions with similar or identical effectiveness (e.g., mea-
sured by conversion or click-through rates for a targeted
audience) may sell for quite different prices at different mar-
ket segments or pricing schemes. In this paper, we pro-
pose a novel data mining paradigm called Statistical Ar-
bitrage Mining (SAM) focusing on mining and exploiting
price discrepancies between two pricing schemes. In essence,
our SAMer is a meta-bidder that hedges advertisers’ risk
between CPA (cost per action)-based campaigns and CPM
(cost per mille impressions)-based ad inventories; it statis-
tically assesses the potential profit and cost for an incom-
ing CPM bid request against a portfolio of CPA campaigns
based on the estimated conversion rate, bid landscape and
other statistics learned from historical data. In SAM, (i)
functional optimisation is utilised to seek for optimal bid-
ding to maximise the expected arbitrage net profit, and (ii)
a portfolio-based risk management solution is leveraged to
reallocate bid volume and budget across the set of campaigns
to make a risk and return trade-off. We propose to jointly
optimise both components in an EM fashion with high effi-
ciency to help the meta-bidder successfully catch the tran-
sient statistical arbitrage opportunities in RTB. Both the
offline experiments on a real-world large-scale dataset and
online A/B tests on a commercial platform demonstrate the
effectiveness of our proposed solution in exploiting arbitrage
in various model settings and market environments.
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1. INTRODUCTION
“Half the money I spend on advertising is wasted; the trou-

ble is I don’t know which half.”
— John Wanamaker (July 11, 1838 - December 12, 1922)
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A popular quotation from John Wanamaker, a pioneer in
advertising and department stores, illustrates how difficult it
was to quantify the response and performance in advertising
a hundred years ago. Over the last twenty years, advance-
ment of the World Wide Web has fundamentally changed
this by providing an effective feedback mechanism to mea-
sure the response through observing users’ search queries,
navigation patterns, clicks, conversions etc. Recently, Real-
Time Bidding (RTB) has emerged to be a frontier for In-
ternet advertising [27, 17]. It mimics stock spot exchanges
and utilises computers to programmatically buy display ads
in real-time and per impression via an auction mechanism
between buyers (advertisers) and sellers (publishers) [32].

Such automation not only improves efficiency and scales
of the buying process across lots of available inventories,
but, most importantly, encourages performance driven ad-
vertising based on targeted clicks, conversions etc., by using
real-time audience data. As a result, ad impressions become
more and more commoditised in the sense that the effective-
ness (quality) of an ad impression does not rely on where it is
bought or whom it belongs to any more, but depends on how
much it will benefit the campaign target (e.g., underlying
Web users’ satisfactions and their direct responses)1.

According to the Efficient Market Hypothesis (EMH) in
finance, in a perfectly “efficient” market, security (such as
stock) prices should fully reflect all available information at
any time [13]. As such, no arbitrage opportunity exists, i.e.,
one can neither buy securities which are worth more than
the selling price, nor sell securities worth less than the selling
price without making riskier investment [18]. However, due
to the heavily-fragmented, non-transparent ad marketplaces
and the existence of various ad types, e.g., sponsored search,
display ads, affiliated networks, and pricing schemes, e.g.,
cost per mille impressions (CPM), cost per click (CPC), cost
per action (CPA), the ad markets are not informationally
efficient. In other words, two display opportunities with
similar or identical targeted audiences and visit frequency
may sell for quite different prices. While exploiting such
price discrepancies is still debatable in the advertising field,
the following four arbitrage situations exist:

I Inter-exchange arbitrage. Multiple ad exchanges
exist. As the supply and demand vary across exchanges
for the same user types or targeting rules, there exist
intermediary agencies that act as a buyer with low bid
in exchange A and as a seller with high reserve price
in exchange B in order to make profits [4].

1Our discussion is limited to performance driven ads and
direct responses such as clicks and conversions only, whereas
for the purpose of branding, the quality of publishers still
play an important role in defining the ad inventory quality.
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II Guaranteed delivery and spot market arbitrage.
Some demand-side platforms (DSPs) offer advertisers
the contracts with guaranteed delivery [3] while buy-
ing ad inventories over an RTB exchange with non-
guaranteed spot prices [25]. Conversely, some ad agen-
cies buy inventories in advance in bulk for fixed“prefer-
ential rates”from private marketplaces, and then charge
a client for their campaigns with the spot prices.

III Publisher volume I/O arbitrage. A publisher can
purchase traffic to her Web page and subsequently make
more from ad revenue than the initial inbound click
cost. An extreme case is a homepage purely dedicated
to host ads: the Million Dollar Homepage2.

IV Pricing scheme arbitrage. In RTB, different counter-
parties prefer different pricing schemes in order to re-
duce their risk of deficit [19]. CPM is commonly used
for RTB auction and preferred by publishers because it
is likely to generate stable income from the site volume.
By contrast, advertisers focusing on performance are
likely to follow CPA and CPC pricing schemes as they
are directly related to return on investment (ROI) [10].
As such, if the CPM cost to acquire a user conversion
is less than the CPA payoff for the conversion, an in-
termediate agent can earn a positive profit.

Scientifically, this is of great interest as it presents a new
type of data mining problem, which demands a principled
mathematical formulation and novel computational solution
to mine and exploit arbitrage opportunities in real-time dis-
play advertising. Commercially and socially, principled ad
arbitrage algorithms would not only ensure the business more
smooth and risk free (e.g., III & IV), but also make the ad
markets more transparent and informationally more efficient
(e.g., I, II & IV) by connecting otherwise segmented markets
to correct the misallocation of risks and prices, and eventu-
ally reach an “arbitrage free” equilibrium.

In this paper, we formulate Statistical Arbitrage Mining
(SAM) and present a solution in the context of display adver-
tising. We focus on modelling discrepancies between CPA-
based campaigns and CPM-based ad inventories (IV above),
while the arbitrage models for the remaining cases can be
obtained analogically. The studied arbitrage is a stochastic
one due to the uncertainty of market supply/demand and
users responses. The probability distribution of the arbi-
trage net profit from an ad display opportunity is estimat-
ed by user response predictors [21] and the bid landscape
forecasting models [8], trained on historic large-scale data.
Essentially, the proposed Statistical Arbitrage Miner is a
campaign-independent RTB bidder, which assesses the arbi-
trage opportunity for an incoming CPM bid request against
a portfolio of CPA campaigns, then selects a campaign and
provides a bid accordingly. Different from previous work on
per-campaign RTB bidding strategies [28, 34], we introduce
the concept of meta-bidder, which performs the bidding for
a portfolio of ad campaigns, similar to a hedge fund holding
a set of valid assets in financial markets. In our SAM frame-
work, (i) functional optimisation is utilised to seek for an
optimal bidding function to maximise the expected arbitrage
net profit, and (ii) a portfolio-based risk management solu-
tion is leveraged to reallocate the bidding volume and budget
across multiple campaigns to make a trade-off between arbi-
trage risk and return. We propose to jointly optimise those
two components in an EM fashion with high efficiency to
make meta-bidder successfully catch the transient statistical

2http://www.milliondollarhomepage.com/

arbitrage opportunities in RTB. Experiments on both large-
scale datasets and online A/B tests demonstrate the large
improvement of our proposed SAM solutions over the state-
of-the-art baselines.

2. RELATED WORK
Display Advertising Optimisation. Before the emerg-

ing of the auction-based RTB market, most research work
on display advertising optimisation is about ad inventory
allocation on behalf of publishers in order to maximise the
revenue with the guaranteed delivery constraints [2, 14]. The
authors in further [3] propose an automatic model for pricing
the guaranteed contracts based on the prices of the targeted
individual user visits in a spot market. With the arrival of ad
exchange and RTB, a lot of work emerges on auction-based
optimisation for display advertising. On the publisher side,
the placement-level reserve price optimisation is studied in
[31]. The authors in [16] suggest that the publisher could
act as a bidder on behalf of its guaranteed contracts so as
to make smart inventory allocations among the guaranteed
and non-guaranteed contracts. One step further, the pricing
model of guaranteed contracts with the alternatives of RTB
spot market is proposed in [7]. On the advertiser side, the
bid optimisation for campaign performance improvement is
studied. The authors in [20] propose a budget pacing scheme
embedded in a campaign conversion revenue optimisation
framework to maximise the campaign revenue. The authors
in [28, 34] focus on a bidding function formulation to max-
imise the campaign clicks. Bid landscape forecasting models
[8] are studied to estimate the campaign’s impression volume
and cost given a bidding function.

The authors in [5] study auction mechanisms consider-
ing arbitrage between CPC and CPM pricing schemes. The
study aims for designing an auction mechanism on behalf
of the ad exchange and yielding truthful bidding from ad-
vertisers and truthful CTR reporting from arbitrageurs. By
contrast, our work focuses on developing a statistical method
for mining and exploiting arbitrage opportunities between
CPA and CPM.

Statistical Arbitrage in Finance. In financial mar-
kets, as a trading strategy, statistical arbitrage is a quan-
titative approach to security trading. It utilises statistical
methods with high-frequency trading systems to detect sta-
tistical mispricing of securities caused by market inefficiency
to make profit with a large number of transactions [18].

Drawing an analogy with the statistical arbitrage of se-
curity pairs trading [15] in finance, in our paper, the cam-
paign’s CPA contract and its performance in RTB spot mar-
kets can be regarded as a pair of correlated securities. S-
tatistically speaking, if the campaign’s performance in an
RTB market ensures that the average cost to acquire a con-
version (i.e., eCPA) is lower than the payoff from the C-
PA contract, then a statistical arbitrage opportunity exists.
Such opportunity could also be considered to be caused by
informational inefficiency of the advertising market where
the advertisers fail to lower their CPA payoff when their
campaigns in RTB spot market have a good performance.

Modern Portfolio Theory in Finance. As Nobel Prize
work [24], modern portfolio theory (MPT) originates from
modelling uncertainty of the return of financial assets. MPT
utilises the mean-variance analysis to make an investment
solution for any tradeoff between the expected return and
the risk, or w.r.t. a reference investment [29].

Recently, MPT has been introduced into information re-
trieval (IR) fields to model the expectation and uncertainty
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Table 1: Notations and descriptions.

Notation Description
x The bid request represented by its features.

px(x) The probability density function of x.
i The ith campaign in the meta-bidder portfolio.

M Number of campaigns in the meta-bidder portfolio.
ri The payoff of campaign i for each conversion.
R The variable of meta-bidder arbitrage net profit.
C The variable of meta-bidder arbitrage cost.

θ(x, i) The predicted CVR if i wins the auction of x.
We occasionally use θ to refer to a specific CVR.

piθ(θ) The probability density function of CVR θ for
campaign i.

B The meta-bidder total budget.
T The estimated number of bid requests during

the arbitrage period.
b(θ, r) The bidding function which returns the bid.

b is also used to refer to a specific bid value.
w(b) The probability of winning a bid request with

bid price b.
vi The probability of selecting campaign i.

For multiple campaigns, the campaign selection
probability vector is v = (v1, v2, . . . , vM )T .

of users’ preference on the retrieved documents for search en-
gines [30] or from recommender systems [33]. To our knowl-
edge, there is no work adopting MPT into the revenue op-
timisation in online advertising. In our paper, we present a
novel way of using MPT and it is naturally integrated into
our bid optimisation framework.

3. STATISTICAL ARBITRAGE MINING
In this section we formulate and solve the SAM problem

in the context of RTB display advertising. Our paper is
intended to be self-contained, but for a detailed introduction
of RTB and its ecosystem, we refer to [32, 35].

3.1 Problem Definition
Let us suppose there is an ad agent acting on behalf of

advertisers to run their ad campaigns. To hedge advertisers’
risk, quite often an ad agent gets paid on the basis of the per-
formance: receive a payoff each time a placed ad eventually
leads to a product purchase (cost-per-action, CPA)3. Note
that it remains active research to determine whether and
how much a purchase action is attributed to the previously
ads shown to the user. In this paper, we adopt the last-touch
attribution model commonly used in the industry – the last
ad impression before the user’s conversion event is assigned
with the full attribution credit [9]. To run the campaigns
and place the ads, the agent then goes to the RTB market
to purchase ad impressions. In RTB, the ad agent pays the
cost for each ad impression displayed (cost-per-mille, CPM)
on the basis of second-price auction. In essence, the ad agent
is an arbitrageur, making a profit so long as the payoff by
conversions (CPA) is higher than the cost (CPM) of acquir-
ing relevant users to making the purchase. Potentially, the
agent could in parallel run a large number of campaigns
from various advertisers to scale up their profit. Note that
the ad agent builds their business by taking the risk from
the uncertainty of market competitions and user behaviours.
For the entire ad ecosystem, it is healthy as it protects both
advertisers and publishers by introducing an intermediary
layer that exploits (and ultimately remove) the discrepan-

3A notable example is mobpartner.com who explicitly offers
payoffs (CPA deals) for anyone who can acquire the needed
customers programmatically.

RTB Ad
Exchange

5. Auction

0. Bid Request

6. Feedback
Conversion

CPM Ad
Inventory

4. Bid Response

i

1. Campaign
Selection

2. CVR
Estimation

3. Arbitrage
Bidding

Campaign i

CVR Ө

Campaign 1, CPA r1

Campaign 2, CPA r2

Campaign M, CPA rM

Meta-bidder

CPA Campaigns

...

CPA r i

CPA r i

Figure 1: An ad agent running a meta-bidder (arbi-
trageur) for statistical arbitrage mining.

cies between market segments (in this case, the two pricing
schemes, CPA and CPM).

Traditionally, these arbitrages are accomplished manually.
With statistical approaches, it is possible that the above
operations can be automatically done by an intelligent meta-
bidder across campaigns, where for a certain CPA campaign,
the meta-bidder seeks cost-effective ad impressions with high
conversion possibility and low market competition.

Mathematically, we formulate the problem below: Sup-
pose there exist M CPA-based campaigns. Each campaign
i has set its payoff for a conversion as ri. Over period T ,
the meta-bidder keeps receiving bid requests at time t ∈
{1, . . . , T}, where each bid request is represented with high
dimensional feature vector xt and if won, it is charged based
on CPM. For each of the incoming bid requests, the Statisti-
cal Arbitrage Mining (SAM) problem is to select a campaign
and specify its bid such that over the period T the expected
total arbitrage net profit (accumulated payoff minus cost) is
maximised.

We consider the following process. When a bid request
comes, the meta-bidder samples campaign i with probability
vi to participate the RTB auction, where

∑M
i=1 vi = 1. Once

campaign i is selected, the meta-bidder then estimates its
conversion rate (CVR), denoted as θ(xt, i), i.e., if the ad
is placed in this impression, how likely the underlying user
will see the ad and eventually convert (purchase) [21]. After
that, the meta-bidder generates the bid price via a bidding
function b(θ, ri) depending on CVR θ(xt, i) and conversion
payoff ri [34]. The notations are summarised in Table 1; an
illustration on how the SAMer works is given in Figure 1.

Given campaign selection probability v and bidding func-
tion b(θ, r), the meta-bidder’s total arbitrage net profit is
given by summation over bid requests and campaigns:

R(v, b(θ, r)) =

T∑
t=1

M∑
i=1

(
θ(xt, i)ri − b(θ(xt, i), ri)

)
·

w(b(θ(xt, i), ri))vi, (1)

where w(b) is the probability of winning an RTB auction
given bid b. Product w(b)vi specifies the probability a cam-
paign is selected and wins the auction; (θri− b) is net profit
for the winning campaign. The total cost upper bound is

C(v, b(θ, r)) =

T∑
t=1

M∑
i=1

b(θ(xt, i), ri)w(b(θ(xt, i), ri))vi, (2)

where bid price b is the maximal possible cost for a campaign
to be placed due to the second price auction [31].

Next, we need to model how likely we will see an ad im-
pression with feature xt in the future. We assume xt ∼
px(xt); that is for a relatively short period, the bid request
feature is drawn from an i.i.d. built from historic data. The
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whole model needs to be re-trained periodically with the
latest data. Detailed empirical study on the re-training fre-
quency for dynamic arbitrage will be given in Section 4.4.
Taking the integration over x gives the expected net profit:

E[R(v, b(θ, r))]

=T

∫
x

M∑
i=1

(
θ(x, i)ri − b(θ(x, i), ri)

)
w(b(θ(x, i), ri))vipx(x)dx

=T

M∑
i=1

vi

∫
θ

(
θri − b(θ, ri)

)
w(b(θ, ri))p

i
θ(θ)dθ, (3)

where piθ(θ(x, i)) = px(x)/||∇θ(x, i)|| as there is a determin-
istic relationship between x and its estimated CVR θ(x, i),
also given in [34]. Similarly the total cost is rewritten as

E[C(v, b(θ, r))] = T

M∑
i=1

vi

∫
θ

b(θ, ri)w(b(θ, ri))p
i
θ(θ)dθ. (4)

Finally, the SAM is cast as a constrained optimisation
problem: to find campaign selection probability v and bid-
ding function b(θ, r) to maximise the expected arbitrage net
profit with budget and risk constraints:

bSAM(),v∗() = argmax
b(),v

E[R] (5)

s.t. E[C] ≤ B (6)

Var[R] ≤ h (7)

0 ≤ v ≤ 1 (8)

vT1 = 1, (9)

where we use variance Var[R] to measure the risk of the net
profit and h is a parameter for an upper tolerable risk.

We propose to solve the problem (Eq. (5)) in an EM fash-
ion. In particular, the campaign selection probability v is re-
garded as the latent factors to infer and the bidding function
b(θ, r) is regarded as the parameter used to maximise the
optimisation target. In E-step, we fix the current estimat-
ed bidding function b(θ, r) and solve the optimal campaign
selection probability v with the constraints Eqs. (7), (8), &
(9). In M-step, we fix the campaign selection probability v
and seek for the optimal bidding function b(θ, r) to maximise
the target under the budget constraint Eq. (6). When the
EM iterations get converged, all the constraints are satisfied
and the target is maximised. The following Section 3.2 will
describe the detailed solution of optimal bidding function
(M-step), and Section 3.3 will discuss the solution of cam-
paign selection probability v (E-step).

3.2 Optimal Arbitrage Bidding Function
With the fixed v and the budget constraint at Eq. (6), we

have a functional optimisation problem in M-step:

max
b()

T

M∑
i=1

vi

∫
θ

(
θri − b(θ, ri)

)
w(b(θ, ri))p

i
θ(θ)dθ (10)

s.t. T

M∑
i=1

vi

∫
θ

b(θ, ri)w(b(θ, ri))p
i
θ(θ)dθ ≤ B. (11)

The Lagrangian L(b(θ, r), λ) =

T

M∑
i=1

vi

∫
θ

(
θri − (λ+ 1)b(θ, ri)

)
w(b(θ, ri))p

i
θ(θ)dθ + λB.

(12)
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Figure 2: Linear winning function w(b(θ)) and beta
CVR pdf pθ(θ).

Taking its functional derivative w.r.t. b(θ, r), we have

∂L(b(θ, r), λ)

∂b(θ, r)
= T

M∑
i=1

[
(θri − (1 + λ)b(θ, ri))

∂w(b(θ, ri))

∂b(θ, ri)

− (1 + λ)w(b(θ, ri))
]
vip

i
θ(θ). (13)

A sufficient condition of making this derivative be zero is( θri
1 + λ

− b(θ, ri)
)∂w(b(θ, ri))

∂b(θ, ri)
= w(b(θ, ri)), (14)

for all campaign i. With the specific functional form of win-
ning function w(b) we can derive the optimal SAM bidding
function. Below we show solutions in two special cases.

3.2.1 Uniform Market Price Solution
Here we make a simple example of linear winning func-

tion form (see Figure 2(a)) based on the assumption of the
uniform market price4 distribution in [0, l]:

w(b(θ, r)) =
b(θ, r)

l
, (15)

where the function domain is also [0, l]. l is the upper bound
of bid price and there is no need to bid higher than l.

Replacing Eq. (15) into Eq. (14) gives the optimal arbi-
trage bidding function bsam1 as

bsam1(θ, r) =
rθ

2(1 + λ)
. (16)

To calculate optimal λ, a sufficient condition of the partial
derivative ∂L(b(θ, r), λ)/∂λ = 0 in Eq. (12) is∫

θ

b(θ, r)w(b(θ, r))pθ(θ)dθ =
B

T
. (17)

Taking Eqs. (15) and (16) into Eq. (17) gives

r2

4(1 + λ)2l

∫
θ

θ2pθ(θ)dθ =
B

T
, (18)

where if we denote φ ≡
∫
θ
θ2pθ(θ)dθ, we have

λ =
r

2

√
Tφ

Bl
− 1. (19)

Replacing Eq. (19) into Eq. (16) gives the final solution of
bidding function

bsam1(θ, r) =

√
Bl

Tφ
θ, (20)

4Market price refers to the highest bid price amongst the
competitors for each auction [1]. From a bidder’s perspec-
tive, it can win an auction if the its bid price is higher than
the market price on this auction.
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where surprisingly the bidding function does not depend on
r. This is because the linear forms of w(b) in Eq. (15) and
bsam1(θ, r) in Eq. (16) make θ factorised out from r/(1 + λ)
in Eq. (18), which in turn removes the factor of r/(1 + λ).
φ depends on the probabilistic distribution pθ(θ), e.g., the
beta distribution Beta(2,8) as shown in Figure 2(b), and
can be calculated with empirical data.

3.2.2 Long Tail Market Price Solution
We now consider a more practical winning function used

in [34], which is based on a long tail market price distribution
pz(z) = l/(z + l)2 with parameter l. As such, the winning
function is

w(b(θ, r)) =

∫ b(θ,r)

0

pz(z)dz =
b(θ, r)

b(θ, r) + l
. (21)

The real-world data analysis on winning bids in [34] demon-
strates the feasibility of adopting the winning function in
Eq. (21) in practice. Taking Eq. (21) into Eq. (14) gives the
optimal arbitrage bidding function bsam2 as

bsam2(θ, r) =

√
rlθ

1 + λ
+ l2 − l, (22)

which is in a concave form w.r.t. CVR θ.
Solution of λ. It is possible that the optimal situation does
not exhaust the budget and we can leverage the training data
to tune the empirically best λ as a parameter. However, if
we assume that the bid request volume T is large enough
to exhaust the budget, then the optimal case is an equality
condition for Eq. (11). To calculate the optimal λ, the Euler-
Lagrange condition of λ is Eq. (17). With Eq. (22), we
explicitly regard λ as an input of bidding function b(θ, r, λ)
and rewrite ∂L(b(θ, r), λ)/∂λ = 0 from Eq. (12) as

M∑
i=1

vi

∫
θ

b(θ, ri, λ)w(b(θ, ri, λ))piθ(θ)dθ =
B

T
. (23)

In most situations except some special cases like Section 3.2.1,
λ has no analytic solution. For numeric solution, we can
rewrite Eq. (23) as

M∑
i=1

vi

∫
θ

(
b(θ, ri, λ)w(b(θ, ri, λ))− B

T

)
piθ(θ)dθ = 0, (24)

which has the same solution with the minimisation problem

min
λ

M∑
i=1

vi

∫
θ

1

2

(
b(θ, ri, λ)w(b(θ, ri, λ))− B

T

)2
piθ(θ)dθ.

If we have a very large number Ni of observations of θ’s
for each campaign i, we can write the above equation as

min
λ

M∑
i=1

vi

Ni∑
k=1

1

2

(
b(θik, ri, λ)w(b(θik, ri, λ))− B

T

)2
, (25)

where we can use (mini-)batch descent or stochastic gradient
descent to solve λ by the following iteration:

λ←λ− η
M∑
i=1

vi

Ni∑
k=1

(
b(θik, ri, λ)w(b(θik, ri, λ))− B

T

)
· (26)

(∂b(θik, ri, λ)

∂λ
w(b(θik, ri, λ)) + b(θik, ri, λ)

∂w(b(θik, ri, λ))

∂λ

)
,

until convergence. Usually, as b(θ, r, λ) has a monotonic re-
lationship with λ and w(b(θ, r, λ)) monotonically increases

against b(θ, r, λ), b(θik, r, λ)w(b(θik, r, λ)) has a monotonic re-
lationship with λ. For example, with the bidding function
as Eq. (22) and the winning function as Eq. (21), the fac-
tor b(θik, r, λ)w(b(θik, r, λ)) decreases monotonically against
λ, which makes the optimal solution quite easy to find.

3.3 Optimal Campaign Selection
Fixing the resolved optimal arbitrage bidding function b(θ, r)

from previous M-step, we can optimise the campaign selec-
tion probability v and check whether it is better to reallocate
the volume for each campaign.

We here introduce the concept of SAM net profit margin
γ in RTB display advertising. The net profit margin is the
ratio of the net profit of the advertising, either from one
campaign or a set of them (meta-bidder), divided by the
advertising cost during the corresponding period. In fact,
γ = R/C = ROI−1. γ is a random variable with expectation
and variance. By modelling γi for each campaign i, the
optimal campaign selection can be solved by portfolio-based
risk management methods.

3.3.1 Single Campaign
With optimal arbitrage bidding function b(θ, r) by Eq. (14),

we calculate the expectation and variance of the net profit
margin γi for each campaign i by

µi(b) = E[γi] = E
[Ri(vi=1, b)

Ci(vi=1, b)

]
, (27)

σ2
i (b) = E

[Ri(vi=1, b)
2

Ci(vi=1, b)2

]
− E

[Ri(vi=1, b)

Ci(vi=1, b)

]2
, (28)

where Ri(vi=1, b) and Ci(vi=1, b) are as in Eqs. (1) and (2)
with vi = 1 and vj = 0 for all other campaign j. Both µi(b)
and σ2

i (b) can be estimated from MCMC methods: (i) repeat
N times on sampling T bid requests from the training data
and calculate Ri(vi=1, b) and Ci(vi=1, b), then (ii) calculate
the expectation and variance using these N observations of
Ri(vi=1, b) and Ci(vi=1, b).

3.3.2 Campaign Portfolio
Suppose there are M campaigns in the meta-bidder with

CPA contracts. For each campaign i, as discussed in Sec-
tion 3.3.1, there is a variable of achieved net profit margin γi
given the bidding function b(), and its expectation is µi(b)
and standard deviation is σi(b). As such, the vector of ex-
pected net profit margins for these M campaigns is

µ(b) = (µ1(b), µ2(b), . . . , µM (b))T (29)

and the covariance matrix for the net profit margins of the
M campaigns is Σ(b) = {σi,j(b)}i=1...M,j=1...M , where each
element

σi,j(b) = βi,jσi(b)σj(b), (30)

where βi,j ∈ [−1, 1] is the net profit margin correlation fac-
tor between campaign i and j, which can be calculated by
routine given the net profit margin time series of the two
campaigns i and j [24].

We call such probabilistic campaign combination as cam-
paign portfolio. With the campaign selection probability v,
the campaign portfolio expected net profit margin and its
variance are

µp(v, b) = vTµ(b), σ2
p(v, b) = vTΣ(b)v. (31)

Generally, the arbitrage net profit margin may change w.r.t.
the allocated volume: the more bid request volume, the more
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Algorithm 1 Statistical Arbitrage Mining for Display Ads

Require: Meta-bidder winning function w(b)
Require: CTR distribution piθ(θ) for each campaign i

Initialise b(θ, r) = rθ and v = 1/M .
while not converged do

E-step:
Get µ(b) and Σ(b) by Eq. (29) and Eq. (30)
Solve optimal v by Eq. (32)

M-step:
Get the bidding function form by w(b) and Eq. (14)
Solve λ by Eq. (26)
Update the SAM bidding function b(θ, r) by Eq. (22)

end while
return v and b(θ, r)

statistical arbitrage opportunities, and the higher margin.
For simplicity, we assume that the net profit margin dis-
tribution does not change much w.r.t. the auction volume
allocated to the campaign during a short period. The em-
pirical results in Section 4.3 will demonstrate the eligibility
of the assumption.

3.3.3 Campaign Portfolio Optimisation
The E-step of the original optimisation problem Eq. (5),

with the fixed bidding function and constraint Eqs. (7), (8),
& (9), can be rewritten by taking the Lagrangian as

max
v

vTµ(b)− αvTΣ(b)v, (32)

s.t. vT1 = 1, 0 ≤ v ≤ 1,

where the Lagrangian multiplier α acts as a risk-averse pa-
rameter to balance the the expected net profit margin and
its variance. This optimisation framework is widely used as
portfolio optimisation [30, 33].

When the risk, i.e., the variance of the net profit margin,
is not considered, α is set as 0. Then the campaign i with
the highest µi(b) will be always selected, i.e., vi = 1, while
vj = 0 for all other campaigns j.

Finally, the overall operations to get the optimal campaign
selection probability v and the arbitrage bidding function
b(θ, r) are summarised in Algorithm 1. Theoretically, just
like the EM algorithms for likelihood maximisation, every
EM iteration in our case will at least not drop the expected
net profit (Eq. (5)). In practice, v and b(θ, r) will get con-
verged within 5 EM iterations. For E-step, the computa-
tionally costly parts are the MCMC methods for evaluating
the margin of M individual campaign (Eqs. (27) and (28)),
where the time complexity is O(MNT ), and the campaign
correlation calculation (βi,j in Eq. (30)), which isO(M2NT ).
For M-step, the bidding function is derived with closed form;
the calculation of λ by numeric descent methods Eq. (26),
which depends on the data values but is normally much ef-
ficient. The performance in Section 4.4 will demonstrate
the capability of our proposed solution for highly efficient
re-training in dynamic arbitrage tasks.

4. EXPERIMENTS

4.1 Experiment Setting

4.1.1 Datasets
We conduct our experiments5 based on two real-world large-

scale bidding logs collected from two DSP companies.

5The experiment code has been published at https://
github.com/wnzhang/rtbarbitrage.

iPinYou RTB dataset was published after iPinYou’s glob-
al RTB algorithm competition in 2014. This dataset con-
tains the bidding and user feedback log from 9 campaigns
during 10 days in 2013, which consists of 64.75M bid records,
19.50M impressions, 14.79K clicks and 16K CNY expense.
The dataset disk size is 35GB. According to the data pub-
lisher [23], the last three-day data of each campaign is split
as the test data and the rest as the training data. More
statistics and analysis of the dataset is available in [35].

BigTree RTB dataset is a proprietary dataset from our
partner DSP company BigTree Times Co. This dataset is
collected from Nov. 2014 to Feb. 2015 for 3 iOS mobile game
campaigns. It consists of 10.85M impressions and 46.38K
actions6 with $0.083 CPA. We use this dataset to train the
model and conduct online A/B test on BigTree DSP during
Feb. 2015.

Both datasets are in a record-per-line format, where each
line consists of three parts: (i) the features for this auction,
e.g., the time, location, IP address, the URL/domain of the
publisher, ad slot size, user interest segments etc.; (ii) the
auction winning price, which is the threshold of the bid to
win this auction; (iii) the user feedback on the ad impression,
i.e., click, conversion or not.

4.1.2 Evaluation Protocol
Evaluation procedure. We adopt the evaluation pro-

cedure similar to the previous work on bid optimisation [34,
35]. In addition, for the evaluation related to the campaign
sampling process (via v), we follow an offline evaluation scheme
similar to previous work on evaluating interactive systems
[22]. As in the historic data, the user’s feedback is only
associated with the winning campaign of the auction, there
is no corresponding user feedback if a different campaign is
sampled. As such, based on the bid request i.i.d. assumption
made before, for each round, we first sample a campaign i,
then pass the next test data record of this campaign to the
bid agent for bidding. If there is no more test data left for
this campaign, i.e., the bid requests are run out, the test
ends.

Budget constraints. It is easy to see that if we set the
budget the same as the original total cost in the test log,
then simply bidding as much as possible for each auction
will exactly run out the budget and get all the logged clicks.
In our work, to test the performance against various bud-
get constraints, for each campaign, we respectively run the
evaluation test using 1/2, 1/4, 1/8, . . . , 1/256 of the original
total cost in the test log as the budget.

Payoff setting. To set up various difficulties in arbi-
trage, for our offline experiments, we manually adjust the
CPA payoff for each iPinYou campaign. Specifically, for each
campaign i, we set a high and a low CPA payoff in order to
test the algorithms’ performance under an easy and a hard
arbitrage situation, denoted as reasyi and rhardi , respectively:

reasyi = eCPAi × 0.8 and rhardi = eCPAi × 0.2,

where eCPAi is the original average cost for acquiring each
conversion of campaign i in the training data without any ar-
bitrage strategy. In addition, the conversion data in iPinYou
is unavailable for 7 out of 9 campaigns. To have more tests
done, we thus regard the user clicks as a proxy for the desired
actions (conversions) in our offline experiment.

6According to the advertiser’s contract, here the action is
defined by users’ landing on the game’s page on app store.
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To complement the offline tests, in our online experiments,
we directly adopt the CPA payoff specified by genuine ad-
vertisers to test the real business case.

4.1.3 Compared Strategies
We compare the following baseline and state-of-the-art bid-

ding strategies in our experiment. Their parameters are tuned
on the training data.

Constant bidding (const). A constant bid regardless bid
requests and campaigns. Though trivial, it is a simple
solution widely used by many DSPs.

Random bidding (rand). Randomly choose a bid value in
a given range.

Truth-telling bidding (truth). If there is no budget con-
straint, one should bid the true value for each ad im-
pression, which is CPA×CVR of the impression [21].

Linear bidding (lin). In [28], the bid value is linearly pro-
portional to the CVR with the bid scale parameter
tuned to maximise the expected conversion number.

Optimal real-time bidding (ortb). This is an optimal bid-
ding strategy proposed in [34] to maximise clicks. Here
we compared the ortb1 bid strategy in [34].

Statistical arbitrage mining (sam1, sam2). These are the
two bidding strategies proposed in this paper: sam1 is
from Eq. (16) and sam2 is from Eq. (22), collectively
denoted as samx.

SAM with competition modelling (sam1c, sam2c). In
a real online environment, the advertisers will tune their
bidding strategies according to their campaign perfor-
mance. If many bidders adopt our samx bidding s-
trategies, it is possible that this may change the mar-
ket prices. In our offline empirical study, we follow
[36] to adopt the opt bidding strategy [6] to simulate
the market price changes towards a locally envy-free
equilibrium7. Note that this is not for comparing bid-
ding strategies but for comparing auction environment
where we would like to check whether our proposed
samx algorithms would still make arbitrage profit when
the market changes according to our actions. We on-
ly compare the performance of samx algorithms with
those in the corresponding samxc settings.

For campaign selection strategies, we compare the uniform
campaign selection, i.e., v = 1/M , and the portfolio-based
campaign selection, where portfolio will be denoted as greedy
when α in Eq. (32) is set as 0. The conventional campaign
selection scheme based on internal auctions [32] will be com-
pared in online A/B test in Section 4.5.

4.1.4 Evaluation Measures
We use the net profit as the prime evaluation measure,

which is calculated as #conversions * cpa_payoff - cost.
We also evaluate the net profit margin for each strategy,
which is calculated by the net profit divided by the cost. In
addition, we report the number of impressions and conver-
sions as well as the cost for each strategy.

4.2 Single Campaign Arbitrage
In Table 2, we report the overall performance on the tested

9 campaigns from the iPinYou dataset. We see that samx
bidding strategies outperform all others regarding to the net

7The work [6] is on sponsored search with generalised second
price auctions. By setting the slot number for each keyword
auction as 1 and the CTR as 1.0, the opt bidding strategy
can be used for our display advertising scenario.

Table 2: Single-campaign overall performance.
Easy payoff, 1/16 budget setting

bid. profit margin bids imps. cnvs. cost
algo. (CNY) (M) (K) (CNY)

const 41.77 0.21 2.68 761.91 297 194.44
rand 19.65 0.12 2.97 612.90 223 166.60
truth 749.75 3.60 1.89 420.19 1,137 208.33

lin 845.22 3.83 2.71 531.49 1,161 220.90
ortb 869.43 4.03 2.87 632.38 1,172 215.78
sam1 1,141.72 6.02 3.26 471.46 1,504 189.55
sam2 1,161.24 5.97 3.42 606.97 1,534 194.40

sam1c 1,118.61 6.10 3.24 389.09 1,473 183.34
sam2c 1,141.01 5.87 3.41 563.74 1,513 194.38

Hard payoff, 1/16 budget setting
bid. profit margin bids imps. cnvs. cost

algo. (CNY) (M) (K) (CNY)

const -1.40 -0.25 4.10 81.55 10 5.53
rand 1.08 10.47 4.10 8.36 4 0.10
truth 214.08 2.13 4.03 373.66 1,430 100.30

lin 45.63 0.21 2.71 531.49 1,161 220.90
ortb 55.52 0.26 2.87 632.38 1,172 215.78
sam1 207.34 2.29 3.89 319.77 1,328 90.59
sam2 227.76 3.77 4.10 301.99 1,326 60.47

sam1c 204.73 2.25 3.88 308.44 1,322 90.98
sam2c 225.95 3.70 4.10 298.51 1,322 61.13
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Figure 3: Single campaign arbitrage performance.

profit. sam2 further outperforms sam1 particularly in the
hard payoff settings due to its more practical winning func-
tion. In addition, samxc strategies still make high arbitrage
profit with the market competition modelling, which demon-
strates the potential of samx strategies in a real market com-
petition environment.

Furthermore, we monitor the performance change on the
arbitrage net profit and margin of each algorithm w.r.t. the
budget setting in Figure 3. For the page limit, we only report
the results with the easy payoff setting, while the results on
the hard payoff setting are similar. The value on the x-axis
means the proportion of the original total cost in the test
data divided by the test budget. The higher the proportion
is, the less the budget is. From Figure 3 we have the follow-
ing observations. (i) sam1 and sam2 outperform the rest in
almost all the profit and margin comparisons with different
budget settings. (ii) Under the higher budget setting, e.g.,
2 or 4 budget proportions, truth produces comparable profit
as samx. This is because when the budget is abundant, the
tight budget constraint (i.e., the equation in Eq. (11)) is
unnecessary to meet in order to maximise the net profit.
Under such situation, the bidding problem will get back to
the classic second price auction problem, where the truth-
telling bidding strategy is optimal [11]. (iii) Under the lower
budget setting, e.g., 64, 128 and 256 budget proportions, the
profit from truth drops significantly because of the budget
constraint is quite important and the optimal bidding strat-
egy is never truth-telling. On the contrary, lin and ortb act
almost the same as samx. This is reasonable because under
the lower budget settings, the budget is always exhausted.
With the cost the same as the budget, the more conversions
the more arbitrage profit.
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Figure 4: Multiple campaign arbitrage performance comparison and campaign portfolio selection analysis.

Table 3: Multi-campaign overall performance.
strategies easy payoff hard payoff

bid. cam. profit margin profit margin
algo. select. (CNY) (CNY)

lin greedy 501.12 6.63 68.59 0.91
lin portfolio 925.45 13.11 181.54 2.50
lin uniform 747.00 9.53 127.14 1.62

ortb greedy 517.02 6.65 70.96 0.91
ortb portfolio 802.15 10.32 146.13 1.88
ortb uniform 765.12 9.89 133.16 1.72
sam1 greedy 966.02 20.81 230.38 11.13
sam1 portfolio 1,037.98 15.84 240.63 7.96
sam1 uniform 768.38 9.78 172.43 7.57
sam2 greedy 961.68 28.73 235.31 24.00
sam2 portfolio 983.01 17.21 248.65 13.61
sam2 uniform 774.09 10.32 168.15 5.16
truth greedy 787.10 14.69 227.86 29.05
truth portfolio 787.10 14.69 242.07 18.34
truth uniform 326.57 4.14 101.12 5.36

4.3 Multiple Campaign Arbitrage
We test 6 campaign portfolios from the iPinYou dataset.

Each portfolio contains 4 campaigns with the data from the
same period. For each portfolio, after the convergence of EM
iterations, the empirically optimal v and bidding function
b(θ, r) are deployed in the campaign portfolio’s test stage,
where the auction volume and the budget are set as the same
as in the training stage. Compared with the previous single
campaign part, this part of experiment focuses more on the
campaign portfolio selection, where the uniform, greedy and
portfolio selection methods are compared.

The overall results with 1/32 budget setting are reported
in Table 3. For the comparison among the bidding strate-
gies, samx overall outperforms others in both payoff settings.
Figure 4 provides more detailed analysis. The profit trend
against the budget setting, as shown in Figures 4(a) and
4(b), is consistent with the single campaign setting. The
competitor model setting does not significantly drop the ar-
bitrage net profit as shown in Figure 4(c). Specifically, when
the budget gets lower, the profit drop percentage gets lower.
The reason is that fewer auctions are won with lower budget
so that the market does not change much. To compare cam-
paign selection, Table 3 shows that portfolio selection con-
stantly outperforms uniform and greedy selection. Compared
with uniform, greedy allocates all the auction volume and
the budget onto the campaign evaluated as with the highest
arbitrage net profit margin, which theoretically maximises

the expected net profit. However, the result that portfo-
lio outperforms greedy indicates there exists a return-risk
tradeoff point which practically generalises better than the
maximum expectation solution. Furthermore, Figure 4(d)
shows the change of total profit from the 6 tested campaign
portfolios based on sam2 against the portfolio risk-averse
parameter α in Eq. (32). Here setting α as a small enough
value is equivalent to the greedy campaign selection. As
we can see, as α increases from 10−3, the net profit first
rises to the peak value and then drops significantly. Among
the different budget setting, we can observe a trend from
Figure 4(d) that is the more budget, the higher the optimal
α is. For 1/256 budget setting, the optimal α is 0.01, while
0.1 is optimal for 1/4 budget setting. This may be due to the
fact that more budget brings more auction volume across a
longer period, importing more risk, which is required to be
carefully hedged.

In addition, we present a case study on a campaign port-
folio (3358, 3386, 3427 and 3476 are four campaign IDs).
Its return-risk analysis plot is shown in Figure 4(e) and the
corresponding campaign selection probability allocation is
shown in Figure 4(f). In Figure 4(e) the dark blue points
stand for the expected net profit margin and its standard de-
viation for 4 individual campaigns. As we can see, campaign
3358 has the highest expected margin as well as the highest
risk while campaign 3386 is the most stable one but with
the lowest expected margin. The best empirical portfolio
selection is shown as the vertical dashed line in Figure 4(f),
where 94.9% auction volume is allocated to campaign 3358
and 4.1% is allocated to campaign 3427. However, if the
meta-bidder is more risk-averse, other two campaigns can
be included in order to further reduce the standard devia-
tion. The parameter α in Eq. (32) provides a flexible way
to adjusting such risk and return trade-off.

4.4 Dynamic Multiple Campaign Arbitrage
In practice, as the market competition and the user be-

haviour change across the time, the meta-bidder should dy-
namically change its bidding strategy and campaign selec-
tion. In this part of experiment, we test the capability of
our proposed sam2 bidding strategy with dynamic campaign
portfolio selection over a 72 hour test period. The arbi-
trage bidding function and campaign selection probability
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Figure 5: Dynamic multi-campaign arbitrage net
profit distribution with different update frequency.

are updated periodically, and we refer the interval between
two updates as one round. Specifically, at the beginning of
each round, we re-train the arbitrage bidding function and
campaign selection probability using Algorithm 1 based on
the bidding data collected from previous round. A problem
here is that how frequent the update should be? It is ap-
parent that if the round period is too long, it is difficult for
the meta-bidder to catch the transient statistical arbitrage
opportunities; if the round period is too short, the training
data could be sparse and the model might overfit the data.

We test the dynamic multiple campaign arbitrage on 5
portfolios, each of which consists of 4 campaigns with the
data logged within the same period. For each test cam-
paign portfolio, we try the different update frequencies as
well as different risk-averse α’s. The box plots [26] of the
arbitrage net profit distribution with different update fre-
quencies under two payoff settings are shown in Figure 5.
From the results we observe that (i) the positive net profit
values over all cases demonstrate the capability of sam2 to
make dynamic arbitrages. (ii) In both payoff settings, the
dynamic SAM (period no more than 24 hours) have much
better performance than the static SAM (period equals to 72
hours, i.e., only one update), which indicates the importance
of dynamically re-training the models to catch the latest
market situation. (ii) Among the different frequencies of
dynamic updating, updating every 6 hours leads to the high-
est arbitrage net profit. We believe this is a trade-off point
between the abundance and recency of the training data.
Note that the optimal update frequency may be different
for other campaigns or different training settings.

In addition, Figure 6 presents a case study of the 72 hour
dynamic 4-campaign arbitrage with the model updated for
every 6 hours. In each round, the calculated campaign selec-
tion probability (i.e., the volume allocation) from portfolio
optimisation, the estimated net profit margin of each cam-
paign, the empirical net profit and cost are depicted. We
observe that the estimated margin for each campaign varies
over time, which results in the change of campaign volume
allocation across the time. The empirical profit shows the
same trend with the estimated campaign margin, which to
some extent highlights the effectiveness of the margin esti-
mation in our model. Moreover, the cost in each round (i.e.,
6 hours) is different, not necessarily be the average budget
allocated for each round. It is possible that if the market is
too competitive to make arbitrage profit, the resulting cost
and profit could be both much low.

4.5 Online Test
Our SAM algorithm has been deployed and tested in a live

environment provided by BigTree DSP. The model training
follows the scheme in Section 4.3. Specifically, with Algo-
rithm 1, we obtain the empirically optimal sam2 bidding
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arbitrage performance and the corresponding mar-
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Figure 7: Online performance on BigTree DSP.

function b(θ, r) and campaign selection probability v for the
meta-bidder based on the 3-campaign training data described
in Section 4.1.1, where the hyperparameter α in Eq. (32) is
set as 0.1. As a control baseline, we deployed another meta-
bidder with the basic linear bidding function [28, 21] and
the internal auction-based campaign selection scheme [32],
denoted as base. During the online A/B test, every received
bid request from the router of BigTree DSP will be randomly
assigned to either of the two meta-bidders, which returns the
bid response, including the selected campaign ad and the bid
price, back to the ad exchange for auction. The online test
is conducted during 23 hours between 13 and 14 Feb. 2015
with $60 budget for each meta-bidder.

Figure 7 presents the overall online performance of sam
and the baseline algorithm base. The online results on the
commercial DSP verify the effectiveness of our algorithm in
a real commercial setting: sam leads to $30.6 arbitrage net
profit with $60 budget, which is a 51.1% margin and a 31.8%
improvement over the base bidder setting. An interesting
observation is that in spite of the higher CPM, sam brings
lower eCPA than base, which ultimately leads to higher arbi-
trage net profit. This suggests that despite the market price
and arbitrage margin are different across the campaigns, our
SAM algorithm would be able to successfully identify and
target to the cases that have higher arbitrage margin from
those high value impressions (reflected by their high CPM).
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5. CONCLUSIONS
In this paper, we conducted the first study on statistical

arbitrage mining in RTB display advertising. We proposed
a joint optimisation framework to maximise the expected
arbitrage net profit with budget and risk constraints, which
is then solved in an EM fashion. In the E-step the bid vol-
ume is reallocated according to the individual campaign’s
estimated risk and return, while in the M-step the arbitrage
bidding function is optimised to maximise the expected arbi-
trage net profit with the campaign volume allocation. Aside
from the theoretical insights, the offline and online large-
scale experiments with real-world data demonstrated the ef-
fectiveness of our proposed solution in exploiting arbitrage
in various model settings and market environments. We
believe this would open up a whole new set of research ques-
tions that intersect between financial methods such as high-
frequency trading [15], risk-management [24, 12] and data
mining methodologies for display advertising and beyond.
In the future work, we plan to further improve the dynamic
nature of the SAM model and extend it to mine arbitrage in
other domains such as cloud computing and e-commence.
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