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ABSTRACT
Factorization machines (FMs) are a state-of-the-art model class for
user response prediction in the computational advertising domain.
Rapid growth of internet and mobile device usage has given rise
to multiple customer touchpoints. This coupled with factors like
high cookie churn rate results in a fragmented view of user activity
at the advertiser’s end. Current literature assumes procured user
signals as the absolute truth, which is contested by the absence
of deterministic identity linkage across a user’s multiple avatars.
In this work, we characterize the data uncertainty using Robust
Optimization (RO) paradigm to design approaches that are immune
against perturbations. We propose two novel algorithms: robust
factorization machine (RFM) and its field-aware variant (RFFM),
under interval uncertainty. These formulations are generic and
can find applicability in any classification setting under noise. We
provide a distributed and scalable Spark implementation using par-
allel stochastic gradient descent. In the experiments conducted
on three real-world datasets, the robust counterparts outperform
the baselines significantly under perturbed settings. Our experi-
mental findings reveal interesting connections between choice of
uncertainty set and the noise-proofness of resulting models.
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1 INTRODUCTION
User response prediction is a central problem in the computational
advertising domain. The primary stakeholders in this ecosystem are:
publishers who possess ad inventory, advertisers who bid for these
ad slots and users who are exposed to the ad experience. Publishers
and advertisers leverage signals like online user footprint, demo-
graphics and associated context for modeling user intent. Clicks
and conversions being the key objectives, response prediction prob-
lem is generally formulated as estimating the probability of click or

∗Both authors contributed equally to the paper

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186148

conversion given an ad impression. This probability subsequently
translates to user-level bids or manifests itself in creating discrete
user segments according to the propensity of user intent. This area
has garnered interest from both the industry and academia, with
logistic regression (LR) [4, 10] being the conventional choice. The re-
cently proposed factorization machines (FMs) [22] and field-aware
factorization machines (FFMs) [13] which model feature interac-
tions in latent space have outperformed LR on several experimental
and production datasets [1, 12].

User interaction signals, which serve as primary input to the
predictive modeling, are procured from a wide variety of online
sources like social media, search engines, e-commerce platforms,
and news portals. A user’s activity might be spread across multiple
devices like desktop, mobile, and tablet. Interestingly, users exhibit
a manifold of browsing patterns and device specific avatars: a user
seeming to be a keen shopper on desktop might just be a casual
browser on mobile. Without cross device linkages in place, the
user interaction dataset comprises of multiple incomplete views for
the same user. For US, Criteo [6] estimates that a whopping 31%
of online transactions involve two or more devices and that both
the conversion rates and buyer-journeys increase by about 40% in
user-centric view of activity across multiple devices as compared
to a partial device-specific view.

Figure 1: (A) User visits an advertiser’s site several times on different devices
and/or browsers: the advertiser observes multiple fragmented views of user’s
real activity. (B) Additional noise induced during data collection. (C, D) User
visiting a publisher’s site results in an online auction and a bid request is sent
to different advertisers. (E) Advertiser responds with a bid computed using
data from only one of the user views.

Even for the same device, factors like operating system, net-
work connectivity and browser type have their own associated data
leakages. These heterogeneities in the underlying generative mech-
anism lead to noise in the collected data. However, this problem has
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been heavily overlooked with only 5% marketers having seamlessly
integrated customer touchpoints [8]. With around 65% cookies
being deleted monthly [5], cookie churn acts as an additional con-
tributor to noise and makes the user-advertiser association short
lived. See Figure 1.

These cumulative inefficiencies during data collection end up
camouflaging the user’s holistic identity and raise a compelling
question on the quality of the same data hose that had generated
these signals in the first place. Some recent works have attempted
to probabilistically stitch the user identity [14, 23], but a complete
consolidation of user profiles remains an open problem.

Objective functions in the existing response prediction literature
assume user profiles to be precisely known and remain agnostic to
the inherent noise present in the input signals [25]. Consequently,
the learnt classifiers possess a fuzzy understanding of the under-
lying causal relationships and thus exhibit remarkable sensitivity
towards small data perturbations. Since model predictions guide
bid price determination, a monetary loss or an opportunity cost is
incurred for every misclassification [15].

This work aims at characterizing the environment-induced un-
certainty in the user signals and reformulating the FM and FFM
objective functions to be immune against data fluctuations. For
this we utilize the robust optimization (RO) framework [2] which
assumes a deterministic, set based uncertainty model and seeks so-
lutions that are computationally tractable and remain near-optimal
in the worst case realization of uncertainty. To the best of our
knowledge, this is the first work advocating the application of RO
in the user modeling domain. The main contributions of this paper
are summarized below:

• We employ robust optimization principles to model the noise
arising in online advertising signals as bounded box-type
interval uncertainty sets.
• We propose two novel algorithms: robust factorization ma-
chine (RFM) and robust field-aware factorization machine
(RFFM), as robust minimax formulations for FM and FFM
respectively.
• We provide a distributed and scalable Spark based implemen-
tation for solving the optimization problem using parallel
stochastic gradient decent.
• We present a comprehensive evaluation of our formulations
on three publicly available response prediction datasets from
Criteo and Avazu. The price of robustness is a classifier
which takes a slight performance hit in the standard setting
(-0.24% to -1.1%) but significantly outperforms the non-robust
counterparts (4.45% to 38.65%) when subjected to noise.
• We systematically assess the tradeoff between robustness un-
der noise and optimality of performance in standard setting
and provide guidelines for selection of uncertainty sets.
• We extensively study model calibration and the effects of
hyperparameters, initialization strategies, and parallelism
on model performance and convergence.
• The final formulations obtained are generic and can aid in
any noise sensitive classification domain. To demonstrate
this broad applicability, we present results on a credit card
fraud detection dataset.

2 PRELIMINARIES
2.1 Response Prediction
We begin with an overview of the state-of-the-art approaches
for predicting user propensity to click or convert given ad expo-
sure. This is a supervised learning setting wherein the learner
is presented with a set of m training instances {(x(i),y(i))|x(i) ∈
Rd ,y(i) ∈ {1,−1} ∀i ∈ {1, . . . ,m}}, where x(i) represents activity
and context signals for user i andy(i) is the binary response variable
which captures whether or not the user subsequently clicked or
converted.

Logistic regression has long been the preferred classifier for
user response modeling [4, 10] since it offers the advantage of well
calibrated probability outputs, is highly scalable and also yields
interpretable models. It learns weight vectorw ∈ Rd bymaximizing
log likelihood against a regularization penalty. The corresponding
loss minimization equivalent takes the following form:

min
w

λ

2
∥w∥22 +

1
m

m∑
i=1

log (1 + exp(−y(i)ϕ(x(i),w))) (1)

where, ϕ(x,w) = w0 +
d∑
j=1

w jx j .

Linear models suffer with the limitation of not being able to
model the effect of feature interactions on the dependent variable.
Factorization machines (FMs) proposed in [22] have recently gained
popularity as an effective learning paradigm for capturing impact
of feature conjunctions especially for sparse datasets. They aim at
learning a projection vj for every feature j in a latent factor space
Rp . The strength of feature interactions is quantified by the inner
product of the corresponding factors. The optimization problem
remains similar to (1), with ϕ evolving to ϕFM to incorporate these
interaction terms:

ϕFM (x,w,V) = w0 +
d∑
j=1

w jx j +
d∑
j=1

d∑
k=j+1

⟨vj , vk ⟩x jxk (2)

where ⟨.⟩ represents inner product and V ∈ Rd×p is a factor
matrix composed of the latent vectors vj . Response prediction
datasets largely comprise of categorical features a.k.a. fields. Typi-
cal examples of fields are publisher, device, brand, etc. which may
take values from sets {CNN, Vogue}, {desktop, mobile, tablet}, and
{Nike, Adidas} respectively. LR and FM use the expanded feature
space generated by one-hot encoding of these categorical variables
and the semantics of the ‘field’ itself are lost.

Field-aware factorization machines (FFMs) are a model class that
leverage the field information associated with every feature and
extend the concept of FM to learn a dedicated latent vector corre-
sponding to every (feature, field) combination [12]. So instead of
learning a latent vector per feature, i.e. vVogue, vNike, etc. the model
learns separate latent vectors for capturing fieldwise interactions
like v(Vogue, device), v(Vogue, brand), etc. The function ϕ thus further
evolves to:

ϕF FM (x,w,V) = w0 +
d∑
j=1

w jx j +
d∑
j=1

d∑
k=j+1

⟨vj,fk , vk,fj ⟩x jxk (3)

where vj,fk ∈ R
p is a latent vector capturing interactions between

feature j and field of featurek and V ∈ Rd×q×p is a tensor composed
of all these vj,fk vectors. Here q denotes the number of fields in the
dataset.



FMs and FFMs have demonstrated superior generalization ability
against other classifiers by winning two Kaggle competitions1,2
in the past. Other techniques like model ensembles [9, 27] and
deep learning [3, 21] have also been explored for the user response
prediction task. For this work, we restrict our focus on formulating
robust counterparts for FM and FFM models.

2.2 Robust Optimization
Traditional stochastic optimization provides probabilistic character-
ization of noise in measurements. In contrast, paradigm of Robust
Optimization (RO) [2] models uncertainty as bounded set based
variability in the input observations. The uncertainty set is defined
asU = {µ(i) |x(i) −η(i) ≤ x(i) + µ(i) ≤ x(i) +η(i),∀i ∈ {1, . . . ,m}}.
Here η(i) ∈ Rd

≥0 represents the uncertainty bound for input x(i).
Incorporating this notion of deterministic uncertainty allows for
multiple manifestations of the input data points anywhere within
the specified bounds. RO seeks to learn a function that remains
feasible and near optimal for all possible realizations of uncertainty.
For classification setting, this translates to minimizing the worst
case loss suffered against all possible data perturbations. Assuming
a general loss function L(w,X), the robust counterpart takes the
following minimax form:

min
w

max
U

1
m

m∑
i=1
L(w, x(i) + µ(i)). (4)

Computational tractability of robust formulations is governed
by the choice of uncertainty sets. Box-type, ellipsoidal, conic, and
polyhedral are commonly employed classes of uncertainty sets in
the RO literature [11]. In this work, we design robust formulations
assuming box-type (or interval) uncertainty under which, for each
observation x ∈ Rd , there is a corresponding uncertainty vector
µ ∈ Rd such that each dimension of the vector is bounded inde-
pendently, i.e. |µ j | ≤ ηj ,∀j ∈ {1, . . . ,d}. The choice of interval
uncertainty facilitates noise independence amongst individual fea-
tures. Geometrically, this can be visualized as data points residing
in a bounded hyperrectangular manifold.

Figure 2: (a) Classifier trained on original data. (b)When box-type uncertainty
is associated with data points, the learnt classifier boundary shifts in order to
accommodate the effect of perturbations.

Figure 2 illustrates how the training instances appear to a learner
in a standard setting and after introducing box-type uncertainty.
Note the shift in decision boundary of the learnt classifier. The
RO framework presents a systematic tradeoff between choosing
optimal classifier weights for given observations and robustifying
against perturbations. Robust formulations for LR and support
vector machines (SVMs) have been proposed in [7, 16]. Our work
is the first attempt to systematically introduce robustness in the
factorization machines.
1https://www.kaggle.com/c/criteo-display-ad-challenge
2https://www.kaggle.com/c/avazu-ctr-prediction

3 PROPOSED APPROACH
FM and its extensions have witnessed a rapid adoption recently, not
just within the purview of Kaggle competitions but also for the real-
world bidding systems [12]. To incorporate noise-proofness against
data perturbations in these models, we design robust counterparts
for FM and FFM using RO principles under interval uncertainty.
The resulting minimax formulation is then reduced to a pure mini-
mization problem by obtaining upper bounds on terms involving
uncertainty. We propose a stochastic gradient descent based paral-
lelized training algorithm which can be deployed on a distributed
environment like Spark for learning the final weight matrices.

3.1 Robust FM
Factorization machines consider both linear and pairwise feature
interactions. This presents us with a choice of either sharing the
same uncertainty vectors across the two types of interactions or
decoupling the uncertainty parameters. We go with the second
alternative and for each data point x, we associate uncertainty
vector µ ∈ Rd s.t. |µ j | ≤ ηj , ∀j ∈ {1, . . . ,d} for characterizing
noise in linear interactions and matrix Σ ∈ Rd×d s.t. Σj,k = σjσk ,
|σj | ≤ ρ j ,∀j ∈ {1, . . . ,d} for capturing noise induced by pairwise
interaction terms. This choice is motivated by two reasons. The
presence of Σ offers another degree of freedom while tuning the
model. Also, order-2 interactions are being learnt in a latent space,
whichmight not have similar semantics as the original feature space.
This definition of µ and Σ confines the hyperparameter space to
be linear in the number of features for a given training example.
We now introduce these uncertainty terms and formulate ϕ for
robust factorization machines (RFMs) as ϕRFM . For mathematical
convenience, we add self-interaction terms to the robust variant.

ϕRFM (x, w, V, µ, Σ)

=w0 +
d∑
j=1

w j (x j + µ j ) +
d∑
j=1

d∑
k=j

⟨vj , vk ⟩(x jxk + Σj,k )

=w0 +
d∑
j=1

w j (x j + µ j ) +
1

2

d∑
j=1

d∑
k=1
⟨vj , vk ⟩(x jxk + Σj,k )

+
1

2

d∑
j=1
⟨vj , vj ⟩(x 2

j + Σj, j ) (Rearranging terms)

=w0 +
d∑
j=1

w jx j +
d∑
j=1

w j µ j +
1

2

d∑
j=1

d∑
k=1
⟨vj , vk ⟩x jxk+

1

2

d∑
j=1

d∑
k=1
⟨vj , vk ⟩Σj,k +

1

2

d∑
j=1
⟨vj , vj ⟩x 2

j +
1

2

d∑
j=1
⟨vj , vj ⟩Σj, j

=w0 +
d∑
j=1

w jx j +
d∑
j=1

w j µ j +
1

2

d∑
j=1

d∑
k=1

p∑
f =1

vj, f vk, f x jxk+

1

2

d∑
j=1

d∑
k=1

p∑
f =1

vj, f vk, f Σj,k +
1

2

d∑
j=1

p∑
f =1

v2
j, f x

2
j +

1

2

d∑
j=1

p∑
f =1

v2
j, f Σj, j

(Expanding terms along the factor space)

=w0 +
d∑
j=1

w jx j +
d∑
j=1

w j µ j +
1

2

p∑
f =1
(

d∑
j=1

vj, f x j )
2+

1

2

p∑
f =1
(

d∑
j=1

vj, f σj )
2 +

1

2

p∑
f =1

d∑
j=1

v2
j, f x

2
j +

1

2

p∑
f =1

d∑
j=1

v2
j, f σ

2
j



With the redefined ϕ for RFM, the loss minimization view under
uncertainties results in the following minimax formulation:

min
w,V

max
µ(j ),Σ(j )

∀1≤j≤m

λ

2
∥w∥22 +

λ

2
∥V∥22 +

1
m

m∑
i=1

log (1 + exp(Ωi
RFM )) (5)

where, Ωi
RFM is shorthand for ΩRFM (x(i),y(i),w,V, µ(i),Σ(i))

and, ΩRFM (x,y,w,V, µ,Σ) = −y ϕRFM (x,w,V, µ,Σ).

The inner maximization signifies the worst case loss incurred
because of the uncertainty parameters µ(j) and Σ(j), ∀ 1 ≤ j ≤ m.
Due to monotonicity of the terms in summation, maximizing the
objective function in (5) reduces to maximizing ΩRFM . We hereby
refer to the optimal solution of the reduced subproblem as Ωwc

RFM .

Ωwc
RFM (x,y,w,V) = max

µ,Σ
ΩRFM (x,y,w,V, µ,Σ) (6)

Further, we derive the value of Ωwc
RFM by obtaining upper bounds

on the terms with uncertainties. Since the linear and pairwise un-
certainty parameters have been considered independent, we can
examine the relevant terms in isolation. We first group and analyze
the terms associated with pairwise uncertainty σ .

− y
1

2
(

p∑
f =1
(

d∑
j=1

vj, f σj )
2 +

p∑
f =1

d∑
j=1

v2
j, f σ

2
j )

≤
1

2
(

p∑
f =1
(

d∑
j=1
|vj, f | |σj |)

2 +

p∑
f =1

d∑
j=1

v2
j, f σ

2
j )

≤
1

2
(

p∑
f =1
(

d∑
j=1
|vj, f |ρ j )

2 +

p∑
f =1

d∑
j=1

v2
j, f ρ

2
j )

(7)

The last inequality follows from the definition of interval uncer-
tainty, where all covariates are bounded independently. Similarly
for the linear uncertainty terms we have,

−y
d∑
j=1

w j µ j ≤
d∑
j=1
|w j | |µ j | ≤

d∑
j=1
|w j |ηj . (8)

Using the upper bounds obtained from (7) and (8) on uncertainty
terms, we derive the value for Ωwc

RFM as:

Ωwc
RFM (x, y, w, V) = −yw0 +

d∑
j=1
(−yw jx j + |w j |ηj ) −

y

2

p∑
f =1
(

d∑
j=1

vj, f x j )
2

+
1

2

p∑
f =1
(

d∑
j=1
|vj, f |ρ j )

2 −
y

2

p∑
f =1

d∑
j=1

v2
j, f x

2
j +

1

2

p∑
f =1

d∑
j=1

v2
j, f ρ

2
j .

For notational convenience, we hereby refer to Ωwc
RFM (x,y,w,V)

as Ωwc
RFM (x,y). Using the derived value for Ω

wc
RFM the optimization

problem in (5) simplifies to:

min
w,V

λ

2
∥w∥22 +

λ

2
∥V∥22 +

1
m

m∑
i=1

log (1 + exp(Ωwc
RFM (x

(i),y(i)))).

(9)

Note that by minimizing the worst case loss, we are encoding
pessimism in the classifier, the magnitude of which varies with
the size of hyperrectangles in which the data is bounded. Table 1
summarizes the notations used in this paper.

Table 1: Table of Notations

Notation Description
x(i) (or x) Feature vector ∈ Rd for sample i
y(i) (or y) Label ∈ {−1, 1} for sample i

x j Feature value ∈ R for jth dimension in a sample
t Number of epochs
m Number of training samples
q Number of fields in the feature data
d Dimensionality of original feature space
p Dimensionality of latent factors learnt per feature
α Learning rate for stochastic gradient descent
λ Regularization parameter
w Weight vector ∈ Rd for linear interactions
V Factor matrix ∈ Rd×p for FM

and tensor ∈ Rd×q×p for FFM
µ(i) (or µ) Linear uncertainty vector ∈ Rd for a sample
Σ(i) (or Σ) Pairwise uncertainty matrix ∈ Rd×d for a sample
η(i) (or η) Linear uncertainty bound ∈ Rd

≥0 for a sample
ρ(i) (or ρ) Simplified pairwise uncertainty bound ∈ Rd

≥0
for a sample

3.2 Parameter Learning: Robust FM
We use minibatch stochastic gradient descent (SGD) to solve the
optimization problem (9) for robust FM. The corresponding loss
gradient is given by:

δL

δθ
= λθ +

1

m

m∑
i=1

exp (Ωwc
RFM (x

(i ),y (i )))

1+exp (Ωwc
RFM (x

(i ),y (i )))
∗

δ

δθ
(Ωwc

RFM (x
(i ), y(i ))) (10)

where,

δ

δθ
(Ωwc

RFM (x, y)) =


−y if θ = w0

−yx j + ηj sgn(w j ) if θ = w j

−yx j
∑d
k=1 vk, f xk − yvj, f x

2
j +

ρ j sgn(vj, f )
∑d
k=1 |vk, f |ρk + vj, f ρ

2
j if θ = vj, f .

Here sgn(.) represents the sign function. Note that the update rule
is composed of deterministic and uncertainty terms, the latter be-
ing independent of y since we have arrived at the formulation by
maximizing Ω. The terms

∑d
k=1vk,f xk and

∑d
k=1 |vk,f |ρk being

independent of j can be computed in advance. The details of our
approach are outlined in Algorithm 1.

3.3 Robust FFM
We now derive the robust counterpart for field-aware factorization
machine (FFM), the more rigorous and expressive variant of FMs.
Incorporating linear and pairwise uncertainty parameters in the
original function ϕF FM in equation (3) yields ϕRF FM .

ϕRF FM (x, w, V, µ, Σ) = w0 +
d∑
j=1

w j (x j + µ j )

+

d∑
j=1

d∑
k=j

⟨vj, fk , vk, fj ⟩(x jxk + σjσk )

Note that V is a tensor comprising of latent vectors learnt per
(feature, field) combination. Following steps as in Section 3.1 we



Algorithm 1: Robust FM
Input :Training data as a set of (Feature, Label) tuples

{(x, y)|x ∈ Rd , y ∈ {1,-1}}
Uncertainty parameters: Linear and pairwise
uncertainty bounds (η, ρ) for each data point
Hyperparameters: [t (#epochs), p (dimension of
latent vectors), r (#data partitions) , α (learning rate),
f (initialization technique)]

Output :w,V
1 Initialize w,V using f

2 Randomly split data over r partitions
3 for epoch ∈ {1, . . . , t} do
4 for all data partitions ∈ {1, . . . , r } parallel do
5 for each sampled data point (x, y) in partition do
6 w0 := w0 − α ∗

δL
δw0

7 for j in {1, . . . ,d} do
8 w j := w j − α ∗

δL
δw j

9 for f in {1, . . . ,p} do
10 vj,f := vj,f − α ∗ δL

δvj, f
11 end
12 end
13 end
14 end
15 w← Average(w) over all r partitions
16 V← Average(V) over all r partitions
17 end

derive an upper bound on −yϕRF FM (or ΩRF FM ), given by Ωwc
RF FM .

Ωwc
RF FM (x, y, w, V) = −yw0 +

d∑
j=1
(−yw jx j + |w j |ηj )

− y
d∑
j=1

d∑
k=j

⟨vj, fk , vk, fj ⟩x jxk +
d∑
j=1

d∑
k=j

⟨ |vj, fk |, |vk, fj | ⟩ρ j ρk

Replacing Ωwc
RFM with Ωwc

RF FM in (9) gives the loss minimization
problem for RFFM.

3.4 Parameter Learning: Robust FFM
We employ stochastic gradient descent (SGD) for parameter esti-
mation. The gradient of loss function is given by:

δL

δθ
= λθ +

1

m

m∑
i=1

exp (Ωwc
RF FM (x

(i ),y (i )))

1+exp (Ωwc
RF FM (x

(i ),y (i )))
∗

δ

δθ
(Ωwc

RF FM (x
(i ), y(i ))) (11)

where,

δ

δθ
Ωwc
RF FM (x, y) =


−y if θ = w0

−yx j + ηj sgn(w j ) if θ = w j

−yvk, fj x jxk+

sgn(vj, fk ) |vk, fj |ρ j ρk if θ = vj, fk .

The final algorithm for RFFM differs from RFM in the core weight
update steps in Algorithm 1. Also, similar to [13], we perform
updates only on the non zero dimensions of the weight matrix to
avoid unnecessary computation.

4 EXPERIMENTS
In this section we investigate the effectiveness of RFM and RFFM
against their non-robust counterparts. In particular, we (i) evaluate
the prediction quality of robust classifiers on original and perturbed
datasets, (ii) examine the noise resilience arising from the choice
of uncertainty sets, (iii) empirically compare different initialization
strategies for the weight matrix, (iv) assess the impact of hyper-
parameters on model performance, (v) explore isotonic regression
for calibration of classifiers, and (vi) study model convergence rate
with increased parallelism. Our experimental findings reveal that
by incorporating the notion of robustness, the resulting classifiers
take a slight performance hit for the unperturbed datasets, but
outperform the original formulations significantly when presented
with noisy measurements.

4.1 Experimental Setup
4.1.1 Dataset Description. We evaluate our formulations on

three publicly available real-world datasets. These encompass both
clickthrough rate (CTR) and conversion rate (CVR) prediction set-
tings, which are two central problems for large scale user response
prediction.
• Criteo CTR Prediction
Released for a Kaggle competition in 2014, this dataset has
become an important benchmark for CTR estimation. The
training data comprises of 45 million ad impressions served
to users along with their online footprint in the form of 13
integer features and 26 hashed categorical features. Label
indicates whether a user subsequently clicked on the ad or
not. One-hot encoding of the categorical variables results in
a feature space of size ∼ 106.
• Avazu CTR Prediction
This dataset was released as part of a Kaggle challenge by
Avazu advertising platform. It contains ten days of click-
through data on mobile devices. The feature set comprises of
signals like hour of the day, banner position, site id, device
model, etc.
• Criteo Conversion Logs
This dataset consists of conversion feedback signals for a
portion of Criteo’s ad traffic. In each row of the dataset,
features represent an ad served to a user and a conversion
timestamp label indicates when the user converted. If there
is no purchase by the user, the field is empty. It is used widely
for standardization of CVR algorithms.

The dataset statistics are summarized in Table 2. For brevity, we
sometimes refer to Criteo click and conversion datasets as CriClick
and CriConv respectively. In addition to the performance evaluation
on these computational advertising datasets, we include a case study
on a credit card fraud detection dataset in Section 5 to highlight
that RFM and RFFM can characterize noise across domains.

Table 2: Summary Statistics of Datasets

Dataset #Instances #Features #Fields
Criteo CTR Prediction 45,840,617 106 39
Avazu CTR Prediction 40,428,967 106 33
Criteo Conversion Logs 15,898,883 104 17



4.1.2 Evaluation Metric. For maximizing the efficiency of an ad
campaign, the class probabilities estimated by a classifier need to be
well calibrated since they directly impact the subsequent bidding
for auctions. Hence we use logloss as the benchmarking metric
for assessing model quality. Logloss (also known as logistic loss or
cross entropy loss) is defined for the binary classification setting as:

−
1
m

m∑
i=1

y(i) log(p(i)) + (1 − y(i)) log(1 − p(i))

where p(i) is the probability or the confidence estimate assigned by
a classifier for sample i belonging to the positive class, and y(i) ∈
{0, 1} is the true label. Logloss metric possesses an information
theoretic interpretation of being the cross entropy between the true
and predicted class distributions. An ideal model will have zero
logloss. Lower values of this metric imply less divergence from true
labels and hence superior model performance.

4.2 Implementation Details
We have implemented RFM and RFFM on Apache Spark [26], a
distributed computing framework facilitating efficient paralleliza-
tion, which is crucial for timely processing of the current massive
datasets. Spark provides fault tolerant data storage abstraction: RDD
(Resilient Distributed Dataset), which is an immutable collection of
data partitioned across cluster nodes. The data is stored in-memory,
which is highly favorable for iterative workloads.

Figure 3: Spark implementation workflow for robust factorization machines.

We employ iterative parameter mixing strategy for performing
distributed stochastic gradient descent (SGD) [17, 28]. Figure 3
outlines the implementation workflow. (1) Input data is partitioned
across executors. (2) An initial weight matrix is broadcasted to all
data partitions. Each node performs a single update of minibatch
SGD on the subset of data it contains. (3) After every epoch, models
learnt independently by the nodes are averaged. (4) The resulting
global model is broadcasted again. (5) The algorithm terminates
when error between successive iterations falls below a threshold.
This distributed training strategy demonstrates fast convergence
owing to the synchronous nature of model updates.

Memory requirement of our formulations is proportional to the
number of features in a dataset. Distributed SGD adds an additional
latency in terms of model transmission cost over the network after
each epoch. Model compactness is therefore imperative for driving
efficient performance. Owing to high dimensionality of the feature

space, we resort to the hashing trick [4], which uses a simple hash
function to restrict the number of feature values.

In our experimentation, we use 80% of the data for training and
10% each for constructing validation and test sets. Also, since our
goal is to examine the difference between the robust and non-robust
variants, we refrain ourselves from delving into feature engineering
and focus exclusively on the model specific aspects. The code and
dataset links for our implementation are available on Dropbox3 for
experimental reproducibility.

4.3 Choice of Uncertainty Sets
Having made the design choice of considering box-type uncertainty
around data points in order to facilitate independence amongst co-
variates, the next critical step is to associate uncertainty bounds
(η, ρ) with each training example. A straightforward approach is
absolute assignment i.e. keeping these variables as additional param-
eters whose optimal values can be determined by parameter tuning.
However, this is an expensive solution which would explode the
hyperparameter space and render the possibility of obtaining the
best performing model infeasible under practical settings. Another
approach which seems appealing at first is to have field specific un-
certainty values so that the number of newly introduced parameters
is bounded. This approach however has the following drawbacks:
it is tightly coupled with the dataset at hand and no direct link can
be established between parameters selected and noise-proofness of
the model procured after training.

These concerns encourage us to adopt the strategy of relative
assignment for our experimentation. In this approach we select two
positive real valued parameters (η%, ρ%) such that for every mea-
surement γ , the effective linear and pairwise uncertainty bounds
are given by (η% ∗ γ , ρ% ∗ γ ). This simple trick significantly brings
down the size of parameters to tune and at the same time retains
the feasibility of assigning variable sized hyperrectangles around
the data. Under this formulation, larger measurements are associ-
ated with higher variability or lower confidence. Additionally, we
threshold the uncertainty bounds to moderate the incorporated
noise. As we shall present in the results below, this methodology
of designing uncertainty sets has a nice interpretability in terms
of cost incurred by incorporating robustness v/s resistance gained
under noisy settings.

4.4 Performance Comparison
We compare the performance of RFM and RFFM models against the
original factorization machine formulations on the conversion and
click datasets. We particularly focus on the relative behavior under
noisy settings. Gaussian distribution is a popular noise model in sig-
nal processing [24]. On similar lines, we simulate noise in original
datasets by adding a Gaussian perturbation N ∼ (µnoise ,σnoise )
to the test data. We vary the noise parameters and examine the
goodness of classifiers for both original and perturbed versions of
datasets. The results are presented in Table 3. By adhering to worst
case loss minimization, the robust classifiers take a conservative
view even for the original datasets, resulting in a higher logloss as
compared to the non-robust equivalents. However, when subjected

3https://www.dropbox.com/sh/ny6puvtopl98339/AACExLZ0waDL_ibWhfNItJfGa?
dl=0

https://www.dropbox.com/sh/ny6puvtopl98339/AACExLZ0waDL_ibWhfNItJfGa?dl=0
https://www.dropbox.com/sh/ny6puvtopl98339/AACExLZ0waDL_ibWhfNItJfGa?dl=0


(a) CriConv, RFFM (b) CriClick, RFFM (c) Avazu, RFFM

(d) CriConv, RFM (e) CriClick, RFM (f) Avazu, RFM

Figure 4: Study of classifier behavior for different (η%, ρ%) when subjected to perturbed variants of the original dataset during the test phase. A Gaussian noise
with µnoise = 0.1 with varying σnoise ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9} is added to the test samples. Higher values of ∆loдloss% indicates superior noise resilience.

(a) Avazu, FFM (b) Avazu, FM

Figure 5: Relative logloss reduction offered by robust formulations under
Poisson noise for λnoise ∈ {0.01, 0.1, 0.2, 0.3, 0.5, 0.6, 0.8, 1.0}.

to noise, the average performance degradation of robust classifiers
is remarkably lower than the FMs and FFMs. In the risk sensitive
domain of user modeling where signals captured might not be rep-
resentative of complete user intent, this graceful degradation is a
desirable property.

The levers offered by robust formulations for regulating uncer-
tainty bounds are (η%, ρ%). Higher values imply higher uncertainty
accounted for by the trained classifiers and hence greater immunity
against noise. We train multiple RFM and RFFM models by vary-
ing (η%, ρ%) and study the relative reduction in logloss against the
non-robust variants for different noise configurations. This relative

reduction is given by ∆loдloss% =
(LOriдinal −LRobust )

LOriдinal
∗100 , where

LOriдinal and LRobust indicate loss under original and robust for-
mulations respectively. As is evident from Figure 4, for each (η%, ρ%)
the robust classifier starts off with a higher logloss w.r.t. baseline
(∆loдloss% < 0) when the σnoise is low. However, on increasing the
standard deviation of noise, the reduction in logloss is pronounced
and goes as high as 40% for some cases. These findings not only
reinforce the fact that the proposed classifiers indeed demonstrate
superiority under noisy measurements, but also present an inter-
esting tradeoff between aiming for high robustness and the price
to be paid in the unperturbed settings.

In traditional signal processing systems, Poisson process is an-
other widely used model for capturing noise. In an attempt to
provide a comprehensive treatment to performance study under
noise, we experiment with this noise model as well. Our findings
are aligned with the insights procured for Gaussian noise model.
We provide an interesting subset of results on the Avazu dataset in
Figure 5.

These results reinforce the fact that the robust formulations are
indeed able to withstand the potential incompleteness and corrup-
tion in response prediction datasets. Here we would like to reiterate
the fact that our formulations are generic and can be applied to any
domain where data uncertainty is a concern. The model designer
can select (η%, ρ%) parameters in accordance with the degree of
uncertainty, for the problem at hand.



Table 3: Comparative Analysis of Robust Formulations. LM indicates logloss of model M . For Gaussian perturbation, the loss is averaged over µnoise ∈
{0.0001, 0.001, 0.01, 0.1, 1.0}, σnoise ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9} and over λnoise ∈ {0.01, 0.1, 0.2, 0.3, 0.5, 0.6, 0.8, 1.0} for Poisson noise model. Lower logloss
indicates better model. Robust counterparts take performance hit for original datasets but outperform the base classifiers under perturbed settings.

Parameters
Perturbation Unperturbed Gaussian Poisson

Dataset (p, t, α, λ) LFM LRFM ∆loдloss% LFM LRFM ∆loдloss% LFM LRFM ∆loдloss%
CriClick (25, 150, 0.01, 10−3) 0.4482 0.4532 -1.1212 0.5075 0.4849 4.4481 0.5254 0.4892 6.8951
CriConv (15, 100, 0.1, 10−4) 0.3756 0.3780 -0.6474 0.4950 0.4009 19.0055 0.4927 0.4106 16.6560
Avazu (15, 100, 0.01, 10−4) 0.3902 0.3942 -1.0118 0.4578 0.4207 8.1108 0.4770 0.4480 6.0754

(a) RFM v/s FM

Parameters
Perturbation Unperturbed Gaussian Poisson

Dataset (p, t, α, λ) LF FM LRF FM ∆loдloss% LF FM LRF FM ∆loдloss% LF FM LRF FM ∆loдloss%
CriClick (10, 150, 0.01, 10−3) 0.4580 0.4592 -0.2467 0.5414 0.4945 8.6677 0.5514 0.5010 9.1365
CriConv (5, 50, 0.01, 10−4) 0.3746 0.3770 -0.6254 0.6438 0.3949 38.6541 0.6379 0.4118 35.4508
Avazu (10, 50, 0.01, 10−3) 0.3915 0.3939 -0.6258 0.4465 0.4082 8.5699 0.4492 0.4148 7.6468

(b) RFFM v/s FFM

4.5 Discussion
4.5.1 Initialization Strategy. Non-convexity of the optimization

problem for factorization machines makes the selection of initial
weight matrix pivotal to the optimality of results obtained. The
traditional FMs employ Gaussian distribution for initializing model
weights. Laplace distribution has recently been proposed [19] as
a superior initializer owing to the fact that it has a higher peak
than Gaussian and consequently results in a better fit for sparse
datasets. For FFMs, sampling from Uniform distribution is another
commonly adopted initialization approach [13]. We investigate the
impact of different initialization strategies. The results summarized
in Table 4 indicate that Laplace distribution outperforms Gaussian
and Uniform distributions in terms of logloss for both RFM and
RFFM across the three datasets.

Table 4: Performance comparison of different initialization approaches.
Logloss LS is being incurred under initialization strategy S .

Dataset Model LGaussian LLaplace LUnif orm
CriClick RFM 0.4538 0.4532 0.4541

RFFM 0.4619 0.4582 0.4598
CriConv RFM 0.3809 0.3780 0.3875

RFFM 0.3784 0.3769 0.3774
Avazu RFM 0.3944 0.3942 0.3952

RFFM 0.3952 0.3939 0.3941

4.5.2 Impact of Hyperparameters. Parameter tuning is an im-
portant step for deriving optimal performance from any learning
algorithm. From Figure 6(a), we observe that model (RFM/RFFM)
performance improves with number of epochs t , though there is a
diminishing returns property evident in improvement, which seems
intuitive. This trend is consistent for all the datasets.

Gradient descent approaches are sensitive to the selection of
learning rate α . As can be observed from Figure 6(b), for the same
number of epochs, choosing smaller step size results in higher
logloss since not enough exploration has been performed in the
loss function landscape. On the other hand, selecting very high
values of α might result in skipping the minima altogether leading
to an increased loss value.

Regularization parameter plays a key role in preventing model
overfitting. RFMs and RFFMs exhibit less sensitivity to changes in
the value of λ as illustrated in Figure 6(c). This observation suggests
that robustness inherently imposes some degree of regularization.

(a) Variation in logloss with Epochs

(b) Variation in logloss with Step size

(c) Fluctuations in logloss with λ for Avazu
dataset: FFM v/s RFFM

(d) Variation of training time and logloss
with p for Avazu RFFM

Figure 6: Effect of hyperparameters.

Higher number of latent factors p results in models possessing
better generalization ability. However, for the distributed implemen-
tation of gradient descent, a large value ofp translates into increased
weight matrix serialization overhead and network communication
cost for model synchronization among nodes. The reduction in
logloss with p and the corresponding increase in training time are
depicted in Figure 6(d).



(a) Calibration plot: Avazu FFM and RFFM (b) %Logloss reduction after calibration

Figure 7: Classifier calibration using isotonic regression.

(a) CriConv, RFM (b) CriConv, RFFM

Figure 8: Effect of parallelism on convergence rate.

4.5.3 Model Calibration. Training models that give accurate
probabilistic outputs is central to the user modeling problem since
it plays a major role in subsequent bidding. Calibration plots a.k.a.
reliability diagrams serve as useful visualization tools for assess-
ing goodness of model predictions with respect to true posterior
probabilities. For each bucket of model prediction, the mean true
probability is the fraction of positive samples in the bucket. The
output of a perfectly calibrated classifier can be represented as a
diagonal line on the reliability curve. To calibrate the model outputs,
we employ isotonic regression technique [18] of univariate curve
fitting with monotonicity constraints, where model outputs serve
as regressors and actual label is the dependent variable.

We calibrate the probability estimates generated by RFMs, RFFMs
and their non-robust counterparts and investigate the relative im-
provement in logloss. After this postprocessing, we observe a higher
marginal improvement in the calibration quality of robust classi-
fiers. Figure 7(a) depicts the reliability curve for Avazu FFM and
RFFM before and after applying isotonic regression. The percentage
logloss reduction achieved as a result of calibration for the three
datasets is presented in Figure 7(b).

4.5.4 Impact of Parallelism on Model Convergence. Degree of
parallelism has an inverse relationship with model convergence
rate. Increasing the number of RDD partitions results in gradient
descent being applied on smaller subsets of data and hence the
averaged global model, procured after each epoch, is less stable. The
downside of keeping lesser partitions is that each parallel worker
is delegated with large number of samples, which increases the
time taken per iteration. Figure 8 demonstrates the classic tradeoff
between training time speedup v/s classification quality.

5 CASE STUDY: FRAUD DETECTION
The proposed formulations RFM and RFFM add a significant value
for user response prediction under perturbed settings, as estab-
lished by the experiments in Section 4. However, these are generic
predictors, not restricted to the computational advertising domain
and can be employed in any noise-sensitive classification scenario.
To substantiate this claim, we test our formulations in the field of
credit card fraud detection [20]. The dataset comprises of 284,807
anonymized credit card transactions and the challenge is to label
them as fraudulent or genuine. The feature set is composed of 28
PCA transformed numerical variables with 0.172% of transactions
labeled as fraud. Absence of categorical features renders RFM (or

Figure 9: ∆loдloss% for perturbed variants of fraud detection dataset where
µnoise ∈ {0.05, 0.10, 0.15, 0.20, 0.30}. Logloss is averaged over σnoise ∈
{0.001, 0.01, 0.1, 0.2, 0.3, 0.5, 0.7} for each µnoise .

FM) and RFFM (or FFM) formulations equivalent for this problem.
The metric ∆loдloss% (as defined in Section 4.4), which captures the
logloss reduction achieved by the robust variants w.r.t. original FMs,
exhibits dramatic improvement as the magnitude of Gaussian noise
increases. This is evident from Figure 9, demonstrating superior
noise resilience offered by RFMs. These findings are encouraging
since they highlight domain independence of our formulations.

6 CONCLUSION AND FUTUREWORK
The ever increasing customer touchpoints and the associated noise
sources have created a pressing need to design algorithms which
take into account input uncertainty for user modeling. To this
end, we have proposed novel robust formulations for factorization
machines and field-aware factorization machines. The distributed
Spark based implementation for RFM and RFFM seamlessly scales
to massive real-world datasets. Experimental evidence establishes a
consistently superior noise resilience of the proposed formulations.
This opens up new avenues for utilizing the combined power of
robust optimization and traditional factorization machine models.
As a future work, benchmarking the effectiveness of RFMs and
RFFMs across a breadth of classification settings is a promising area
of investigation. Exploring other choices of uncertainty models,
like ellipsoidal and conic models is another interesting research
direction. Applying RO principles to tree based ensembles and deep
learning is yet another unexplored territory. The pursuit of the
question of whether incorporating the notion of worst case loss
minimization for these highly expressive models results in higher
generalization power, might reveal deeper insights about themodels
themselves.
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