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Abstract

Ad Exchanges are emerging Internet markets where advertisers may purchase display ad place-

ments, in real-time and based on specific viewer information, directly from publishers via a simple

auction mechanism. Advertisers join these markets with a pre-specified budget and participate in

multiple second-price auctions over the length of a campaign. This paper studies the competitive

landscape that arises in Ad Exchanges and the implications for publishers’ decisions. The presence

of budgets introduces dynamic interactions among advertisers that need to be taken into account

when attempting to characterize the bidding landscape or the impact of changes in the auction

design. To this end, we introduce the notion of a Fluid Mean Field Equilibrium (FMFE) that is

behaviorally appealing, computationally tractable, and in some important cases yields a closed-form

characterization. We establish that a FMFE approximates well the rational behavior of advertisers

in these markets. We then show how this framework may be used to provide sharp prescriptions

for key auction design decisions that publishers face in these markets. In particular, we show that

ignoring budgets, a common practice in this literature, can result in significant profit losses for the

publisher when setting the reserve price.

Keywords. auction design, revenue management, ad exchange, display advertising, internet,

budget constraints, dynamic games, mean field, fluid approximation.

1 Introduction

The market for display ads on the internet, consisting of graphical content such as banners and videos

on web pages, has grown significantly in the last decade, generating about 11 billion dollars in the

United States in 2011 (Internet Advertising Bureau, 2012). This growth has been accompanied by the

emergence of alternative channels for the purchase of display ads. While traditionally, advertisers would
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purchase display ad placements by negotiating long term contracts directly with publishers (webpage

owners), spot markets for ad slots, called Ad Exchanges, have emerged and the ad spending through

these continues to grow (Wall Street Journal, 2013). Google’s DoubleClick, OpenX, and Yahoo!’s Right

Media are examples of such exchanges.

An Ad Exchange is a platform that operates as an intermediary between online publishers and

advertisers. When a user visits a web page (e.g., the New York Times), the publisher may post an

ad slot in the exchange together with potentially some user information known to her; e.g., the user’s

geographical location and her cookies. Based on the latter, and in conjunction with their targeting

criteria, interested advertisers (or bidders) post bids. Then, an auction is run to determine the winner

and the ad to be shown to the user. The latter process happens in milliseconds, between the time a user

requests a page and the time the page is displayed to her. As viewers visit her web-site, the publisher

repeatedly offers slots to display advertisements; typically, a given publisher runs millions of these

auctions per day. On their part, advertisers participate in the exchange with the objective of fulfilling

marketing campaigns. In practice, such campaigns are commonly based on a pre-determined budget

and extend for a fixed amount of time over which advertisers participate in a large volume of auctions.

Given the large number opportunities and the time scale on which decisions are made, bidding is fully

automated. See Muthukrishnan (2009) for a more detailed description of Ad Exchanges.

The prevalence of advertisers’ budget constraints in these markets links the different auctions over

time, and therefore, traditional equilibrium and revenue optimization analysis for static auctions do not

apply in this setting. Thus motivated, this paper introduces a new approach to study the key auction

design decisions that publishers face, while considering the strategic response of budget-constrained

advertisers. In particular, the framework captures some key characteristics of an exchange, and allows

to start quantifying some central trade-offs faced by publishers and advertisers in this new channel.

1.1 Main Contributions

Advertisers participate in repeated auctions subject to budget constraints, and therefore they typically

require dynamic bidding strategies to optimize the allocation of budget to incoming impressions in order

to maximize cumulated profits over the length of the campaign. In many cases, advertisers may have

similar targeting criteria and bid for the same inventory of ads. Thus, the dynamic bidding strategy

an advertiser adopts impacts the competitive landscape for other advertisers in the market. Moreover,

the publisher’s auction design decisions, such as the reserve price, also impact these interactions. Thus

motivated, we formulate our Ad Exchange model as a game among advertisers and the publisher.1

First, the publisher defines the parameters of a second-price auction that become common knowledge.

1In practice, Ad Exchanges may be operated by third-parties; for simplification, in this paper we assume that the
publisher and the party running the exchange constitute a single entity.
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Then, given the auction format, advertisers compete in a dynamic game. In order to quantify the

impact of auction design parameters, the first question pertains to the competitive landscape that

emerges for fixed auction decisions.

An important challenge in our analysis is solving for the equilibrium of the dynamic game among

advertisers induced by the auction rules. At one extreme of agent sophistication, one may consider

traditional game theoretic notions of equilibrium such as Perfect Bayesian Equilibrium (PBE), in

which advertisers maintain priors on the states of all other bidders, and update them accordingly

using Bayes’ rule. Such an approach presents two main drawbacks. First, the analysis of the resulting

game is, in most cases, intractable from both analytical and computational stand-points. Second, such

sophistication and informational requirements on the part of agents is highly unrealistic.

Fluid Mean Field Equilibrium. The main contribution of this paper is the introduction of an

equilibrium notion that is tractable and provides a good approximation to the strategic interactions

among budget-constrained bidders in an Ad Exchange. Our notion of equilibrium combines in a

novel way two different approximations to address the limitations in PBE. First, we consider a Mean

Field approximation to relax the informational requirements of agents. The motivation behind the

latter is that, when the number of players is large, there is little value in tracking the specific actions

of all agents and one may rely on some aggregate and stationary representation of the competitors’

bids. The mean-field approximation assumes that, even when the overall number of advertisers in the

market is large, only a small fraction of them participates in every auction, which closely reflects the

existing competitive landscape in today’s Ad Exchanges. This type of approximations have appeared

in other auction and industrial organization applications (see, e.g., Iyer et al. (2011); Weintraub et al.

(2008); Adlakha et al. (2011)). Second, borrowing techniques from the revenue management literature

(see, e.g., Gallego and van Ryzin (1994)), we consider a stochastic fluid approximation to handle the

complex dynamics of the advertisers’ control problem. Such approximations are suitable when the

number of opportunities is large and the payment per opportunity is small compared to the budget;

hence, these are well motivated in the context of Ad Exchanges (see, e.g, Netmining (2011)).

Using the two approximations above, we define the notion of a Fluid Mean Field Equilibrium

(FMFE).2 We show that FMFE provides a good approximation to the rational behavior of agents as

markets become large, yielding theoretical support for the use of FMFE as an equilibrium concept in

this setting. Moreover, we show through a combination of theoretical and numerical results that the

FMFE strategy is typically close to being a best response among a large class of strategies that keep

track of all available information in the market, even in small markets with few advertisers (e.g., 5 to

10), providing further practical support to the concept. Specifically, in small markets a bidder may

have incentives to overbid and deplete competitors’ budgets to decrease competition in the future. We

2In Section 1.2 we compare and contrast FMFE with related notions of equilibria introduced in previous work.
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show, however, that the incentives to exercise such strategic behavior are low relative to playing FMFE

even in small markets.

From a structural perspective, when a second-price auction is conducted, quite remarkably, the

resulting FMFE strategy has a simple, yet appealing, form: an advertiser needs to shade her values by

a constant factor. Furthermore, in equilibrium, advertisers will deplete their budget at an essentially

constant rate, a typical practical requirement known as “smooth budget depletion”. Intuitively, when

budgets are tight, advertisers shade their bids because there is an option value for future good oppor-

tunities. In addition, we show that an FMFE always exists and provide a set of sufficient conditions

that guarantee its uniqueness. We also provide a characterization for FMFE that suggests a simple

and efficient algorithm for its computation. Lastly, we derive a closed-form characterization of FMFE

in the case of homogeneous bidders. These succinct characterizations of equilibria are remarkably rare

and one may significantly leverage them when studying the publisher’s problem.

Auction Design. We show how a publisher that maximizes expected profits can use FMFE as

a tool for backtesting different auction designs, while accounting for the strategic response of budget-

constrained advertisers. In particular, we focus on optimally setting the reserve price. When solving

her optimization problem the publisher trades-off the revenues extracted from the auction with the

opportunity cost of selling the impressions through an alternative channel. In addition, she needs to

consider that changing the auction parameters may change the FMFE strategies played by advertis-

ers. In particular, we show through a combination of theoretical and numerical results that ignoring

budgets typically results in reserve prices that are lower than optimal, and may result in significant

profit losses for the publisher. We believe these results are particularly relevant, because budgets are

typically ignored in the literature when setting optimal reserve prices in the Ad Exchange, despite their

prevalence in practice (see the related literature below). We further highlight that other levers may be

optimized through the proposed framework, such as the allocation of impressions to the exchange or

the extent of user information to disclose to the advertisers.

Overall, the paper is the first in the literature (with the exception of Gummadi et al. (2012) that we

discuss below) that provides a framework for profit optimization in repeated auctions, considering the

strategic response of budget-constrained bidders. As such, we believe this work can have a practical

impact on the design of Ad Exchange auctions. More broadly, we expect that FMFE may have

additional applications beyond the one presented in this paper.

1.2 Related Work

This work contributes to various streams of literature. By accounting for advertisers’ budget con-

straints and the resulting inter-temporal dependencies and dynamic bidding strategies they induce, we

contribute to the internet advertising literature in particular, and more generally, to the literature on
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auction design in dynamic settings. To gain tractability, some papers have also used mean-field ap-

proximations in these settings. In this vein, Iyer et al. (2011) study repeated auctions in which bidders

learn about their private value over time. Our mean-field approximation builds on theirs. However, in

our setting dynamics are driven by budget constraints as opposed to learning, resulting in a different

model. Moreover, in addition to the mean-field approximation, we impose a fluid approximation to the

bidders’ control problem. Relative to Iyer et al. (2011), this yields a more succinct characterization of

equilibria based on shading factors that (1) brings computational advantages; (2) provides closed-form

solutions in some settings even for the optimal auction decisions; and (3) allows using univalence theo-

rems to provide broad sets of conditions under which FMFE is unique. Furthermore, for special cases,

we provide approximation results under a sharper scaling, more in line with the typical scales observed

in practice. In summary, the combination of the two approximations yields results that are extremely

rare in the analysis of dynamic games, even after imposing (only) a mean-field approximation.

Closest to our paper is the study of Gummadi et al. (2012) that, in simultaneous and independent

work, also study budget-constrained bidders in repeated auctions and introduce a similar equilibrium

concept to FMFE. However, the studies differ along many important dimensions. Gummadi et al.

(2012) study a more general class of online budgeting problems in an asymptotic regime in which the

spending per interaction is small relative to the budget; repeated second-price auctions with budget

constraints is a particular case of this general formulation. The present paper, in contrast, focuses

on second-price auctions and provides the following sharper results for them that are not present in

Gummadi et al. (2012). First, we rigorously justify FMFE as a solution concept through an asymptotic

result for large markets and numerical results for finite markets, and provide sufficient conditions for

uniqueness of FMFE. Furthermore, we also study various auction design decisions of the publisher,

providing important insights on, e.g., reserve price optimization.

More broadly, our work contributes to the growing literature on display advertising, and in partic-

ular on that with Ad Exchanges. From the publisher’s perspective, various studies analyze display ad

allocation with both guaranteed contracts and spot markets. See, e.g., McAfee et al. (2009), Balseiro

et al. (2011), Yang et al. (2010) and Alaei et al. (2009). These papers, however, take the actions of the

advertisers as exogenous in the auction design. Chen (2011) employs a mechanism design approach

to characterize the optimal dynamic auction for the publisher in the presence of guaranteed contract

constraints. In this work, however, the publisher faces short-lived advertisers and budget constraints

are also ignored. Vulcano et al. (2002) considers a related problem in the context of a single-leg revenue

management problem. Celis et al. (2011) introduce a new randomized auction mechanism that exper-

imentally performs better than an optimized second-price auction in markets that become thin due

to targeting. They consider, however, a one shot auction and do not take into account the dynamics

introduced by budget constraints. Arnon and Mansour (2011) consider an abstraction of a repeated
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budgeted second price auction in which the repeated interactions are collapsed into a single-shot auc-

tion with multiple identical copies of the same item, and study the pure Nash equilibrium of this game.

They do not provide, however, a rigorous justification of the solution concept. From the advertiser’s

perspective, Ghosh et al. (2009) study the design of a bidding agent for a campaign in the presence of

an exogenous market.

There is some body of literature on display advertising from a revenue management angle that fo-

cuses exclusively on guaranteed contracts (see, e.g., Araman and Fridgeirsdottir (2011), Fridgeirsdottir

and Najafi (2010), Roels and Fridgeirsdottir (2009), and Turner (2012)). In the related area of TV

broadcasting, Araman and Popescu (2010) study the allocation of advertising space between forward

contracts and the spot market when the planner faces supply uncertainty. Our work also relates from

a methodological standpoint to some stream of work in revenue management. The single agent fluid

approximation we use and some of the intuition underlying it is related to that of, e.g., Gallego and

van Ryzin (1994). Building on the latter, Gallego and Hu (2011) focusing on price competition, use

a related notion of fluid, or open-loop, equilibrium. Other papers studying dynamic games in revenue

management (all focusing on price competition) include Farias et al. (2011), de Albéniz and Talluri

(2011), and Dudey (1992).

Our work is related to various streams of literature in auctions. First, previous work has studied

auctions with financially constrained bidders in static one-shot settings (see, e.g, Laffont and Robert

(1996), Che and Gale (1998), Che and Gale (2000), Maskin (2000), and Pai and Vohra (2011)). In §5
we show that in our dynamic model we obtain drastically different results to some of the main results

in that stream. In addition, while our focus is on the impact of budget constraints on second price

auctions, our work is somewhat related to the recent literature in optimal dynamic mechanism design

(see Bergemann and Said (2010) for a survey). Finally, our work relates to previous papers in repeated

auctions, such as Jofre-Bonet and Pesendorfer (2003), in which similarly to our model, bidders shade

their bids to incorporate the option value of future auctions. However, in contrast to our work, the

latter paper assumes Markov perfect equilibrium behavior in an empirical setting.

2 Model Description

We study a continuous-time infinite horizon setting in which users arrive to an online publisher’s web-

page according to a Poisson process {N(t)}t≥0 with intensity η. We index the sequence of arriving

users by n ≥ 1, and we denote the sequence of arrival times by {tn}n≥1. When a user requests the

web-page, the publisher may display one advertisement; an event referred to as an impression. The

publisher may decide to send the impression to an Ad Exchange, where an auction among potentially

interested advertisers is run to decide which ad to show to the user. The exchange determines the
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winning bid via a second-price auction with a reserve price, and returns a payment to the publisher.

The rules of the auction and the characteristics of the users’ arrival process are common knowledge.

Advertisers. Advertisers arrive to the exchange according to a Poisson process {K(t)}t≥0 with

intensity λ. We index the sequence of arriving advertisers by k ≥ 1, and denote by {τk}k≥1 the arrival

times.3

Advertiser k is characterized by a type vector θk = (bk, sk, αk, γk) ∈ R4. The first component of

the type, bk, denotes the budget and the second component, sk, denotes the campaign length. That is,

the kth advertiser’s campaign takes place over the time horizon [τk, τk + sk) and her total expenditure

cannot exceed bk. Once the advertiser leaves the exchange she never comes back.

When the publisher contacts the exchange she submits some partial information about the user

visiting the website, that for example, could include cookies. This information, in turn, may heteroge-

neously affect the targeting criteria and the value an advertiser perceives for the impression, which are

captured by αk and γk as we now explain. When the nth user arrives, the advertisers in the exchange

observe the user information disclosed by the publisher, and determine whether they will participate

or not in the auction based on their targeting criteria. We assume that the kth advertiser matches a

user with probability αk independently and at random (both across impressions and advertisers). Con-

ditional on a match, advertisers have independent private values for an impression. In particular, all

values for advertiser k are independent and identically distributed random variables with a continuous

cumulative distribution Fv(·; γk), parameterized by γk ∈ R. The distributions have compact support

[V , V̄ ] ⊂ R+ and continuously differentiable density.4

At the moment of arrival, an advertiser’s type is drawn independently from a common knowledge

distribution with support Θ, a finite subset of the strictly positive orthant R4
++. This distribution

characterizes the heterogeneity among advertisers in the market.

Advertisers have a quasilinear utility function given by the difference between the sum of the

valuations generated by the impressions won minus the expenditures corresponding to the second price

rule over all auctions they participate during the length of their campaign. The objective of each

advertiser is to maximize her expected utility subject to her budget constraint.

Publisher. On the supply side, the publisher has an opportunity cost for selling her inventory of

impressions in the exchange; that is, the publisher obtains some fixed amount c > 0 for each impression

not won by some advertiser in the exchange. The publisher’s payoff is given by the long-run average

3We note that our approach does not rely in the assumption of Poisson arrivals. In fact, our framework is general and,
as shown in Section 6, it also applies for example to the case of synchronous campaigns, when all campaigns start and end
at the same time (e.g., weekly or monthly campaigns). In reality, arrivals may lie in a middle ground with a combination
of some campaigns repeating over time through a regular schedule, a random inflow of new advertisers (launching, for
example, a one-off campaign) and exits of existing advertisers. Our framework could be applied to this setting as well.

4By assuming private values, we will ignore the effects of adverse selection and cherry-picking in common value auctions
when some advertisers have superior information. See Levin and Milgrom (2010) and Abraham et al. (2012) for work
that discusses and analyzes this setting.
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profit rate generated by the auctions, where the profit is measured as the difference between the

payment from the auction and the lost opportunity cost c when the impression is won by an advertiser

in the exchange. The publisher’s objective is to maximize its payoff by adjusting the reserve price r to

set for the auctions.

Notation. Given a random variable X, we denote a realization x with lower case, its sample space

X with bold capitals, the cumulative distribution function by Fx(·), and the law by Px{·}.
Note. Due to space considerations only selected proofs are presented in the main appendix. All

other proofs are presented in a supplementary appendix.

3 Equilibrium Concept

Given the auction design decisions of the publisher, the advertisers participate in a game of incomplete

information. Moreover, because the budget constraints couple advertisers’ decisions across periods, the

game is dynamic and does not reduce to a sequence of static auctions.

A standard solution concept used for dynamic games of incomplete information is that of weak

perfect Bayesian equilibrium (WPBE) (Mas-Colell et al., 1995). Roughly speaking, in such a game,

a pure strategy for advertiser k is a mapping from histories to bids, where the histories represent

past observations. A strategy specifies, given a history and assuming the advertiser participates

in an auction at time t, an amount to bid. A strategy profile in conjunction with a belief system

constitute a WPBE if the following holds. First, given a belief system and the competitors’ strategies,

an advertiser’s bidding strategy maximizes expected future payoffs. Second, beliefs must be consistent

with the equilibrium strategies and Bayes’ rule whenever possible.

WPBE and commonly used refinements, such as perfect Bayesian equilibrium and sequential equi-

librium, require advertisers to hold beliefs about the entire future dynamics of the market, including

the future market states. With more than few competitors in the market this imposes a very strong

rationality assumption over advertisers as these belief distributions are high-dimensional. Moreover,

to find a best response, advertisers need to solve a dynamic programming problem that optimizes

over history-dependent strategies. This optimization problem can be high-dimensional and intractable

both analytically and computationally. Hence, solving for WPBE for most markets of interest is not

possible. More importantly, WPBE imposes informational requirements and a level of sophistication

on the part of agents that seems highly unrealistic. This motivates the introduction of alternative

equilibrium concepts. After some background in §3.1, we introduce such an alternative in §3.2.
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3.1 Mean Field and Fluid Approximation

When selecting an amount to bid, an advertiser needs to form some expectation of the distribution of

bids she will compete against. There are various possible bases for such an expectation as a function

of the sophistication of the advertiser and the type of information she would have access to. In

practice, the number of advertisers in an exchange is often large, in the order of hundreds or even

thousands. The first approximation we make is based on the premise that, given a large number of

advertisers in the market, the distribution of competitors’ bids is stationary and that these random

quantities are uncorrelated among periods. Moreover, the bids of any particular advertiser do not

affect this distribution. It is common that in these markets, auctioneers provide a “bid landscape”

based on aggregated historical data that inherently assumes stationarity, at least for some significant

time horizon. This information is commonly used by advertisers to set their bids, and therefore, our

assumption about the distribution of competitors’ bids may naturally arise in practice (Ghosh et al.,

2009; Iyer et al., 2011). In the present paper, while our approximation is predicated on the overall

number of advertisers in the market being large, the average number of bidders per auction need not

be large. For this reason running auctions remains useful in this regime; a small number of bidders

with heterogeneous valuations participate in each one of them.

To win an auction, an advertiser competes against all other bidders and against the reserve price r.

We denote by D the steady-state maximum of the “competitors’ bids”, where we assume the publisher

is one more competitor that submits a bid equal to r. Assume for a moment that D is i.i.d. across

different auctions and distributed according to a c.d.f Fd(·). (Note that Fd(·) will be endogenously

determined in equilibrium in §3.2).

In this setting, the advertiser’s dynamic bidding problem in the repeated auctions can be casted as a

revenue management-type stochastic dynamic programming problem, in which bidding decisions across

periods are coupled through the budget constraint. However, the resulting Hamilton-Jacobi-Bellman

is a partial differential equation that, in general, does not have a closed-form solution. To get a better

handle on the bidder’s dynamic optimization problem we introduce a second level of approximation mo-

tivated by the fact that a given advertiser has a very large number of bidding opportunities (campaigns

span for weeks or months, and thousands of impressions arrive per day). In such an environment, the

advertiser’s stochastic dynamic programming problem can be well approximated through a stochastic

fluid model. In particular, the approximation we focus on is predicated on assuming that bidders solve

a control problem in which the budget constraint need only be satisfied in expectation. Under the

latter assumption, it is possible to show that one can restrict attention to stationary bidding strategies

that ignore the individual state and are only dependent on the actual realization of the bidder’s value

without loss of optimality. We emphasize here that the budget constraint is imposed almost surely

when we conduct performance analysis in §6. The main point is that the stationary bidding strategies
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derived above can be shown to provide advertisers with provably good policies in the real system (with

constraints imposed a.s.) when both the number of impressions and budgets are large, so the number

of bidding opportunities over the campaign length also grows large.

Now, the control problem, for a bidder with type θ = (b, s, α, γ) is one of finding a fluid-based

bidding strategy βF
θ (v;Fd) that bids depending solely on her value v for the impression. A bidder with

total campaign length s observes, in expectation, a total number of αηs impressions during her stay

in the exchange. By conditioning on the impressions’ arrival process, and using our assumption of the

stationarity of the maximum bids and the valuations, the bidder’s optimization problem is given by

JF
θ (Fd) = max

w(·)
αηsE

[
1{D ≤ w(V )}(V −D)

]
(1a)

s.t. αηsE
[
1{D ≤ w(V )}D

]
≤ b, (1b)

where the expectation is taken over both the maximum bids D and the valuations V , which are

independently distributed according to Fd(·) and Fv(·; γ) respectively. Note that the payments in

the bidders’ problem are consistent with a second-price rule. The bidder optimizes over a bidding

strategy that maps its own valuation to a bid; hence, the resulting problem is an infinite-dimensional

optimization problem. The next result provides, however, a succinct characterization of an optimal

fluid-based bidding strategy.

Proposition 3.1. Suppose that E[D] < ∞. Let µ∗θ be an optimal solution of the dual problem

infµ≥0 Ψθ(µ;Fd) with Ψθ(µ;Fd) = αηsE
[
V − (1 + µ)D

]+
+ µb. Then, an optimal bidding strategy

that solves (1) for type θ is given by

βF
θ (v;Fd) =

v

1 + µ∗θ
.

The optimal bidding strategy has a simple form: an advertiser of type θ needs to shade her values

by the constant factor 1 + µ∗θ, and this factor guarantees that the advertiser’s expenditure does not

exceed the budget. In the previous expression, µ∗θ is the optimal dual multiplier of the budget constraint

and gives the marginal utility in the advertiser’s campaign of one extra unit of budget. Intuitively,

when budgets are tight, advertisers shade their bids, because there is an option value for future good

opportunities. When budgets are not tight, the optimal dual multiplier is equal to zero and advertisers

bid truthfully as in a static second price auction. The proof of the result relies on an analysis of the

dual of problem (1). While the latter is not a convex program, the proof establishes from first principles

that no duality gap exists in the present case.
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3.2 Fluid Mean Field Equilibrium

We now define the dynamics of the market as a prelude to introducing the equilibrium concept we

focus on. At any point in time there can be an arbitrary number of advertisers in the exchange, and

these dynamics are governed by the patterns of arrivals and departures. In particular, the number

of advertisers in the exchange behaves as an M/G/∞ queue. We denote by Q(t) the set of indices

of the advertisers in the exchange at time t, and by Q(t) = |Q(t)| the total number of advertisers in

the system. The market state at time t is given by the set of bidders in the exchange, together with

their individual states and types, Ω(t) = {Q(t), {bk(t), sk(t), θk}k∈Q(t)}, where we denote by bk(t) and

sk(t) the kth advertiser remaining budget and residual time in the market by time t. When advertisers

implement fluid-based strategies the market state encodes all the information relevant to determine

the evolution of the market, and the process Ω = {Ω(t)}t≥0 is Markov.

In our equilibrium concept we will require the consistency of the distribution of the maximum bid

that bidders conjecture they compete against with the bidding strategies they use. A difficulty with

this consistency check is that the number of active bidders, those that match the target criteria and

have remaining budgets, depends on the market dynamics. In particular, the budget dynamics depend

on who wins and how much the winner pays in each auction. Hence, in principle, characterizing the

resulting steady-state distribution of the maximum bid of active competitors’ (that have remaining

budgets) is complex. However, it is reasonable to conjecture that, when the number of opportunities

during the campaign length is large, rational advertisers would deplete their budgets close to the end

of their campaign with high probability. For analytical tractability we impose that, in our equilibrium

concept, any bidder currently in the exchange that matches the targeting criteria, without regard

of her budget, gets to bid. Under this assumption, the number of bidders in an auction equals the

number of advertisers matching the targeting criteria, denoted by M(t), which is just an independent

sampling from the process Q(t).5 In the proof of Theorem 6.1 and in the technical report Balseiro et al.

(2012) we show this layer of approximation is in fact asymptotically correct. Indeed, the performance

analysis in Section 6 takes into account that when advertisers implement the FMFE strategies stochastic

fluctuations in their expenditure may actually induce them to run out of budget before the end of the

campaign, at which point they cannot continue to participate in any auction.

Since arrival and departures of advertisers are governed by an M/G/∞ queue and campaign lengths

are bounded, it is not hard to show that under fluid-based strategies the market process Ω is Harris

recurrent, so it is ergodic and admits a unique invariant steady-state distribution (see, e.g., Asmussen

(2003) p. 203). Let
(
M̂, {Θ̂k}M̂k=1

)
be a random vector that describes the number of matching bidders,

5We note that an important difference between our FMFE and the related equilibrium concept proposed in parallel
by Gummadi et al. (2012) is that they do not impose this additional layer of approximation. This plays a key role to
obtain tractability in our analysis.
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together with their respective types when sampling a market state according to the invariant distribu-

tion. Notice that advertisers with longer campaign lengths and higher matching probability are more

likely to participate in an auction, and thus the law of a type sampled from the invariant distribution

does not coincide with the law of the types in the population. Indeed, by exploiting the fact that

arrival-time and service-time pairs constitute a Poisson random measure on the plane (see, e.g., Eick

et al. (1993)), one can show that M̂ is Poisson with parameter E[αΘλsΘ], and that each component

of the vector of types is independently and identically distributed as PΘ̂{θ} = αθsθ
E[αΘsΘ]PΘ{θ} for each

type θ ∈ Θ, and independent of M̂ .6

For a fluid-based strategy profile β = {βθ(·) : θ ∈ Θ} with βθ : [V , V̄ ] → R, we denote by Fd(β)

the distribution of the following random variable

max

({
βΘ̂k

(VΘ̂k
)
}M̂
k=1

, r

)
, (2)

which represents the steady-state maximum bid. Note that here Vθ are independent valuations sampled

according to Fv(·; γθ). We are now in a position to formally define the notion of a Fluid Mean Field

Equilibrium (FMFE).

Definition 3.1 (Fluid Mean Field Equilibrium). A fluid-based strategy profile β constitutes a FMFE

if for every advertiser’s type θ ∈ Θ, the bidding function βθ is optimal for problem (1) given that the

distribution of the maximum bid of other advertisers is given by Fd(β) (equation (2)).

Essentially a FMFE is a set of bidding strategies such that (i) these strategies induce a given

competitive landscape as represented by the steady-state distribution of the maximum bid, and (ii)

given this landscape, advertisers’ optimal fluid-based bidding strategies coincide with the initial ones.

We focus on symmetric equilibria in the sense that all bidders of a given type adopt the same strategy.

Note that in the FMFE, upon arrival to the system an advertiser is assumed to compete against the

market steady-state maximum bid D.7

Remarks. We introduced FMFE by heuristically arguing that it should be a sensible equilibrium

concept for large markets when the number of bidding opportunities per advertiser are also large. In

Theorem 6.1, we show that when all advertisers implement the FMFE strategy, the relative profit

increase of any unilateral deviation to a strategy that keeps track of all information available to

the advertiser becomes negligible as the scale of the market increases. This provides a theoretical

justification for using FMFE as an approximation of advertisers’ behavior.

6For a type θ ∈ Θ we denote, with some abuse of notation, the corresponding budget by bθ, the campaign length by
sθ, the matching probability by αθ, and the valuation parameter by γθ. Additionally, we denote by Θ a random variable
distributed according to the law of types in the population.

7Note that by the PASTA property of a Poisson arrival process this assumption is in fact correct.
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In the asymptotic regime described above the matching probabilities are decreased so that the

number of bidders per auction remains constant, and therefore, the probability that two advertisers

participate repeatedly in the same auctions becomes negligible. In real-world markets, it might be the

case that similar advertisers compete repeatedly in the same auctions to advertise to the same users.

Nonetheless, in Section 6.2 we show through a combination of theoretical and numerical results that

even with a moderate number of advertisers (e.g., 5 to 10) FMFE strategies are typically close to being

a best response. Naturally, in these markets two advertisers may interact repeatedly over time and

our results show that FMFE provides a good approximation to the rational behavior of agents even in

these cases.

4 Fluid Mean Field Equilibrium Characterization

In this section we prove the existence, provide conditions for uniqueness, and characterize the FMFE.

Proposition 3.1 will significantly simplify our analysis, because it allows one to formulate the equilibrium

conditions in terms of a vector of multipliers instead of bidding functions. By doing so, the problem of

finding the equilibrium strategy function for a given type will be reduced to finding a single multiplier.

4.1 Equilibrium Existence and Sufficient Conditions for Uniqueness

We first prove the existence of a FMFE for a fixed reserve price. Recall from Proposition 3.1 that, in

an optimal fluid bidding strategy, advertisers of type θ shade their bids using a fixed multiplier µθ. In

the following we denote by µ = {µθ}θ∈Θ a vector of multipliers in R|Θ|+ for the different advertisers’

types. Given a postulated profile of multipliers µ, let Fd(µ) denote the steady-state distribution of

the maximum bid and let Ψθ(µ;µ) , Ψθ(µ;Fd(µ)) be the dual objective for one θ-type advertiser (as

defined in Proposition 3.1) when all other bidders adopt a strategy given by the vector µ (including

those of her own type). In the dual formulation, a vector of multipliers µ∗ constitutes a FMFE if and

only if it satisfies the best-response condition

µ∗θ ∈ arg min
µ≥0

Ψθ(µ;µ∗), for all types θ ∈ Θ. (3)

One may establish that the system of equations (3) always admits a solution to obtain the following.

Theorem 4.1. There always exists an FMFE.

The proof shows that the dual strategy space can be reduced to a compact set, and that the dual

objective function is jointly continuous in its arguments, and convex in the first argument. Then, a

standard result that relies on Kakutani’s Fixed-Point Theorem implies existence of an FMFE.
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We now turn to sufficient conditions for uniqueness. Let G : R|Θ|+ ×R+ → R|Θ|+ be a vector-valued

function that maps a profile of multipliers and a reserve price to the steady-state expected expenditures

per auction of each type. The expected expenditure of a θ-type bidder in a second-price auction when

advertisers implement a profile of multipliers µ is given by Gθ(µ, r) , E [1{(1 + µθ)D ≤ V }D] , where

the maximum competing bid is given by D = max
((
VΘ̂/

(
1 + µΘ̂

))
1:M̂

, r
)
.8

Assumption 4.1 (P-matrix). The Jacobian of −G with respect to µ is a P-matrix for all µ in R|Θ|+

A matrix is P-matrix if all its principal minors are positive (Horn and Johnson, 1991, p.120).

Assumption 4.1 can be shown to hold for various cases of interest. For example, it is easy to see that it

always holds for the case of homogeneous advertisers, i.e., when the space of types Θ is a singleton. In

Appendix C, we provide an important class of settings with two types of bidders in which it also holds.

The P-matrix condition can be interpreted as a monotonicity condition on the expected expenditures.

Namely, if a group of types increases its multipliers simultaneously, then the expenditures cannot

increase for every type in the group. The next theorem shows that the equilibrium is unique under the

P-matrix assumption.

Theorem 4.2. Suppose Assumption 4.1 holds. Then, there is a unique FMFE of the form βθ(v) =

v/(1 + µθ), θ in Θ.

We prove the result by formulating the FMFE conditions as a Non-linear Complementarity Problem

(NCP) as presented in Corollary 4.1 below, and employing a Univalence Theorem to show that the

expected expenditure mapping is injective (Facchinei and Pang, 2003a). We note that results regarding

uniqueness of equilibria in dynamic games are extremely rare (Doraszelski and Pakes, 2007).

Providing conditions for which Assumption 4.1 holds is challenging for more than two types of

bidders. In our numerical experiments we use a myopic best response algorithm, presented in detail in

Section 5.2.1, that could naturally describe how agents learn to play the game and reach an FMFE. It

is reassuring that in our computational experience, for a given model instance with two or more types,

this algorithm always found the same FMFE even when starting from different initial points.

We finish this subsection by noting that under further mild regularity conditions one can establish

that any set of continuous increasing bidding functions that constitute an FMFE necessarily yield the

same outcome (in terms of auctions’ allocations and payments) as that of the FMFE in Theorem 4.2.

In the rest of the paper, we focus on the simple and intuitive FMFE strategies that can be described

by a vector of dual multipliers.

8Note that consistent with the FMFE assumption and the PASTA property, the bidder competes against the market
steady-state maximum bid.
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4.2 Equilibrium Characterization

A direct corollary of the earlier results and their proofs yields the following succinct characterization.

Corollary 4.1. Any FMFE characterized by a vector of multipliers µ∗, such that βθ(v) = v/(1 + µ∗θ)

for all v ∈ [V , V̄ ] and θ ∈ Θ, solves

µ∗θ ≥ 0 ⊥ αθηsθGθ(µ
∗, r) ≤ bθ, ∀θ ∈ Θ,

where ⊥ indicates a complementarity condition between the multiplier and the expenditure, that is, at

least one condition should be met with equality.

The expected expenditure for a bidder of type θ over its campaign when bidders use a vector of

multipliers µ is given by αθηsθGθ(µ, r), because on average she faces ηsθ auctions and participates in

a fraction αθ of them. Intuitively, the result states that, in equilibrium, advertisers of a given type

may only shade their bids if their total expenditure over the course of the campaign (in expectation)

is equal to their budget. If, in expectation, advertisers have excess budget at the end of a campaign,

then, their multiplier is equal to zero and they should bid truthfully. This equilibrium characterization

lends itself for tractable algorithms to compute FMFE, because the strategy of each advertiser type is

determined by a single number that satisfies the complementary conditions above. See, for example,

Chapter 9 of Facchinei and Pang (2003b) for a discussion of numerical algorithms for this kind of NCPs.

We conclude this subsection by refining the result for the case of homogeneous bidders, in which

one can provide a quasi-closed form characterization for FMFE. Suppose that Θ is a singleton. Let

G0(r) = Gθ(0, r) denote the steady-state unconstrained expected expenditure-per-auction of a single

bidder for a second price auction with reserve price r when all advertisers (including herself) bid their

own values. Note that the expected expenditure for a bidder over its campaign when all bidders are

truthful is given by αηsG0(r). This quantity plays a key role in the FMFE characterization.

Proposition 4.1. Suppose Θ is a singleton. Then a Fluid Mean Field Equilibrium exists and is unique.

In addition, the equilibrium may be characterized as follows: βθ(v) = v/(1+µ∗) for all v ∈ [V , V̄ ], where

µ∗ = 0 if αηsG0(r) < b, and µ∗ is the unique solution to αηsG0(r(1 + µ)) = b(1 + µ) if αηsG0(r) ≥ b.

The result provides a complete characterization of the unique FMFE. In particular, it states that

if budgets are large (i.e., αηsG0(r) < b), then in equilibrium advertisers will bid truthfully. If however,

budgets are tight (i.e., αηsG0(r) ≥ b), then advertisers will be shading their bids in equilibrium,

considering the option value of future opportunities. We also further note here that in the case in

which the reserve price is equal to zero (r = 0), the equilibrium multiplier may be characterized in

closed form by µ∗ = (αηsG0(0)/b− 1)+.
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5 Auction Design: Reserve Price Optimization

In this section we study the publisher’s profit maximization problem. First, we use the framework

developed in the previous sections to formulate the problem. Then, we study the resulting optimization

problem and derive insights on how to account for budgets when setting the reserve price.

We model the grand game played between the publisher and advertisers as a Stackelberg game in

which the publisher is the leader and the advertisers are the followers. In particular, the publisher

first selects the reserve price in the second-price auction r, and then the advertisers react and play

the induced dynamic game among them. In our analysis we assume that the solution concept for the

game played between advertisers is that of FMFE. The publisher’s objective is to maximize her long

run average profit rate from the auctions, while considering the opportunity cost c of the alternative

channel.

To mathematically formulate the problem we define I(µ, r) = 1−Fd(r;µ) as the probability that the

impression is won by some advertiser in the exchange when advertisers shade according to the profile

µ and the publisher sets a reserve price r. Using the characterization of an FMFE in Corollary 4.1,

we can write the publisher’s problem in terms of multipliers, and obtain the following Mathematical

Program with Equilibrium Constraints (MPEC):

max
r

λ
∑
θ∈Θ

pθαθηsθGθ(µ, r)− ηcI(µ, r) (4)

s.t. µθ ≥ 0 ⊥ αθηsθGθ(µ, r) ≤ bθ, ∀θ ∈ Θ,

where pθ , PΘ{θ} is the probability that an arriving advertiser is of type θ. We denote by Π(µ, r) the

objective function of the MPEC. The first term in the objective is the publisher’s revenue rate obtained

from all bidders’ types in the auctions, which is equal to the average expenditure of the advertisers.

Note that the revenue rate obtained from a given type is equal to the bidders’ average expenditure

over their campaign times the arrival rate of bidders. The second term is the opportunity cost by unit

of time, which is incurred whenever an impression is won by some advertiser in the exchange and,

therefore, cannot be sold in the alternative channel.

Note that the MPEC above considers that when the publisher changes the reserve price, bidders

react by playing a corresponding FMFE. By Theorem 4.1 we know that such a FMFE always exist.

Further, when Assumption 4.1 holds, the FMFE is unique. In cases for which we do not know whether

the assumption holds, we will assume that advertisers play the FMFE computed by our best response

algorithm.9

9Assuming that the equilibrium being played is the one selected by a specific algorithm is a prevalent approach in
the analysis of dynamic games for which uniqueness results are extremely rare. For example, Iyer et al. (2011) use
this approach in a repeated auction setting and many of the references in Doraszelski and Pakes (2007) use it in other

16



5.1 Reserve Price: Homogeneous Advertisers

We first consider the case in which Θ is a singleton, i.e., all advertisers have a fixed budget b, stay in the

market for a deterministic time s, and share the same matching probability α and valuation parameter

γ. By Proposition 4.1 we know that in this case a unique FMFE exists and we can characterize it in

quasi-closed form. We leverage this result to study the publisher’s decisions. Throughout this section,

we drop the dependence on θ. In the following we denote by hv(x) = fv(x)/F̄v(x) the failure rate of

the advertisers values (who have a common distribution), and by ξv(x) = xhv(x) the generalized failure

rate of the values. We assume that values possess strictly increasing generalized failure rates (IGFR).

This assumption is common in the pricing and auction theory literature, and many distributions satisfy

this condition (see, e.g., Myerson (1981) and Lariviere (2006)).10

In the absence of budgets, the auctions are not coupled and each auction is equivalent to a one-shot

second-price auction with opportunity cost c > 0 and symmetric bidders with private values. In such

a setting, it is well-known that the optimal reserve price, which we denote by r∗c , is independent of the

number of bidders and given by the unique solution of 1/hv(x) = x− c (see, e.g., Laffont and Maskin

(1980)). The next result establishes a counterpart for the present case with budget constraints.

Theorem 5.1. (Optimal reserve price). If αηsG0(r∗c ) < b, then r∗c is the unique optimal reserve price.

If αηsG0(r∗c ) ≥ b, then the unique optimal reserve price is r̄ = supR∗, where R∗ = {r : αηsG0(r) ≥ b}.
Furthermore, in the FMFE induced by the optimal reserve price, advertisers bid truthfully.

The optimal reserve price admits a closed-form expression that highlights how it balances various

effects. The expected expenditure for a bidder over its campaign when all bidders are truthful evaluated

at r∗c , αηsG0(r∗c ), plays a key role in the result. In fact, when the budget is large in the sense that

advertisers do not deplete their budget in expectation when the reserve price is r∗c (αηsG0(r∗c ) ≤ b),

then it is expected that r∗c should still be optimal in our setting. Intuitively, if the budget does not

bind, the auctions decouple into independent second price auctions. When, however, αηsG0(r∗c ) > b,

advertisers shade their values when the reserve price is r∗c . In the proof, we show that in this case

the optimal reserve price must be in R∗, that is, it must induce bidders to deplete their budgets in

expectations. For all such reserve prices, the revenue rate for the publisher is given by λb and this is

the maximum revenue rate she can extract from advertisers. Hence, recalling the objective value (4)

of the publisher, the optimal reserve price must be the value r ∈ R∗ that minimizes the probability of

selling an impression in the exchange, and therefore the opportunity cost. Increasing the reserve price

has two effects on this probability: (1) a direct effect: assuming advertiser’s strategies do not change,

an increase of the reserve price decreases the probability of selling an impression in the exchange; and

industrial organization games.
10For instance the uniform, exponential, triangular, truncated normal, gamma, Weibull, and log-normal distribution

have IGFR.
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(2) an indirect effect: a change in the reserve price also alters the strategies of the advertisers through

the induced FMFE. In the proof we show that the direct effect is dominant, implying that r̄ = supR∗

is optimal since it minimizes the opportunity cost within R∗.
We emphasize that the optimal reserve price with budget constraints is larger or equal than r∗c , the

static reserve price that does not account for budgets. In fact, the optimal reserve price is max{r̄, r∗c},
because one can show that r̄ ≥ r∗c if and only if αηsG0(r∗c ) ≥ b. Theorem 5.1 highlights that ignoring

budgets can result in a suboptimal decision. In the next section, we numerically evaluate the extent

of the sub-optimality in markets with heterogeneous bidders.

Before, we note that when advertisers are highly budget-constrained, the reserve price r̄ tends to

be high, and therefore it is very unlikely that two advertisers will bid higher than r̄. In this case, the

advantage of running a second price auction becomes limited and its performance is similar to that of

a fixed posted price mechanism.

We finish this subsection by comparing the result above with the studies pertaining to one-shot

auctions with budget constraints. In the case of a common budget for all bidders, authors have typically

found that budget constraints decrease the optimal reserve price relative to the setting without budget

constraints (see Laffont and Robert (1996) and Maskin (2000)). The reason is that with budget

constraints the reserve price is less effective in extracting rents of higher valuation types; hence, when

trading-off higher revenues conditional on a sale taking place with an increase in the probability of a

sale, the latter has more weight than in the absence of budgets. In our case, instead, the optimal reserve

price with budget constraints is larger or equal than r∗c . The difference with the one-shot auction is

that the budget constraint is imposed over a large set of auctions as opposed to having a constraint per

auction, leading to a different trade-off for the publisher. Indeed, when the budget constraint binds,

the reserve price does not affect expected revenues, the publisher is already extracting all budgets from

the bidders. Therefore, the only role of the reserve price becomes one of reducing the opportunity cost

by decreasing the probability of a sale. As we saw, this is achieved by increasing the reserve price while

still extracting the maximum amount of revenues.

5.2 Reserve Price: Heterogeneous Advertisers

While it was possible to obtain essentially a closed-form solution for the publisher’s optimal reserve

price in the case of homogeneous advertisers, it is not in general possible to derive such a result for

the case of heterogeneous advertisers. However, one may always numerically analyze the impact of the

publisher’s decisions on the advertisers’ equilibrium outcome under different scenarios by solving for

the FMFE using the characterization in Corollary 4.1 for different auction parameters. We provide

such a study in this section and start by describing an algorithm to compute FMFE.
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5.2.1 Algorithm to Compute FMFE

For each model instance, we solve for FMFE using the following myopic best response algorithm over

the space of dual multipliers. The algorithm starts from an arbitrary vector of multipliers µ:

Algorithm 1 Best Response Algorithm for FMFE

1: µ0
θ := µθ, ∀θ ∈ Θ; i := 0

2: repeat
3: µi+1

θ := arg minµ′≥0 Ψθ(µ
′;µi), ∀θ ∈ Θ

4: ∆ := ‖µi+1 − µi‖∞; i := i+ 1
5: until ∆ < ε

If the termination condition is satisfied with ε = 0, we have a FMFE (see equation (3)). Small

values of ε allow for small errors associated with limitations of numerical precision. While we cannot

prove convergence of the algorithm, in practice, it converged in a small number of iterations. In fact,

for fixed auction parameters, solving for the FMFE takes a few seconds on a laptop computer.

5.2.2 Measuring the Impact of Budgets on the Optimal Reserve Price

The analysis with homogeneous bidders highlighted that ignoring budgets can lead to suboptimal

reserve prices. In this section, we measure the extent of the sub-optimality in markets with hetero-

geneous bidders. We believe this exercise is particularly relevant, because several papers that study

online advertising in fact ignore budgets when setting optimal reserve prices in the Ad Exchange (see,

e.g., McAfee et al. (2009), Balseiro et al. (2011), Chen (2011), and Celis et al. (2011)).

The setup for our numerical experiments is as follows. We consider randomly generated instances

with a heterogeneous population of advertisers with five types. Budgets for each type are sampled

from a discrete uniform distribution with support {1, 2, ..., 10}. Additionally, we experiment with the

proportion of these types by choosing the probabilities pθ of an arriving advertiser being of type θ

uniformly from the probability simplex. Throughout the experiments we fix the matching probability

α = 0.1 and the campaign length to s = 10, but select the arrival rate λ uniformly in [1, 5] so that the

average number of matching bidders in an auction αλs varies from 1 to 5. Advertisers have the same

distribution of values, which is drawn uniformly from the set Exp(γ), N (γ, 1), and Unif[0, 2γ] with γ

uniformly sampled from [1, 5] (the supports of valuations are truncated to [0, 10]). From the perspective

of the publisher, we study scenarios with different opportunity costs c for the alternative channel, by

choosing the cost uniformly from [1, 5]. Additionally, we consider 10 levels for the impressions allocated

to the exchange, as given by η.11 In total, we consider 920 different scenarios.

11In particular, we consider 10 uniformly spaced points in the interval [0, 1.25 maxθ η̄θ] where η̄θ is the least rate of
impressions guaranteeing that a population of type θ bidders in isolation is budget constrained when the reserve is r∗c .
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Figure 1: Histogram of the relative profit loss of ignoring budget constraints for randomly generated
instances. The relative profit loss is given by Π(µ(r∗c ), r

∗
c )/Π(µ(r∗), r∗) − 1 where µ(r) denotes the

FMFE multipliers at reserve price r. The histogram is restricted to those instances in which the mean
advertiser truthful expenditure at r∗c exceeds the mean budget, i.e.,

∑
θ pθGθ(0, r

∗
c ) ≥

∑
θ pθbθ.

For each model instance we compute two reserve prices. First, the optimal static reserve price r∗c

as given in Section 5.1, which assumes advertisers always bid truthfully, and therefore, ignores budget

constraints. Second, the reserve price r∗ that solves optimization problem (4), and therefore, considers

the rational response of budget-constrained advertisers via FMFE.

From the numerical experiments we obtain two conclusions that are robust across all model in-

stances. First, consistent with the results from the homogenous case, the reserve price r∗ is larger than

r∗c . Second, the extent of sub-optimality associated with ignoring budgets and selecting r∗c instead of

r∗ can be significant with profit losses up to 40%. A histogram of the relative profit loss across the

generated instances is shown in Figure 1. Overall, our results show that ignoring the rational response

of budget-constrained advertisers can yield significant profit losses for the publisher.

5.2.3 Structure of the Optimal Reserve Price

In this section, we study in more detail the structure of the optimal reserve price r∗ in markets with

heterogeneous bidders to illustrate the trade-offs the publisher faces in these settings. For this purpose,

it is useful to depict the optimal reserve price and the resulting shading multipliers as a function of

the allocation of impressions to the exchange η. Figure 2 shows such dependence for a given set of

parameters with two types. Notice that when the publisher prices optimally, the high-budget type

always bids truthfully. However, in contrast to the homogeneous case, this is not necessarily true for

the low-budget type: for some levels of supply, low-type advertisers will shade their bids under the
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optimal reserve price.

Focusing on the optimal reserve price, we observe that advertisers do not have a chance to deplete

their budgets for low levels of supply. In this case, advertisers bid truthfully and r∗c is the optimal

reserve price. As the rate of impressions increases, the expenditures increase up to the point at which

the low-type becomes budget constrained. From then on the publisher needs to balance two effects.

On the one hand, since the low-type is now shading her bids, the publisher has an incentive to increase

the reserve price so as to minimize the number of impressions won and the opportunity cost. The

latter is achieved by r̄1(η), the optimal reserve price if all advertisers shared the same budget b1 (the

top dashed line). On the other hand, the publisher has an incentive to price close to r∗c to extract

the surplus from the high-type advertisers, who are not depleting their budgets. The tradeoff is such

that, initially, the weight of the low-budget type bidders is higher and it is optimal for the publisher

to price close to r̄1(η), and thus increasing the reserve price with the allocation of impressions. At this

price, however, the expenditure of the high-budget type is well below its budget, and the publisher

may be leaving money on the table. When enough impressions are allocated to the exchange this

effect becomes dominant and the publisher tries to extract this surplus by pricing closer to r∗c ; thus the

sudden kink and decrease in the optimal reserve price. If the publisher keeps increasing the allocation

of impressions, eventually both types become budget constrained. Similarly to the homogeneous case,

the publisher is now better off pricing in a way such that both types deplete their budgets, but with the

high-type bidding truthfully, so that the number of impressions won by the advertisers is minimized.

For this reason, at some point the optimal reserve price starts increasing again.

In our numerical experiments, a similar structure and tradeoff appears when there are more than

two types of advertisers with different budgets in the population, with one new kink in the optimal

reserve price for each additional type.

6 FMFE as a Near-Optimal Best Response

In this section we aim to provide further support for the concept of FMFE introduced in Section

3.2 along two dimensions. First we rigorously justify that playing an FMFE strategy when all other

advertisers play the FMFE strategy is a near-optimal best response in markets of large “size”, i.e.,

when both the number of advertisers and the number of auctions are appropriately large. Second, we

aim to illustrate theoretically and numerically the main trade-offs faced by advertisers and why FMFE

strategies are potentially near-optimal even when the number of advertisers is small, lending further

practical support to the concept.

Preliminaries. To achieve the above goals, we focus on a simplified version of the problem, the case

of synchronous campaigns, that is, when all campaigns start at the same time and finish simultaneously.
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Figure 2: Equilibrium multipliers and optimal reserve price as a function of the rate of impressions
for an instance with α = 0.1, λ = 1, s = 40, Unif[0, 2] valuation distribution, c = 2

3 , b = (1, 8),
and p = (1

5 ,
4
5). For illustration purposes we only consider two types and different parameters than

above. (a) Equilibrium multipliers as a function of the allocation of impressions. (b) The solid line
corresponds to optimal reserve price, while the dashed lines denote the optimal prices one would set for
a homogeneous population with budget b1 (low-type) or b2 (high-type). The reserve price r∗c is equal
to 4

3 .

This simpler model corresponds, for example, to the case when advertisers have periodic (daily or

weekly) budgets. It captures some of the key characteristics of the market, and allows to highlight the

main issues at play in a relatively transparent fashion. The general case of asynchronous campaigns

introduces a significant additional layer of complexity, and we provide an asymptotic approximation

result pertaining to the latter in Balseiro et al. (2012).12

We next describe the synchronous model and adapt FMFE to this setting. There is a fixed number

of agents in the market, which we denote by K. All campaigns start at time 0 and finish at a

common time s, and neither arrivals nor departures are allowed during the time horizon [0, s]. Agents

are indexed by k = 1, . . . ,K. Similarly as before, the kth agent is characterized by a type vector

θk = (bk, αk, γk) ∈ R3. Types are publicly known and revealed at the beginning of the horizon. While

this assumption is not necessary for our analysis, we make it to simplify some arguments and notation.

Now, the expected expenditure function of the kth advertiser of a single auction when advertisers

shade their bids according to a vector of multipliers µ ∈ RK+ , denoted by Gk(µ; r), is given as in §4
but with the maximum competing bid given by D−k = maxi 6=k,Mi=1

{
Vi/(1 + µi)

}
∨ r, where we let

12Due to the asynchronous nature of the market, for this result we extend the propagation of chaos argument of Graham
and Méléard (1994) and Iyer et al. (2011) to accommodate the additional fluid approximation and the queuing dynamics
of the number of advertisers in the market, which leads to a more restrictive scaling than our result below for synchronous
campaigns. An interesting technical avenue for future research is to show whether the scaling under which we obtain our
asymptotic approximation result for synchronous campaigns holds in broader settings. This generalization is likely to
have other applications in mean-field models beyond the one presented in this paper.

22



Mk = 1 indicate that the kth agent participates in the auction and we ignored the index n to simplify

the notation. A similar analysis to the one performed in the case of asynchronous campaigns yields

that the vector of multipliers in the FMFE can be characterized as the solution of the following NCP:

µk ≥ 0 ⊥ αkηsGk(µ; r) ≤ bk, ∀k = 1, . . . ,K. (5)

Moreover, similar results about the existence and uniqueness of FMFE also apply to this setting.

6.1 Asymptotic Analysis for Large Markets

We consider a sequence of markets indexed by the number of advertisers K. For each market size

K, bidders’ types are given by:
{
θ(K)

k =
(
b(K)

k , α(K)

k , γ(K)

k

)}K
k=1

, where we use superscript (K) to denote

quantities associated to market size K. Similarly, we denote by η(K) as the intensity of the arrival

process of users in market K. We will prove an approximation result by considering a sequence of

markets that satisfy the following set of assumptions on the primitives.

Assumption 6.1. There exists positive bounded constants g, ḡ, z, ā, such that for all market sizes K:

i.) For any advertiser k, b(K)

k /(α(K)

k η(K)s) ∈ [g, ḡ].

ii.) For every pair of advertisers k 6= i, α(K)

k /α(K)

i ≤ ā.

iii.) For any advertiser k, G(K)

k (0; r) ≥ z.

The first assumption states that the ratio of budget to number of matching auctions is uniformly

bounded from above and below across advertisers and the second one that the ratio of matching prob-

abilities of any two advertisers is uniformly bounded across advertisers. These assumptions guarantee

that no advertiser has an excessive market influence by limiting budgets and the number of matching

auctions in which they participate. The third assumption ensures that, in equilibrium, all advertis-

ers have a positive expected expenditure per auction so that no advertiser is systematically outbid

in equilibrium. Thus, these assumptions simply guarantee that for every market along the sequence

considered, there is no dominant or irrelevant advertiser. These assumptions do not impose further

heterogeneity restrictions across advertisers.

We denote the kth advertiser history up to time t by hk(t). The history encapsulates all available

information up to time t including the advertisers’ types; the realizations of her values up to that

time; her bids; the budgets of all advertisers; and the result of every past auction. We define a

pure strategy β for advertiser k as a mapping from histories to bids, and we denote by B(K) the

space of strategies that are non-anticipating and adaptive to the history in market K. We study the

expected payoff of advertiser k when she implements a strategy β(K) ∈ B(K) and all other advertisers

follow FMFE strategies βF,(K) for market size K. The latter amounts to shading bids according to
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the multipliers that solve the NCP (5) while bidders have remaining budgets. This expected payoff

is denoted by J (K)

k (β(K),βF,(K)

−k ), where the expectation is taken over the actual market process. In

this notation, J (K)

k (βF,(K)

k ,βF,(K)

−k ) measures the actual expected payoff of the FMFE strategy for the

advertiser in the exchange, which takes into account that advertisers may run out of budget before the

end of the horizon. It is obvious that J (K)

k (βF,(K)

k ,βF,(K)

−k ) ≤ supβ∈B(K) J
(K)

k (β,βF,(K)

−k ). We will analyze

the gap supβ∈B(K) Jk(β,β
F,(K)

−k )− J (K)

k (βF,(K)

k ,βF,(K)

−k ) to bound the sub-optimality of FMFE relative to

unilaterally deviating to a best response strategy. In what follows, O(·) stands for Landau’s big-O

notation as K goes to infinity.

Theorem 6.1. Suppose that Assumption 6.1 holds. Consider a sequence of markets indexed by K in

which all bidders, except the kth bidder, follow FMFE strategies βF,(K) in market K. Suppose that the

kth advertiser unilaterally deviates and implements a non-anticipating and adaptive strategy β(K) ∈ B(K)

in market K. The expected payoff of these deviations compared to the FMFE strategy satisfies

1

α(K)

k η(K)s

(
J (K)

k (β(K),βF,(K)

−k )− J (K)

k (βF,(K)

k ,βF,(K)

−k )
)

= O
(
α(K)

k + (α(K)

k η(K)s)−1/2K1/2
)
.

The bound in Theorem 6.1 states that 1 − J (K)

k (βF,(K)

k ,βF,(K)

−k )/ supβ∈B(K) J
(K)

k (β,βF,(K)

−k ) converges

to zero as K grows to infinity when: (1) the matching probabilities α(K)

k converge to zero; and (2)

K = o(α(K)

k η(K)s), that is, the expected number of auctions a bidder participates in grows at a faster

rate than the number of advertisers. In addition, the assumption imposes that the expected number of

auctions a bidder participates in and the budget b(K)

k grow at the same rate. Typically, the scaling will

also impose that the expected number of advertisers per auction remains constant (even though the

overall number of advertisers grows large). These conditions naturally represent many Ad Exchange

markets in which the number of auctions a bidder participates in is typically much larger than the

number of competitors, the expected expenditure per auction is typically small compared to the budget,

and the number of competitors per auction is small.

The key idea of the proof of Theorem 6.1 is to bound, in some appropriate way the impact that the

kth advertiser may have on the competitors and based on that, bound the value that may be obtained

by deviating from the FMFE strategy. To do so, we exploit: first the fundamental observation that,

independently of the kth advertiser’s strategy, the competing advertisers bid exactly as prescribed by

the FMFE while they have budgets remaining; and second, the fact that not all advertisers match the

same impressions and as a result, the impact of a single advertiser on any other specific advertiser

(in terms of running out of budget) is limited. In particular, we establish that all advertisers will run

out of budget close to the end of their campaigns no matter which strategy the deviant advertiser

implements. Hence, the competitive landscape coincides with that predicted by the FMFE for most of

the campaign. Based on this, we bound the performance of an arbitrary strategy by that of a strategy
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with the benefit of hindsight (which has complete knowledge of the future realizations of bids and

values). This yields the result.

Finally, it is worthwhile to put this result in perspective with regard to typical revenue management

heuristic fluid-based prescriptions. In most such settings, the bounds obtained (see, e.g., Talluri and

van Ryzin (1998)) are of order n−1/2 where n is a proxy for the number of opportunities (akin to

the number of auctions one participates in our setting). In the present context, this term is present

as (α(K)

k η(K)s)−1/2, but it is multiplied by K1/2 to control for the fact that there are K bidders that

could potentially run out of budget before the length of the campaign. Moreover, the term α(K)

k in the

bound controls for the potential impact bidder k may have on any competitor, which is bounded by

the expected fraction of auctions in which they compete together.

6.2 Analysis for Small Markets

Recall that the FMFE concept involves two approximations: a fluid one motivated by the fact that

advertisers participate in a large number of auctions during the course of their campaigns; and a

mean-field approximation motivated by the fact that in the presence of many advertisers, it may not

be necessary to track the state of each individual competitor. The first approximation is natural in the

setting of Ad Exchanges where indeed advertisers participate in many repeated auctions and spend a

small fraction of the budget in each one of them. In addition, while in some Ad Exchange markets the

number of advertisers may be large, it is also useful to study the validity of the second approximation

when this is not the case and the same set of advertisers meet repeatedly in common auctions. For

this reason, we next isolate the impact of the mean-field approximation, and analyze it numerically for

markets with a small number of advertisers.

To do so, we propose studying the best response to other advertisers playing FMFE in a fluid model

in which there is a continuous flow of arriving impressions at rate η, auctions occur continuously in

time, payments are infinitesimal, and budgets are depleted deterministically. The fluid model can be

understood as an appropriately normalized market obtained in the limit as budgets and number of

impressions are simultaneously scaled to infinity, while the number of players is fixed.

6.2.1 Fluid model

We introduce a fluid model in which impressions arrive continuously at a rate η = 1, the time horizon

has a length s, and there are K advertisers in the market running synchronous campaigns. We denote

by x(t) ∈ RK+ the vector of budgets remaining of the advertisers at time t as the state vector of the

market, and by b the vector of initial budgets. At each point in time an advertiser determines an

action in the space of bidding strategies B , [V , V̄ ]→ R, which maps a valuation to a bid. A control

policy β : R+ × RK+ → B maps a point in time and state vector to an action.
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The dynamics are given by the following. Let the functional uk : BK → R denote the instantaneous

rate of expected utility obtained by the advertiser k when competing advertisers bid according to a

given strategy profile. When the profile is w ∈ BK we have that

uk(w) = αkE
[
1{D−k ≤ wk(Vk)}(Vk −D−k)

]
,

with the expectation taken over the valuation random variable and the maximum competing bid which

is given by D−k = maxi 6=k,Mi=1

{
wi(Vi)

}
∨r, where we let Mi = 1 indicate that the ith agent participates

in the auction. Similarly we let the functional gk : BK → R denote the instantaneous rate of expected

expenditure incurred by the advertiser k when advertisers bid according to a given strategy profile,

which is given by

gk(w) = αkE
[
1{D−k ≤ wk(Vk)}D−k

]
.

Best response problem. We study the benefit of a unilateral deviation to a strategy that keeps

track of the full market state, when competitors implement FMFE strategies. In this setting the FMFE

strategies are given by βF
i (t,x)(v) = v/(1 +µi)1{xi > 0}, where the multipliers µ solve the NCP given

in (5). The problem faced by advertiser k of determining the optimal payoff of a unilateral deviation

when competitors implement the FMFE strategies is given by

max
βk(t,x)

∫ s

0
uk
(
βk(t,x(t)), βF

−k(t,x(t))
)

dt (6)

s.t.
dx(t)

dt
= −g

(
βk(t,x(t)), βF

−k(t,x(t))
)
, t ≥ 0

x(0) = b, x(s) ≥ 0.

To simplify our arguments, for the rest of this section we assume that the reserve price r =

0. Moreover, we assume the following tie-breaking rule: when the advertiser under focus and her

competitors have run out of budget, the advertiser under focus may still bid zero and win the remaining

auctions.13

6.2.2 Best Response Analysis

We consider the case when advertisers have equal budgets, distribution of values and matching proba-

bilities. We do allow, however, for advertiser k to have a different budget than its competitors. Because

competitors are symmetric and the dynamics in the fluid model are deterministic, the budgets of the

competitors deplete at the same rate. Thus, one can simplify the state by keeping track of the budget

13This is without loss of generality since by not bidding in a small fraction of the campaign, the advertiser under focus
can guarantee that the competitors deplete first and, by saving an infinitesimal budget, she can win all the auctions with
no competition for the remaining of the campaign.
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of only one competitor.

Some definitions are in order. Let (µk, µ−k) denote the multipliers associated with an FMFE.

Let V FMFE
k denote the total utility obtained by advertiser k when implementing the FMFE strategy

βF
k (t,x).

Next, we define an alternative strategy. Let H : B × R2 → R be a functional given by

H(w,p) = uk
(
w,wF

−k
)
− pkgk

(
w,wF

−k
)
− p−kg−k

(
w,wF

−k
)
.

where w ∈ B is a bidding strategy, wF
i (v) = v/(1 + µi) the FMFE bidding strategies, g−k(·) denotes

the instantaneous rate of expected expenditure incurred by one of the competitors of firm k, and

pk, p−k ∈ R. Consider the following problem

V D
k , inf

pk≥0,p−k
αsEV + pkbk + p−kb−k (7a)

s.t. sup
w∈B

H(w,p) ≤ αEV , (7b)

which is a convex optimization problem since the set P = {p ∈ R2 : supw∈BH(w,p) ≤ αEV } is

convex. The latter follows because the lower-level set of a convex function is convex, and the point-

wise supremum of linear functions is a convex function (see, e.g., Boyd and Vandenberghe (2009)).

Additionally, let V D
k denote the value of (7), with the convention that it is −∞ if it is unbounded; and

when it is bounded, let p∗k and p∗−k denote a corresponding optimal solution. Let, assuming it is well

defined, w̄ ∈ arg maxw∈BH(w,p∗) be the bidding strategy that verifies the supremum in constraint

(7b).

Theorem 6.2 (Best response strategy). Suppose that bidders’ values possess increasing failure rates

(IFR) and have bounded support, and that the reserve price is zero. Suppose that all competing adver-

tisers use FMFE strategies. Then,

i.) If V D
k ≤ V FMFE

k , the FMFE strategy is the optimal control for advertiser k in problem (6).

ii.) If V D
k > V FMFE

k , w̄ is well defined and the optimal strategy for advertiser k in problem (6) is to

bid according to w̄(·) until competitors deplete their budgets, and zero afterwards. Furthermore

this strategy yields exactly V D
k .

In other words, the result states that the value of the deviant advertiser’s control is the maximum

of V D
k and V FMFE

k . Furthermore, the result provides a crisp characterization of an optimal policy: one

would only need to compute two candidate strategies, the FMFE strategy and w̄(·), to determine a

best response and the associated payoff. We show in the proof that when V D
k > V FMFE

k , then the
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competitors will deplete their budgets before the end of the horizon under w̄, allowing advertiser k to

take advantage of the time during which she operates alone in the market. This result highlights the

only type of profitable deviation that one may witness compared to FMFE: use a stationary strategy

to deplete competitors faster than what the FMFE strategy does. The strategy involves bidding above

ones value in some auctions, and carefully balances the lower expected net utility in the first part of

the campaign with the benefit of facing no competition at the end of the campaign.14

Quite remarkably, one may establish that in some special cases of interest, the strategy w̄ admits a

very simple structure: in the cases of uniform and exponential distributions, one may restrict attention

to affine bidding functions when searching for a best response (see Corollary D.1 in Appendix D).

Furthermore, one may establish that in this fluid model the losses of playing FMFE relative to a best

response are at most of order O(αk), a behavior we illustrate numerically next.

6.2.3 Numerical Experiments: FMFE Sub-Optimality Gap

Intuitively, when there are multiple players in the market, depleting the budgets of the competitors

becomes more costly and as a result the benefit introduced from deviating from the FMFE strategies

becomes negligible. To investigate this, we compare the campaign utility of an advertiser in the fluid

model under the FMFE strategy with that of the best response as the number of competitors increases

for many problem instances with different parameters. We present the results of a representative

instance in Figure 3.15 Budgets and matching probabilities decrease with the number of competitors

so that the average number of matching advertisers per auction remains invariant, equal to 2. We

plot the relative sub-optimality gap as a function of the number of advertisers. For a given number of

advertisers, we analyze the gap when all competitors have the same budget, but we allow the budget

of the advertiser under analysis to change and be 75%, 100%, or 150% of the individual budgets of

competitors. This allows to study the gap when the deviant advertiser has varying degrees of market

influence.

We observe that as the number of player increases, the sub-optimality of playing FMFE decreases

fast. As a matter of fact, for the case of identical advertisers (b(K)

1 = b(K)

2 = . . . = b(K)

k ), the FMFE

strategy yields utility within 2.5% of that obtained by a best response as soon as there are more than

6 advertisers in the market. In addition, when the deviant firm has a smaller budget, her ability to

deplete its competitors decreases.

In Figure 4, we analyze the same setting as earlier except that now, we fix the matching probability

to α = 1. In other words, all advertisers participate in all auctions. In some settings, it is possible

14Lu and Zhu (2013) also identify similar strategies in which one advertiser tries to deplete the budget of its competitor
in a stylized sponsored search auction duopoly model under complete information.

15All results can be obtained from the authors upon request.
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Figure 3: FMFE versus best response. Advertisers are homogenous with arrival rate η = 1,
campaign length s = 16, competitors’ budgets b(K) = 4/K, matching probabilities α(K) = 2/K, and
uniform valuations with support [0, 2].

to imagine that a small number of advertisers would focus on the same viewer types and hence would

compete more intensively. In such a setting, the sub-optimality gap of FMFE decreases fast as the

number of competitors increases, dropping below 5% when there are more than 5 players in the market

and getting around 2% when there are 8. We highlight here that the sub-optimality gap we estimate

in these examples are conservative in that the benchmark policy has unrealistic informational require-

ments; in practice, bidders would not be able to perfectly monitor competitors’ budgets. Hence, their

ability to strategize to deplete competitors’ budgets would be even more limited.

The fluid analysis and our numerical results above suggest that the value of tracking the market

state is small even in the presence of few competitors. In other words, a given bidder has a limited

ability to strategize and impact the market when all other competitors play a FMFE strategy. This

provides further practical support to use FMFE as a solution concept to study competition in Ad

Exchanges.

7 Conclusions

A framework for the analysis of the impact of different levers. In this paper, the analysis

has focused on optimally setting the reserve price. However, the proposed framework based on FMFE

is general and may be used to study other important auction design decisions for the publisher.

In fact, it is possible to show that the framework proposed allows to quantify the impact of increasing

the allocation of impressions sent to the exchange vis-à-vis collecting the opportunity cost upfront on

the bidding behavior of advertisers, and optimize this allocation while accounting for budgets.

We also show how one may optimize other dimensions that may be under the control of the publisher
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Figure 4: FMFE versus best response. Advertisers are homogenous with arrival rate η = 1,
campaign length s = 16, budgets b(K) = 4/K, matching probabilities α(K) = 1, and uniform valuations
with support [0, 2].

such as the extent of user information to disclose to the advertisers. On the one hand, more information

enables advertisers to improve targeting, which results in higher bids conditional on participating in

an auction. On the other hand, as more information is provided, fewer advertisers match with each

user, resulting in thinner markets, which could decrease the publisher’s profit.16 We show that given

any mapping from user information to advertiser valuation distribution, one may apply our framework

to quantify the impact of budgets on the key trade-offs at play. In particular, we demonstrate this

through a stylized model for information disclosure with homogenous bidders.

These results, available in the working paper version of this work, complement the ones in the

paper and reinforce the importance of reserve price optimization. In particular, we show that proper

adjustment of the reserve price is key in (1) making profitable for the publisher to try selling all

impressions in the exchange before utilizing the alternative channel; and (2) compensating for the

thinner markets created by greater disclosure of viewers’ information.

Building on the framework. Overall, our results provide a new approach to study Ad Exchange

markets and the publishers’ decisions. The techniques developed build on two fairly distinct streams of

literature, revenue management and mean-field models and are likely to have additional applications.

The sharp results regarding the publisher’s decisions could inform how these markets are designed in

practice. At the same time, our framework opens up the door to study a range of other relevant issues

in this space. For example, one interesting avenue for future work may be to study the impact of

Ad networks, that aggregate bids from different advertisers and bid on their behalf, on the resulting

16This trade-off is discussed in Levin and Milgrom (2010). Fu et al. (2012) studies this problem in the context of a
static auction with out budget constraints and shows that if the auctioneer implements the optimal mechanism, then
additional data leads to additional revenue.
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competitive landscape and auction design decisions. Similarly, another interesting direction to pursue

is to incorporate common advertisers’ values and analyze the impact of cherry-picking and adverse

selection. Finally, our framework and its potential extensions can provide a possible structural model for

bidding behavior in exchanges, and open the door to pursue an econometric study using transactional

data in exchanges.

Acknowledgments

The authors thank Awi Federgruen, Vahab Mirrokni, Hamid Nazerzadeh, Nicolas Stier-Moses, and

John Turner for helpful insights as well as the participants at the 2012 MSOM Conference, ISMP 2012,

INFORMS 2012, INFORMS Revenue Management and Pricing Conference 2013, NET Institute Con-

ference 2013, ACM Conference on Electronic Commerce 2013, and the audiences at various universities

for their feedback. They also thank the AE and three anonymous referees for valuable input that sig-

nificantly improved the paper. Financial support support from the NET Institute (www.NETinst.org)

and the Deming Center (www.gsb.columbia.edu/deming) is greatly acknowledged.

References

Abraham, I., Athey, S., Babaioff, M. and Grubb, M. (2012), Peaches, lemons, and cookies: Designing auction
markets with dispersed information. Working paper.

Adlakha, S., Johari, R. and Weintraub, G. Y. (2011), Equilibria of dynamic games with many players: Existence,
approximation, and market structure. Working paper.

Alaei, S., Arcaute, E., Khuller, S., Ma, W., Malekian, A. and Tomlin, J. (2009), Online allocation of display
advertisements subject to advanced sales contracts, in ‘Proceedings of the Third International Workshop on
Data Mining and Audience Intelligence for Advertising’, ADKDD ’09, ACM, pp. 69–77.

Araman, V. and Fridgeirsdottir, K. (2011), Cost-per-impression pricing and campaign delivery for online display
advertising. Working Paper.

Araman, V. and Popescu, I. (2010), ‘Media revenue management with audience uncertainty: Balancing upfront
and spot market sales’, Manufacturing & Service Operations Management 12(2), 190–212.

Arnon, A. and Mansour, Y. (2011), Repeated budgeted second price ad auction, in G. Persiano, ed., ‘Algorithmic
Game Theory’, Vol. 6982 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 7–18.

Asmussen, S. (2003), Applied Probability and Queues, Stochastic Modelling and Applied Probability, Vol. 51, 2
edn, Springer.

Aven, T. (1985), ‘Upper (lower) bounds on the mean of the maximum (minimum) of a number of random
variables’, Journal of Applied Probability 22(3), 723–728.

Balseiro, S., Feldman, J., Mirrokni, V. S. and Muthukrishnan, S. (2011), Yield optimization of display advertising
with ad exchange, in ‘ACM Conference on Electronic Commerce’, pp. 27–28.

Balseiro, S. R., Besbes, O. and Weintraub, G. Y. (2012), Auctions for online display advertising exchanges:
Approximation result. Technical Report.

31



Bergemann, D. and Bonatti, A. (2011), Targeting in advertising markets: Implications for offline vs. online
media. working paper.

Bergemann, D. and Said, M. (2010), Dynamic auctions: A survey. Working Paper.

Board, S. (2009), ‘Revealing information in auctions: the allocation effect’, Economic Theory 38, 125–135.

Boyd, S. and Vandenberghe, L. (2009), Convex Optimization, Cambridge University Press.

Celis, L. E., Lewis, G., Mobius, M. M. and Nazerzadeh, H. (2011), Buy-it-now or take-a-chance: a simple
sequential screening mechanism, in ‘Proceedings of the 20th International Conference on World Wide Web’,
pp. 147–156.

Che, Y.-K. and Gale, I. (1998), ‘Standard auctions with financially constrained bidders’, The Review of Economic
Studies 65(1), 1–21.

Che, Y.-K. and Gale, I. (2000), ‘The optimal mechanism for selling to a budget-constrained buyer’, Journal of
Economic Theory 92(2), 198 – 233.

Chen, Y.-Y. (2011), Optimal dynamic auctions for display advertising. Working paper.

David, H. A. and Nagaraja, H. N. (2003), Order statistics, thrid edn, John Wiley and Sons.

de Albéniz, V. M. and Talluri, K. (2011), ‘Dynamic price competition with fixed capacities’, Management Science
57, 1078–1093.

Doraszelski, U. and Pakes, A. (2007), A framework for applied dynamic analysis in IO, in ‘Handbook of Industrial
Organization’, Vol. 3, North-Holland, Amsterdam.

Dudey, M. (1992), ‘Dynamic edgeworth-bertrand competition’, Quarterly Journal of Economics 107, 1461–1477.

Eick, S. G., Massey, W. A. and Whitt, W. (1993), ‘The physics of the Mt/G/∞ queue’, Operations Research
41(4), 731–742.

Facchinei, F. and Pang, J.-S. (2003a), Finite-Dimensional Variational Inequalities and Complementarity Prob-
lems, Volume 1, Springer Series in Operations Research and Financial Engineering, Springer.

Facchinei, F. and Pang, J.-S. (2003b), Finite-Dimensional Variational Inequalities and Complementarity Prob-
lems, Volume 2, Springer Series in Operations Research and Financial Engineering, Springer.

Farias, V., Monsch, M. and Perakis, G. (2011), Tractable notions of equilibrium in revenue management, in
‘MSOM Annual Conference’.

Fridgeirsdottir, K. and Najafi, S. (2010), Cost-per-click pricing for display advertising. Working Paper.

Fu, H., Jordan, P., Mahdian, M., Nadav, U., Talgam-Cohen, I. and Vassilvitskii, S. (2012), Ad auctions with data,
in ‘Proceedings of the 5th international conference on Algorithmic Game Theory’, SAGT’12, Springer-Verlag,
pp. 168–179.

Gallego, G. and Hu, M. (2011), Dynamic pricing of perishable assets under competition. Working paper.

Gallego, G. and van Ryzin, G. (1994), ‘Optimal dynamic pricing of inventories with stochastic demand over
finite horizons’, Management Science 40(8), 999–1020.

Ghosh, A., Rubinstein, B. I., Vassilvitskii, S. and Zinkevich, M. (2009), Adaptive bidding for display advertising,
in ‘Proceedings of the 18th international conference on World wide web’, WWW ’09, ACM, pp. 251–260.
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A Selected Proofs

A.1 Proof of Proposition 3.1

We prove the result in three steps. First, we derive the dual of the primal problem by introducing a

lagrange multiplier for the budget constraint. Second, we determine the optimal dual solution through

first-order conditions. Third, we show that complementary slackness holds and that there is no duality

gap. To simplify notation we drop the dependence on Fd when clear from the context.

Step 1. We introduce a lagrange multiplier µ ≥ 0 for the budget constraint and let

Lθ(w, µ) = αηsE
[
1{D ≤ w(V )}

(
V − (1 + µ)D

)]
+ µb

denote the Lagrangian for type θ (for simplicity we omit the subindex θ for other quantities). The

dual problem is given by

inf
µ≥0

sup
w(·)
Lθ(w, µ) = inf

µ≥0

{
αηs sup

w(·)

{
E
[
1{D ≤ w(V )}

(
V − (1 + µ)D

)]}
+ µb

}
= inf

µ≥0

{
αηsE

[
1{(1 + µ)D ≤ V }

(
V − (1 + µ)D

)]
+ µb

}
= inf

µ≥0

{
αηsE

[
V − (1 + µ)D

]+
+ µb

}
,

where the second equality follows from observing that the inner optimization problem is similar to the

problem faced by a bidder with value v
1+µ seeking to maximize its expected utility in a second-price

auction, in which case it is optimal to bid truthfully. Let Ψθ(µ) = αηsE
[
V − (1 + µ)D

]+
+ µb. Notice

that the term within the expectation is convex in µ; given that expectation preserves convexity, the

dual problem is convex. As a consequence of the previous analysis one obtains for any given multiplier

µ ≥ 0, the policy w(v) = v
1+µ maximizes the Lagrangian.

Step 2. In order to characterize the optimal multiplier we shall analyze the first-order conditions

of the dual problem. The integrability of D, in conjunction with the dominated convergence theorem,

yield that Ψθ is differentiable w.r.t. µ. The derivative is given by d
dµΨθ = b−αηsE

[
1
{
D ≤ V

1+µ

}
D
]
,

which is equal to the expected remaining budget by the end of the campaign when the optimal bid

function is employed.
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Suppose αηsE [1 {D ≤ V }D] ≤ b, i.e., Ψθ admits a non-negative derivative at µ = 0. Since Ψθ is

convex, the optimal multiplier is µ∗ = 0. Suppose now αηsE [1 {D ≤ V }D] > b. The derivative of Ψθ

is continuous (by another application of the dominated convergence theorem) and converges to b as

µ→∞. We deduce that the equation αηsE
[
1
{
D ≤ V

1+µ

}
D
]

= b, admits a solution and the optimal

multiplier µ∗ solves the latter.

Step 3. Combining both cases, one obtains that the optimal multiplier µ∗ and the corresponding

bid function βF
θ (v) = v/(1 + µ∗) satisfy µ∗

(
b − αηsE [1 {D ≤ βF

θ (V )}D]
)

= 0, and thus the comple-

mentary slackness conditions hold. Additionally from the first-order conditions of the dual, we get

that the bid function βF
θ (·) is primal feasible. We conclude by showing that the primal objective of the

proposed bid function attains the dual objective. That is,

αηsE
[
1{D ≤ βF

θ (V )}
(
V −D

)]
= Lθ(βF

θ , µ
∗) + µ∗

(
b− αηsE [1 {D ≤ βF

θ (V )}D]
)

= Lθ(βF
θ , µ

∗) = Ψθ(µ
∗),

where the second equality follows from the complementary slackness conditions and the last from the

fact that Ψθ(µ
∗) = supw(·) Lθ(w, µ∗), and the fact βF

θ is the optimal bid function.

A.2 Proof of Theorem 6.1

We prove the result in two steps. First, we lower bound the expected performance of the kth advertiser

when all advertisers (including herself) implement the FMFE strategy in terms of the objective value

of the fluid problem (1). Second, we upper bound the expected payoff of any strategy the kth advertiser

may implement when the remaining implement the FMFE strategies via a hindsight bound.

Proposition A.1 (Lower Bound). Suppose that Assumption 6.1 holds and all advertisers implement

FMFE strategies βF. The expected payoff of the kth advertiser is lower bounded by

1

αkηs
Jk(β

F
k ,β

F
−k) ≥ J̄F

k −O
(

(αkηs)
−1/2K1/2

)
,

where J̄F
k , JF

k /(αkηs) is the normalized objective value of the fluid problem (1).

The performance metric Jk(β
F
k ,β

F
−k) may differ from the FMFE value function, given by the ob-

jective value of the approximation problem JF
k , since the former takes into account that bidders may

run out of budget before the end of their campaigns. The proof is based on the fundamental obser-

vation that advertisers bid exactly as prescribed by the FMFE while they have budgets remaining.

This allows one to consider an alternative system where advertisers are allowed to bid (i) when they

have no budget, and (ii) after the end of their campaigns; and in which the expected performance

exactly coincides with that of the approximation problem JF
k . Using a coupling argument the proof

shows that the expected performance in the original and alternate systems coincide until the first time

some advertiser runs out of budget, which in turn is shown to be close to the end of the horizon via a

martingale argument.
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Proposition A.2 (Upper Bound). Suppose that Assumption 6.1 holds and all advertisers implement

FMFE strategies βF, and the kth advertiser implements an alternative strategy β ∈ B. The expected

payoff of the kth advertiser is upper bounded by

1

αkηs
Jk(β,β

F
−k) ≤ J̄F

k +O
(
αk + (αkηs)

−1/2K1/2
)
.

To prove the result, we first upper bound the performance of an arbitrary strategy by that of

a strategy with the benefit of hindsight (which has complete knowledge of the future realizations of

bids and values). This is akin to what is typically done in revenue management settings (see, e.g.,

Talluri and van Ryzin (1998)), with the exception that here, the competitive environment (which is

the counterpart of the demand environment in RM settings) is endogenous and determined through the

FMFE consistency requirement. As a result, the optimal hindsight policy may force competitors to run

out of budget so as to reduce competition. To facilitate the analysis of the expected performance of the

hindsight policy the proof considers the same alternative system in which competitors bid regardless

of the budget; in which the hindsight policy can be analyzed simply via linear programming duality

theory. Since the original and alternative system coincide until some advertiser runs out of budget, we

are left again with the problem of showing that advertisers run out of budget close to the end of the

campaign.

The proof concludes by showing the kth advertiser has a limited impact on the system, in the sense

that competitors run out of budget -in expectation- close to the end of their campaigns no matter which

strategy the advertiser implements. To this end the proof exploits that any two advertisers compete a

limited number of times during their campaigns to bound the potential impact the kth advertiser may

have on her competitors. This result relies heavily on the matching probability decreasing with the

scaling.

A.3 Proof of Proposition A.1

Consider an alternate system in which advertisers are allowed to bid (i) when they have no budget,

and (ii) after the end of their campaigns. The argument revolves around the fact that the performance

of the tagged advertiser in the real and alternate coincide until the first time some advertiser runs out

of budget. This follows from the fact that advertisers bid exactly as prescribed by the FMFE while

they have budgets remaining.

In order to study the performance on the alternate system we shall consider the sequence {(Zn,k, Un,k)}n≥1

of realized expenditures and utilities of the kth in the alternate system. In view of our mean-field as-

sumption this sequence is i.i.d. and independent of the impressions’ inter-arrival times. The kth adver-

tiser’s expenditure in the nth auction is Zn,k = Mn,k1{Dn,−k ≤ βF
k (Vk)}Dn,−k and her corresponding

utility is Un,k = Mn,k1{Dn,−k ≤ βF
k (Vn,k)}(Vn,k − Dn,−k). Additionally, let b′k(t) = bk −

∑N(t)
n=1 Zn,k

be the evolution of the kth advertiser’s budget in this alternate system, where we denote by N(t) the

number of impressions arrived by time t.

The following stopping time will play a key role in the proof. Let Ñk be the first auction in which
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advertiser kth runs out of budget, that is, Ñk = inf{n ≥ 1 : b′k(tn) < 0}. This stopping time is relative

to all auctions in the market and not restricted to the auctions in which the kth advertiser participates.

Similarly, let Ñ as the first auction in which some advertiser runs out of budget, that is, Ñ = mink Ñk.

Next, we lower bound the performance of the kth advertiser. Denoting by Ik the number of auctions

that advertiser kth participates during his campaign, that is, Ik =
∑N(s)

n=1 Mn,k; and by Ĩk the number of

auctions that advertiser kth participates until some agent runs out of budget, that is, Ĩk =
∑Ñ

n=1Mn,k;

one obtains by using a coupling argument that the performance of both systems coincide until time Ñ

and as result

Jk(β
F,βF

−k) ≥ E

Ñ∧N(s)∑
n=1

Un,k

 ≥ E

N(s)∑
n=1

Un,k

− V̄ E

N(s)∑
n=1

Mn,k −
Ñ∑
n=1

Mn,k

+

= E

N(s)∑
n=1

Un,k

− V̄ E[Ik − Ĩk]+

≥ E

N(s)∑
n=1

Un,k

− V̄ E[Ik − αkηs]+ − E[αkηs− Ĩk]+

where the first inequality follows from discarding all auctions after the time some advertiser runs out

of budget; the second from the fact that 0 ≤ Un,k ≤Mn,kV̄ ; and the third from the fact that for every

a, b, c ∈ R we have that (a− c)+ ≤ (a− b)+ + (b− c)+. In the remainder of the proof we address one

term at a time.

Term 1. Notice that the in the alternate system the number of matching impressions in the

campaign is independent of the utility, and thus we have that

E

N(s)∑
n=1

Un,k

 = αkηsE[U1,k] = Ψk(µk;Fd) + µk(Gk(µ)− βk) = JF
k ,

where the second equality follows from the fact that βF
k (x) = x/(1 + µk) and Un,k = (Vn,k − (1 +

µk)Dn,k)
+ + µkZn,k, and the last from complementarity slackness and the optimality of the FMFE

multipliers.

Term 2. Note that for any random variable X and constant x, we have that E(X − x)+ ≤
(EX − x)+ +

√
Var(X)/2, by the upper bound on the maximum of random variables given in Aven

(1985). Because the agent participates in each auction with probability αk, we have that Ik is a Poisson

random variable with mean αkηs and one obtains that

1

αkηs
E[Ik − αkηs]+ ≤ (2αkηs)

−1/2 = O
(

(αkηs)
−1/2

)
.

Term 3. Define Ĩk,i as the number of auctions that advertiser kth participates until agent ith

runs out of budget, that is, Ĩk,i =
∑Ñi

n=1Mn,k. Using this notation we obtain that the number of
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auctions the kth advertiser participates until someone runs out of budget can be alternatively written

as Ĩk =
∑mini Ñi

n=1 Mn,k = mini
∑Ñi

n=1Mn,k = mini Ĩk,i. Using this identity we obtain that

E
[
αkηs− Ĩk

]+
= E

[
αkηs−min

i
Ĩk,i

]+

= E
[
max
i
{αkηs− Ĩk,i}+

]
≤ max

i

{
αkηs− EĨk,i

}+
+

√∑
i

Var[Ĩk,i],

where the inequality follows from the upper bound on the maximum of random variables given in Aven

(1985), that is, for any sequence of random variables {Xi}ni=1 we have that E[maxiXi] ≤ maxi EXi +√
n−1
n

∑
i Var(Xi). Dividing by the expected number of impressions in the horizon and using the

bounds on the mean and variance of the stopping times of Lemma B.3 we get that

1

αkηs
E[αkηs− Ĩk]+ ≤ max

i

{
1− bi

αiηsGi(µ)

}+

+
1

αkηs

√√√√ K∑
i=1

O(bi)

= O
(

(αkηs)
−1K1/2b̄1/2

)
= O

(
(αkηs)

−1/2K1/2
)
,

where the second inequality follows from the fact that the expected expenditure in the FMFE never

exceeds the budget, that is, αiηsGi(µ) ≤ bi, and by setting b̄ = maxi bi; and the last because αkηs =

O(b̄) from Assumption 6.1.
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Supplementary Appendix

B Additional Proofs

We start by providing characterizations of the distribution of the maximum bid and the expenditure

function that are used throughout the results.

Lemma B.1. i.) The distribution of the maximum competing bid when x ≥ r is given by

Fd(x;µ) = exp

{
−E[αΘλsΘ]

∑
θ

PΘ̂{θ}F̄vθ((1 + µθ)x)

}
,

where Fvθ(·) , Fv(·; γθ) is the distribution of values for type θ.

ii.) The expenditure function for type θ can be characterized by

Gθ(µ, r) = rF̄vθ((1 + µθ)r)Fd(r;µ) +

∫ V̄

r
xF̄vθ((1 + µθ)x) dFd(x;µ).

Proof of Lemma B.1. We prove each item at a time.

i.) Let Fw(·;µ) be the cumulative distribution function of the bid from a single matching advertiser

when bidders implement the fluid-based strategy with a profile of multipliers µ, which is given by

the random variable Ŵ = VΘ̂/(1+µΘ̂). Since valuations are i.i.d., one can write the c.d.f. of bids as

Fw(x;µ) = E
[
FvΘ̂

(
x(1 + µΘ̂)

)]
, where the expectation is taken over the steady-state distribution

of types Θ̂. As a consequence, the maximum competing bid is given by D = max
(
Ŵ1:M̂ , r

)
,

where Ŵ1:M̂ is the first order statistic of M̂ i.i.d. samples of Ŵ . Its distribution when x ≥ r is

Fd(x;µ) = E
[
Fw(x;µ)M̂

]
= exp

{
−E[αΘλsΘ]F̄w(x;µ)

}
,

where we used the fact that bids are independent, that M̂ is Poisson with mean E[αΘλsΘ], and

the Poisson probability generating function. The result follows by replacing the expression for

Fw in the equation above.

ii.) The expenditure function can be written as

Gθ(µ, r) = E [1{(1 + µθ)D ≤ Vθ}D] = E
[
DF̄vθ((1 + µθ)D)

]
= rF̄vθ((1 + µθ)r)Fd(r;µ) +

∫ V̄

r
xF̄vθ((1 + µθ)x) dFd(x;µ),

where the second equation follows by the independence of Vθ and D, and the third by recognizing

that D is the maximum between the largest bid from advertisers and the reserve price r.
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Using the previous characterizations we state a set of useful properties of the expenditure function.

Lemma B.2. i.) For any µ, the maximum bid D ∼ Fd(µ) is integrable, that is, E[D] <∞.

ii.) For any θ ∈ Θ, the expenditure function Gθ(µ, r) is differentiable with respect to µ and r.

iii.) For any θ ∈ Θ and r ∈ [V , V̄ ], ∂Gθ(µ, r)/∂µθ < 0.

iv.) For any vector of multipliers µ ∈ R|Θ|+ , limr→∞Gθ(µ, r) = 0.

v.) For any r ≥ 0 and vector of multipliers µ−θ ∈ R|Θ|−1
+ , limµθ→∞Gθ(µ, r) = 0.

Proof of Lemma B.2. We prove each item at a time.

i.) Note that D = max(Ŵ1:M̂ , r) ≤ r+
∑M̂

k=1 Ŵk, and that advertisers shade their bids, i.e, Ŵθ ≤ Vθ.
Thus,

E[D] ≤ r + E

 M̂∑
k=1

VΘ̂k

 = r + E[M̂ ]E[VΘ̂] <∞,

where the equality follows from conditioning on the number of matching bidders and using that

bids are independent; and the last inequality because M̂ is Poisson with mean E[αΘλsΘ] < ∞,

and the expected valuation satisfies E[VΘ̂] =
∑

θ PΘ̂{θ}E[Vθ] <∞.

ii.) By Lemma B.1(i), the distribution of the maximum competing bid when x ≥ r is given by

Fd(x;µ) = exp
{
−E[αΘλsΘ]

∑
θ p̂θF̄vθ((1 + µθ)x)

}
, where p̂θ = PΘ̂{θ}. Since the cumulative dis-

tribution of values is differentiable, the distribution of the maximum bid is differentiable w.r.t. x

and µ. Indeed, its partial derivatives are given by ∂Fd/∂µθ = Fd(x;µ)E[αΘλsΘ]p̂θxfvθ((1+µθ)x),

and ∂Fd/∂x = Fd(x;µ)E[αΘλsΘ]
∑

θ p̂θ(1 + µθ)fvθ((1 + µθ)x). Moreover, the second derivatives

of the distribution of the maximum bid are continuous because densities fvθ(·) are continuously

differentiable.

By Lemma B.1(ii), the expenditure function can be written asGθ(µ, r) = rF̄vθ((1+µθ)r)Fd(r;µ)+∫ V̄
r xF̄vθ((1 + µθ)x) dFd(x;µ), which is clearly differentiable in r. Moreover, for any θ′ ∈ Θ the

first term is differentiable w.r.t. µθ′ , while the integrand is continuously differentiable. We con-

clude by an application of Leibniz’s integral rule, which holds because [V , V̄ ]× U is bounded.

iii.) The partial derivative of one first type’s expenditure w.r.t. her multiplier is

∂Gθ
∂µθ

= (I) + (II)
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where

(I) =
∂

∂µθ

(
rF̄vθ((1 + µθ)r)Fd(r;µ)

)
= −r2fvθ((1 + µθ)r)Fd(r;µ) + rF̄vθ((1 + µθ)r)

∂Fd
∂µθ

(r;µ)

and

(II) =
∂

∂µθ

∫ V̄

r
xF̄vθ((1 + µθ)x)

∂Fd
∂x

dx

= −
∫ V̄

r
x2fvθ((1 + µθ)x)

∂Fd
∂x

dx+

∫ V̄

r
xF̄vθ((1 + µθ)x)

∂2Fd
∂µθ∂x

dx

= −
∫ V̄

r
x2fvθ((1 + µθ)x)

∂Fd
∂x

dx− rF̄vθ((1 + µθ)r)
∂Fd
∂µθ

(r;µ)

−
∫ V̄

r

∂

∂x

(
xF̄vθ((1 + µθ)x)

) ∂Fd
∂µθ

dx,

where the second equality follows from exchanging integration and differentiation, which is valid

from item (ii); the third from exchanging partial derivatives by Clairaut’s theorem, which holds

because the second partial derivatives are continuous almost everywhere; and the last from in-

tegrating the second term by parts and using the fact that F̄vθ((1 + µθ)V̄ ) = 0. Note that

increasing µθ decreases the bidder under consideration own bids, but also its competitors’ bids of

the same type through D. In what follows, we show that these effects are such that the expected

expenditure decreases.

In order to simplify the notation, we denote by fθ(x) , xfvθ((1 + µθ)x), F̄θ(x) , F̄vθ((1 + µθ)x),

and by 〈u, v〉 ,
∫∞

0 u(x)v(x)w(x) dx the inner product of two functions u and v with respect to

the weight w(x) , E[αΘλsΘ]Fd(x;µ). Using this new notation and canceling terms we can write

the partial derivative as

∂Gθ
∂µθ

= −
∑
θ′ 6=θ

(1 + µθ′)p̂θ′〈fθ, fθ′〉 − p̂θ〈fθ, F̄θ〉 − rfθ(r)Fd(r;µ), (8)

which is strictly negative.

iv.) The result follows by noting that F̄vθ((1 + µθ)x) = 0, for sufficiently large x.

v.) In the homogeneous case we have that G(µ, r) = G(0, (1 + µ)r)/(1 + µ) and the result follows

directly from (iv). In the heterogeneous case when r > 0 the result also follows directly. When
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r = 0 we have that

Gθ(µ, r) = E
[
DF̄vθ((1 + µθ)D)1{only one or more θ type bidders match}

]
+ E

[
DF̄vθ((1 + µθ)D)1{another type Θ′ matches, D > x}

]
+ E

[
DF̄vθ((1 + µθ)D)1{another type Θ′ matches, D ≤ x}

]
≤ 1

1 + µθ
E
[
(Vθ)1:M̂ F̄vθ((Vθ)1:M̂ )

]
+

E[V 2
θ ]

x(1 + µθ)2
+ xE

[
F̄vθ

(
1 + µθ
1 + µΘ′

VΘ′

)]
,

where in first term we used that D = (Vθ)1:M̂/(1 + µθ); the second term follows by Markov’s

inequality; and the third term because D ≥ VΘ′/(1 + µΘ′) and F̄vθ(·) is non-increasing. The

first two terms trivially converge to zero as µθ → ∞. The third term converges to zero from

Dominated Convergence Theorem because F̄vθ(·) ≤ 1, and limx→∞ F̄vθ(x) = 0.

B.1 Proof of Theorem 4.1

We prove the result in three steps. First, we show that the best-response correspondence can be

restricted to a compact set. Second, we prove that the dual objective function is jointly continuous in

its arguments. We conclude in the third step.

Step 1. Let s̄ = maxθ∈Θ sθ be the largest possible campaign length, ᾱ = maxθ∈Θ αθ be the largest

matching probability, b = minθ∈Θ bθ be the smallest possible budget, and note that s̄, ᾱ, b are positive.

We establish that selecting a multiplier outside of U , [0, µ̄] with µ̄ , ᾱηs̄V /b is a dominated strategy.

To see this notice that for every µ > µ̄ we have that

Ψθ(µ;µ) ≥ µbθ > µ̄b = ᾱηs̄V ≥ αθηsθV ≥ Ψθ(0;µ),

and thus every µ > µ̄ in the dual problem is dominated by µ = 0.

Consider the best-response correspondence restricted to U , M : U |Θ| → P(U |Θ|) defined for each

type θ ∈ Θ as Mθ(µ) = arg minµ∈U Ψθ(µ;µ). By the above, to establish the existence of a FMFE, it is

sufficient to show that M admits a fixed-point, that is, there is some profile of multipliers µ∗ ∈ U |Θ|

such that µ∗ ∈M(µ∗).

Step 2. Next, we show that for each type θ ∈ Θ the objective function Ψθ(µ;µ) is jointly continuous

in µ and µ. Consider a sequence (µn,µn) ∈ U × U |Θ| converging as n → ∞ to some (µ,µ) in the

set. Notice that under the discreteness of the type space we can write the distribution of bids as

Fw(x;µ) =
∑

θ∈Θ P{Θ̂ = θ}Fvθ (x(1 + µθ)). Because the sum is finite and Fvθ(·) is continuous; we

have that Fw(x;µn) → Fw(x;µ) as n → ∞ for all x. Furthermore, because the distribution Fd of

the maximum bid is a continuous function of Fw (cf. Lemma B.1(i)), we get that the same holds for

the maximum bid. Denoting by Dn the maximum bid random variable associated to µn, by D the

maximum bid random variable associated to µ; the previous argument implies that Dn converges in

distribution to D. Additionally, by Slutsky’s Theorem we get that (1 + µn)Dn ⇒ (1 + µ)D.

Consider the function `(x) = E[V − x]+ =
∫∞
x F̄v(y) dy. The function ` is bounded by EV and
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continuous. Using the fact that valuations are independent and conditioning on the maximum bid, we

may write the dual objective as Ψθ(µ;µ) = αηsE
[
`
(
(1 + µ)D

)]
+ µb. By portmanteau theorem we

have that E
[
`
(
(1 + µn)Dn

)]
→ E

[
`
(
(1 + µ)D

)]
, and thus Ψ is jointly continuous in (µ,µ).

Step 3. Because the domain is compact, Ψ is jointly continuous in (µ,µ), and convex in µ for fixed

µ (cf. proof of Proposition 3.1), an FMFE is guaranteed to exist by Proposition 8.D.3 in Mas-Colell

et al. (1995).

B.2 Proof of Theorem 4.2

Exploiting the fact that the dual objective is convex and differentiable, one may write the equilibrium

condition (3) as a Nonlinear Complementarity Problem (NCP). From the optimality conditions of the

dual, it should be the case that for each type θ ∈ Θ, one of the following alternatives holds

µ∗θ = 0,
∂Ψθ

∂µ
(µ∗θ,µ

∗) ≥ 0,

µ∗θ > 0,
∂Ψθ

∂µ
(µ∗θ,µ

∗) = 0.

Recall that the derivative of the dual is ∂Ψθ
∂µ = bθ − αθηsθGθ(µ, r), where G : R|Θ|+ × R+ → R|Θ|+

denotes the vector-valued function that maps a profile of multipliers and reserve price to the expected

expenditures of each bidder type. Thus, we have that a vector of multipliers µ∗ constitutes a FMFE

if it solves the NCP

µ∗θ ≥ 0 ⊥ αθηsθGθ(µ
∗, r) ≤ bθ, ∀θ ∈ Θ, (9)

where ⊥ indicates a complementarity condition between the multiplier and the expenditure, that is, at

least one condition should be met with equality. From item (ii) of Lemma B.2 we have that the mapping

G is differentiable. The latter, together with the P-matrix assumption, allows one to invoke (Facchinei

and Pang, 2003a, Proposition 3.5.10) and conclude that the NCP (9) has at most one solution.

B.3 Proof of Proposition 4.1

Fix r ≥ 0. The existence of the equilibrium follows from Theorem 4.1. The uniqueness follows from the

fact that Assumption 4.1 is automatically satisfied in the present case from item iii.) of Lemma B.2.

We next derive the characterization of the FMFE.

Suppose first that αηsG0(r) < b. By Lemma B.2 iii.), increasing the multiplier cannot increase

the expenditure, and no solution to the NCP with µ > 0 exists. Thus µ∗ = 0 is the unique equilibrium

multiplier. Suppose now that αηsG0(r) ≥ b, then advertisers need to shade their bids by picking a

non-negative equilibrium multiplier µ∗ that solves for αηsG(µ∗, r) = b (and such a solution exists by

the proof of Theorem 4.1). Noting that (1 + µ∗)G(µ∗, r) = G0((1 + µ∗)r) concludes the proof.
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B.4 Proof of Theorem 5.1

The proof proceeds as follows. We first state and prove some basic properties of the publisher’s profit

function. Second, we characterize the optimal reserve price in the two cases described in the statement

of the theorem.

Using (4), the publisher’s profit as a function of the reserve price and the multiplier can be written

as Π(µ, r) = αληsG(µ, r)− ηcI(µ, r), with I(µ, r) the probability that the impression is won by some

advertiser in the exchange when advertisers employ a multiplier µ and the publisher sets a reserve price

r. Note that I(µ, r) = I0((1 + µ)r), where by Lemma B.1(i), I0(r) = 1− e−αλsF̄v(r) is the probability

that the impression is won in the exchange by truthful advertisers . The publisher’s problem amounts

to solving maxr≥0 Π(µ(r), r), where µ(r) is the unique equilibrium multiplier for price r.

It is simple to show that r∗c ≥ c, and that r∗c (the optimal reserve price of the one-shot auction)

is increasing in c; that is, when the opportunity cost increases, the publisher is more inclined to keep

the impression, and thus she increases the reserve price. Let g = b/(αηs) be the maximum target

expenditure per auction of a bidder. We show the following preliminary results:

(i) The function Π(0, r) is quasi-concave in r on [V , V̄ ], and the maximum is obtained at r = r∗c .

When µ = 0, all advertisers bid truthfully and the auctions decouple; the result then essentially

follows by the optimality of r∗c in a second-price auction with the only caveat that in our setting

the number of bidders is random. Formally, one may write the derivative of the profit w.r.t. the

reserve price as

∂Π

∂r
(0, r) = αληs

(
G′0(r) + ce−αλsF̄v(r)fv(r)

)
= αληsF̄v(r)e

−αλsF̄v(r)

(
1− r − c

r
ξ(r)

)
, (10)

where the second equation follows by Lemma B.1(ii). The previous expression vanishes at r∗c .

Notice that the leading terms in the derivative are non-negative, and by the IGFR assumption,

it follows that the derivative is non-negative for r < r∗c and non-positive for r > r∗c . Thus, Π(0, r)

is strictly quasi-concave on [V , V̄ ].

(ii) Then the set R∗ is a closed bounded interval. The proof follows by noticing that setting c = 0

in (10) implies that G0(r) is strictly quasi-concave in r (in the interval [V , V̄ ]). Since R∗ is an

upper-level set of G0, and G0 is continuous we get that R∗ is a closed interval. The boundedness

of R∗ follows from Lemma B.2 iv.).

(iii) The equilibrium multiplier verifies µ > 0 for r in the interior of R∗, and zero otherwise. That

µ = 0 outside the interior of R∗ follows directly from the statement of Proposition 4.1. By the

strict quasi-concavity of G0(r) in r, αηsG0(r) > b for r in the interior ofR∗, so by Proposition 4.1,

µ > 0 for r in this set.

(iv) When r ∈ R∗ the probability that the impression is won I(µ(r), r) is decreasing in r. Write the
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total derivative of the probability that the impression is won as

I ′(µ(r), r) = I ′µ(µ(r), r)µ′(r) + I ′r(µ(r), r) = −αλse−αλsF̄v((1+µ)r)fv((1 + µ)r)
(
µ′r + 1 + µ

)
,

where to simplify the notation we dropped the dependence of r in µ in the second equation.

Hence, it suffices to show that µ′r + 1 + µ ≥ 0 to conclude that I(µ(r), r) is decreasing in r.

Since r ∈ R∗ we have that G(µ, r) = g, and by the implicit function theorem the derivative of

the multiplier w.r.t. r is given by µ′ = −G′r(µ, r)/G′µ(µ, r). Thus,

µ′r + 1 + µ = −
G′r(µ, r)r − (1 + µ)G′µ(µ, r)

G′µ(µ, r)
= − G(µ, r)

G′µ(µ, r)
≥ 0,

where the second equation follows from the fact that G′r(µ, r) = G′0((1 + µ)r) and G′µ(µ, r) =

G′0((1 + µ)r)r/(1 + µ)−G(µ, r)/(1 + µ), and the inequality from the fact that G(µ, r) = g ≥ 0,

and that G(µ, r) is decreasing in µ for fixed r by Lemma B.2 iii.).

Now, we study the two cases.

Case 1. Suppose that the expenditure at r∗c does not exceed the budget-per-auction g (i.e.,

G0(r∗c ) < g), we should show that r∗c is optimal. If the set R∗ is empty (which occurs when G0(r∗0) < g,

because r∗0 maximizes G0), then by property (iii) the equilibrium multiplier is µ(r) = 0 for all r, so

bidders are truthful for all r. Hence, r∗c is the optimal reserve price by (i).

Next, assume that the set R∗ is non-empty. By property (ii), the set is compact and thus r̄ =

supR∗ <∞. Moreover, G0(r̄) = g, because R∗ is closed. For prices r ∈ R∗ we have that Π(µ(r), r) ≤
Π(0, r̄) ≤ Π(0, r∗c ). The first inequality follows by the following observation: bidders exhaust their

budgets for r ∈ R∗ (and spend g per auction). Therefore, the reserve price in R∗ that maximizes

profits is the one that minimizes the probability of selling an impression. Note that decreasing the

reserve price from r has two effects: (1) the probability of a sell increases because of the direct effect;

and (2) the probability of a sell decreases because of the indirect effect that bidders start shading their

equilibrium bids. Property (iv) shows that the direct effect is dominant, and therefore, r̄ minimizes

the probability of selling an impression within R∗. The second inequality follows from the fact that

µ(r̄) = 0 by (iii). Every reserve price r 6∈ R∗ is dominated by r∗c . Since in both cases the multipliers

are zero and advertisers are truthful, r∗c is optimal by property (i).

Case 2. Suppose that the expenditure at r∗c exceeds the maximum expenditure g (i.e., G0(r∗c ) ≥ g).

Bidders are budget constrained at r∗c and r∗c ∈ R∗. Take any price r ∈ R∗. As in case 1, property

(iv) implies that the profit for any price in that set is dominated by that of r̄. Now consider prices

strictly greater than those in R∗, that is, those satisfying r > r̄, which have µ(r) = 0. From property

(i), we have that Π(0, r) is non-increasing to the right of r∗c . Because r∗c ≤ r̄ ≤ r, we have that

Π(0, r̄) ≥ Π(0, r). Hence, every reserve price r > r̄ is dominated by r̄. A similar argument holds for

prices strictly less than those in R∗ and the optimality of r̄ follows.
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B.5 Proof of Proposition A.2

Fix an arbitrary policy β. The result is proven in two steps. First, we upper bound the performance

of the policy β by the performance of a policy with the benefit of hindsight, denoted by βH, which

assumes complete knowledge of the future realizations of bids and values. Second, we upper bound the

performance of βH by the dual objective function.

Let Jk(β
H,βF

−k) denote the expected payoff under perfect hindsight, which is obtained by looking at

the optimal expected payoff when the realization of the number of impressions, the matching indicators

and the values of all advertisers for the whole horizon are revealed up-front. No strategy can perform

better than the perfect hindsight strategy βH and we have that

Jk(β,β
F
−k) ≤ Jk(βH;βF

−k).

Let Ñ be the first auction in which some advertiser runs out of budget when the kth advertiser

implements the hindsight policy, and J I
k(β

I,H,βF
−k) denote the expected payoff under perfect hindsight

in an alternate system (I) in which advertisers are allowed to bid (i) when they have no budget, and (ii)

after the end of their campaigns. Note that the hindsight policy in the alternate system (I), denoted by

βI,H is potentially different to the hindsight policy for the original one. We can bound the performance

of the hindsight policy by

Jk(β
H,βF

−k) = E

N(s)∑
n=1

Un,k(β
H)

 ≤ E

N(s)∧Ñ∑
n=1

Un,k(β
H)

+ V̄ E

N(s)∑
n=1

mn,k −
Ñ∑
n=1

mn,k

+

≤ E

N(s)∑
n=1

U I
n,k(β

H)

+ V̄ E[Ik − Ĩk]+

≤ J I
k(β

I,H,βF
−k) + V̄ E[Ik − αkηs]+ + E[αkηs− Ĩk]+

where Un,k(β
H) and U I

n,k(β
H) denote the realized utility under the hindsight policy in the original

and alternate system (I), respectively; and Ik denotes the number of auctions that advertiser kth

participates during his campaign, that is, Ik =
∑N(s)

n=1 Mn,k; and Ĩk denotes the number of auctions

that advertiser kth participates until some agent runs out of budget, that is, Ĩk =
∑Ñ

n=1Mn,k. The first

inequality follows from the fact that 0 ≤ Un,k(β
H) ≤ Mn,kV̄ . The second from the fact the alternate

system (I) and the original one coincide until the Ñ -th auction, and adding the utility on the alternate

system (I) obtained after the Ñ -th auction only increases the right-hand side. The third from the

fact βI,H is the optimal policy in the alternate system (I) and that for every a, b, c ∈ R we have that

(a− c)+ ≤ (a− b)+ + (b− c)+. In the remainder of the proof we address one term at a time.

Term 1. We proceed to bound the performance of the policy βI,H in the alternate system (I).

Note that in this system all advertisers bid regardless of the budget. Hence the kth advertiser can

not strategize to deplete the budgets of her competitors. Given a sample path ω, which determines

the number of impressions N(s)(ω) = N , the matching indicators {Mn,k(ω)}N(s)(ω)
n=1 = {mn,k}Nn=1, and

App. 8



the realization of the competing bids and values {(Dn,−k(ω), Vn,k(ω))}N(s)(ω)
n=1 = {(dn,−k, vn,k)}Nn=1; the

advertiser only needs to determine which auctions to win (since bidding an amount ε > 0 larger than

the maximum bid guarantees her winning the auction). Let the decision variable xn ∈ {0, 1} indicate

whether the kth advertiser decides to wins the auction or not. In hindsight, the zeroth advertiser needs

to solve, for each realization ω, the following knapsack problem

J I,H
k (ω) = max

xn∈{0,1}

N∑
n=1

xn(vn,k − dn,−k) (11a)

s.t.

nθ∑
n=1

xndn,−k ≤ bk, (11b)

xn ≤ mn,k. (11c)

The perfect hindsight bound is obtained by averaging over all possible realizations consistently with

the strategy of the other bidders, or equivalently J I
k(β

I,H,βF
−k) = Eω

[
J I,H
k (ω)

]
.

Consider the continuous relaxation of the hindsight program (11) in which we replace the integrality

constraints by 0 ≤ xn ≤ mn,k. Let µk be the equilibrium multiplier of the FMFE for kth advertiser.

Introducing dual variables µ ≥ 0 for the budget constraint and zn ≥ 0 for the constraints xn ≤ mn,k,

we get by weak duality that

J I,H
k (ω) ≤ min

µ≥0,zn≥0

{
N∑
n=1

mn,kzn + µbk s.t. zn ≥ vn,k − (1 + µ)dn,−k,∀n = 1, . . . , N

}

= min
µ≥0

{
N∑
n=1

mn,k[vn,k − (1 + µ)dn,−k]
+ + µbk

}

≤
N∑
n=1

mn,k[vn,k − (1 + µk)dn,−k]
+ + µkbk

where the equality follows from the fact that in the optimal solution of the dual problem it is either

the case that zn = 0 or zn = vn,k − (1 + µ)dn,−k, and the second inequality from the fact that µk is

not necessarily optimal for the hindsight program. Taking expectations and using the fact that the

number of matching impressions is Poisson with mean αkηs independently of values and competing

bids, we get that

J I
k(β

I,H,βF
−k) ≤ JF

k .

Term 2. Using the same argument that in the proof of Proposition A.1 we obtain that

1

αkηs
E[Ik − αkηs]+ ≤ (2αkηs)

−1/2 = O
(

(αkηs)
−1/2

)
.

Term 3. In order to bound the term E[αkηs − Ĩk]+ we shall consider a second alternate system

(II) in which all advertisers (including kth) implement the FMFE strategies and the initial budgets
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for every advertiser are discounted in advance to take into account the potential impact that the kth

advertiser may have on its competitors. Since a competitor can spend at most V̄ in an auction, this

potential impact can be upper bounded by V̄ times the number of auctions in which she competes

against the kth advertiser. That is, we set the budgets to bII
i =

(
bi − V̄ Tk,i

)+
for all i 6= k where

Tk,i =
∑N(s)

n=1 Mn,kMn,i is the number of auctions in which k and i compete together. Defining by Ñ II

be the first auction in which some advertiser runs out of budget in the alternate system (II), we obtain

using a coupling argument that

Ñ II ≤ Ñ (a.s.). (12)

Next we proceed to bound the number of auctions in the left-over regime after time Ñ using the

alternate system (II).

Let Ĩ II
k,i be the number of auctions that advertiser kth participates until agent ith runs out of

budget, and Ĩ II
k be the number of auctions the kth advertiser participates until someone runs out of

budget. Equation (12) implies that Ĩ II
k ≤ Ĩk almost surely, which implies using the steps in the proof

of Proposition A.1 that

E
[
αkηs− Ĩk

]+
≤ E

[
αkηs− Ĩ II

k

]+
≤ E

[
max
i
{αkηs− Ĩ II

k,i}+
]

≤ max
i

{
αkηs− EĨ II

k,i

}+
+

√∑
i

Var[Ĩ II
k,i], (13)

where the inequality follows (again) from the upper bound on the maximum of random variables

given in Aven (1985). We now proceed to bound the mean and variance of the stopping times Ĩ II
k,i by

conditioning on the initial budgets.

For the mean we obtain that

E[Ĩ II
k,i] = E

[
E[Ĩ II

k,i | bII
i ]
]
≥ αk
αiGi(µ)

E[bII
i ] =

αk
αiGi(µ)

(
bi − V̄ E[Tk,i]

)
=

αk
αiGi(µ)

(
bi − V̄ αkαiηs

)
,

where the inequality follows from property (v) of Lemma B.3, and the last equality from the fact that

Tk,i is Poisson with mean αkαiηs.

For the variance we employ the conditional variance formula to obtain that

Var[Ĩ II
k,i] = E

[
Var[Ĩ II

k,i | bII
i ]
]

+ Var
[
E[Ĩ II

k,i | bII
i ]
]
.

For the first term we use that from property (vi) of Lemma B.3 there exists non-negative constants
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C0, C1 such that Var[Ĩ II
k,i | bII

i ] ≤ C0 + C1b
II
i , together with the fact that bII

i ≤ bi to obtain that

E
[
Var[Ĩ II

k,i | bII
i ]
]
≤ E[C0 + C1b

II
i ] = C0 + C1E[bII

i ] ≤ C0 + C1bi = O(bi).

For the second term we combine the upper and lower bounds on property (v) of Lemma B.3 to obtain

that there exists some different non-negative constants C0, C1 such that
∣∣E[Ĩ II

k,i | bII
i ] − C1b

II
i

∣∣ ≤ C0.

Together with Lemma B.4 we obtain that√
Var
[
E[Ĩ II

k,i | bII
i ]
]

=
∥∥∥E[Ĩ II

k,i | bII
i ]− E[Ĩ II

k,i]
∥∥∥

2

≤
∥∥∥E[Ĩ II

k,i | bII
i ]− C1b

II
i

∥∥∥
2

+
∥∥∥C1b

II
i − C1E[bII

i ]
∥∥∥

2

≤ C0 + C1

√
Var[bII

i ]

≤ C0 + C1

√
Var[Tk,i] = C0 + C1

√
αkαiηs = O(

√
bi),

where the third inequality follows from the fact that truncation reduces variance, that is, for any

random variable X and constant x we have that Var(x−X)+ ≤ VarX (see, e.g., Liu and Li (2009));

and last inequality follows from the fact that αk ≤ 1 and αiηs = O(bi) from Assumption 6.1. Combining

the bounds for the first and second terms we get that Var[Ĩ II
k,i] = O(bi).

We put everything together by plugging in our bounds for the mean and variance of the stopping

times in the main bound (13) and dividing by the expected number of impressions in the horizon to

obtain that

1

αkηs
E[αkηs− Ĩk]+ ≤ max

i

{
1− bi − V̄ αkαiηs

αiηsGi(µ)

}+

+
1

αkηs

√√√√ K∑
i=1

O(bi)

≤ max
i

{
1− bi

αiηsGi(µ)

}+

+ max
i

{
V̄ αk
Gi(µ)

}
+
O
(√

Kb̄
)

αkηs

= O
(
αk + (αkηs)

−1K1/2b̄1/2
)

= O
(
αk + (αkηs)

−1/2K1/2
)
,

where the second inequality follows from the fact that the maximum of a sum is dominated by the

sum of the maximums and by setting b̄ = maxi bi, the third inequality because expected expenditure

in the FMFE never exceeds the budget, that is, αiηsGi(µ) ≤ bi, and because the second term is O(αk)

because the expected expenditure is bounded from below from Assumption 6.1; and the last because

αkηs = O(b̄) from Assumption 6.1 too.

B.6 Additional Results

Lemma B.3 (Identities and Bounds for Stopping Times). Suppose that Assumption 6.1 holds. We

have that
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(i) bk
Gk(µ) ≤ E[Ĩk,k] ≤ bk+V̄

Gk(µ) for all advertiser k,

(ii) Var[Ĩk,k] = O(bk) for all advertiser k,

(iii) E[Ñk] = α−1
k E[Ĩk,k] for all advertiser k,

(iv) Var[Ñk] = O(α−2
k bk) for all advertiser k,

(v) αk
αi

bi
Gi(µ) ≤ E[Ĩk,i] ≤ αk

αi
bi+V̄
Gi(µ) for all pair of advertisers k 6= i, and

(vi) Var[Ĩk,i] = O(bi) for all pair of advertisers k 6= i.

(vii) The expected expenditure per auction in the FMFE is uniformly bounded from below across ad-

vertisers, i.e., for all advertiser k we have that Gk(µ) ≥ z′ for some z′.

Proof. In order to study the hitting time we consider the sequence {Z ′n,k}n≥1 of expenditures of the

kth advertiser for the auctions she participates in (here we are restricting ourselves to the auctions

in which mn,k = 1). In view of our mean-field assumption the sequence of expenditures is i.i.d.

and independent of the impressions’ inter-arrival times. Let Cn,k =
∑n

j=1 Z
′
j,k denote the cumulative

expenditure incurred by advertiser k after the nth auction she participates in.

Item (i). Since expenditures are bounded, Zn,k ≤ V̄ <∞ a.s., the cumulative expenditure at the

stopping time can be bounded from below and above by

bk ≤ CĨk,k,k ≤ bk + V̄ .

Note that from Item (vii) with positive probability the advertiser spends a positive amount and thus

EĨk,k <∞. Hence, we may employ Wald’s identities to bound the mean and variance of the stopping

time Ĩk,k. In particular, Wald’s first identity implies that E[CĨk,k,k] = EĨk,kEZ ′k with Z ′k in shorthand

for Z ′1,k. Using the fact that CĨk,k,k ≥ bk, one obtains that the mean is bounded from below by

E[Ĩk,k] ≥ bk/E[Z ′k]. Using the fact that CĨk,k,k ≤ bk + V̄ , one may also bound the mean from above by

E[Ĩk,k] ≤ (bk + V̄ )/E[Z ′k]. The result follows from the fact that E[Z ′k] = E[Z1,k] = Gk(µ).

Item (ii). The variance is bounded from above by Var(Ĩk,k) ≤ (bk+V̄ )Var(Z ′k)/E[Z ′k]
3+V̄ 2/E[Z ′k]

2

(use Wald’s second identity to get E[CĨk,k,k − Ĩk,kEZ
′
k]

2 = Var(Z ′k)EĨk,k). The result follows because

expenditures are bounded from above by V and because expected expenditures are bounded from

below by Assumption 6.1.

Items (iii) and (iv). Recall that Ñk is a sum of a random number Ĩk,k of independent geometric

random variables with success probability αk. Thus, we obtain by taking conditional expectations that

E[Ñk] = α−1
k E[Ĩk,k], and Var[Ñk] = (1− αk)α−2

k E[Ĩk,k] + α−2
k Var[Ĩk,k] (see, e.g., Ross (1996, pp.22)).

Items (v) and (vi). Recall that Ĩk,i =
∑Ñi

n=1mn,k is the number of auctions that advertiser kth

participates until agent ith runs out of budget. For the bound on the mean we use Wald’s Inequality

to obtain that E[Ĩk,i] = αkE[Ñi], and the result follows from properties (i) and (iii) of this lemma.
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For the bound on the variance we use Wald’s Inequality to obtain that E[Ĩk,i] = αkE[Ñi] and denote

by ‖X‖2 =
√

E[X2] the L2 norm to obtain that√
Var[Ĩk,i] =

∥∥∥Ĩk,i − αkE[Ñi]
∥∥∥

2
=
∥∥∥Ĩk,i − αkÑi + αkÑi − αkE[Ñi]

∥∥∥
2

≤
∥∥∥Ĩk,i − αkÑi

∥∥∥
2

+
∥∥∥αkÑi − αkE[Ñi]

∥∥∥
2

=

√
αk(1− αk)E[Ñi] + αk

√
Var[Ñi]

= O(

√
αkα

−1
i bi) +O(

√
α2
kα
−2
i bi) = O(

√
bi),

where the first inequality follows from Minkowski’s inequality, the third equality follows from Wald’s

second identity (E[Ĩk,i − αkÑi]
2 = αk(1− αk)EÑi) and the definition of variance; and the last bounds

from items (iii) and (iv) from this lemma and Assumption 6.1’s restriction of matching probabilities.

Item (vii). Note that when µk > 0 we have by the FMFE characterization that the advertiser

is budget constrained and thus Gk(µ) = bk/(αkηs) ≥ g by Assumption 6.1. Next, we show that

the expenditure is lower bounded when the advertiser is not shading her bids. Recall from the proof

of Theorem 4.1 that FMFE multipliers are upper bounded by µk ≤ αkηsV /bk ≤ gV with the second

inequality by Assumption 6.1. LetD−k(ν−k) = maxi 6=k,Mi=1(Vi/(1+νi))∨r be the maximum competing

bid observed by the kth advertiser when competitors shade their bids according to ν−k. The expected

expenditure of the kth advertiser is bounded from below by

Gk(µ) = E
[
1{D−k(µ−k) ≤ Vk}D−k(µ−k)

]
≥ 1

1 + gV
E
[
1{D−k(µ−k) ≤ Vk}D−k(0)

]
≥ 1

1 + gV
E [1{D−k(0) ≤ Vk}D−k(0)] =

Gk(0)

1 + gV
≥ z

1 + gV
,

where the first inequality follows from D−k(µ−k) ≥ D−k(0)/(1 + gV ), and the second because the

probability that the advertiser wins is lower when competitors do not shade their bids.

Lemma B.4. Let X and Y be two random variables, then ‖X − EX‖2 ≤ ‖X − Y ‖2 + ‖Y − EY ‖2.

Proof. By adding and subtracting the difference Y − EY we obtain that

E[X − EX]2 = E[(X − Y ) + (Y − EY ) + (EY − EX)]2

= E[X − Y ]2 + E[Y − EY ]2 − (EY − EX)2 + 2E[(X − Y )(Y − EY )]

≤ E[X − Y ]2 + E[Y − EY ]2 + 2
√
E[X − Y ]2E[Y − EY ]2

= (‖X − Y ‖2 + ‖Y − EY ‖2)2,

where the second equality follows from taking expectations and canceling terms, first inequality by

Cauchy-Schwarz and dropping the negative term, and the last equality from completing squares.
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C Sufficient Conditions for P-matrix Assumption to Hold

We establish here sufficient conditions for Assumption 4.1, that was required for uniqueness of a FMFE,

to hold.

Proposition C.1. The P-matrix condition (Assumption 4.1) holds in either of the following cases.

i.) Θ is a singleton.

ii.) Θ contains two types, and these have a common value distribution with positively homogeneous

failure rate.

The positively homogeneous condition in ii.) imposes that there is some n ≥ 0 such that hv(ax) =

anhv(x) for all x ∈ dom(V ) and a > 0. This property is satisfied by distributions whose failure rates are

power functions; such as the exponential, Weibull, and Rayleigh distributions. Additionally, it is not

difficult to show from first principles that, for the case of two types with common value distribution,

Assumption 4.1 holds when values are uniformly distributed with support [0, V̄ ].

Proof of Proposition C.1. We denote by JH the Jacobian of vector-valued function H : R|Θ| → R|Θ|.
A matrix A ∈ R|Θ|×|Θ| is a P-matrix if the determinant of all its principals minors is positive, i.e.,

det(A|T ) > 0 for all T ⊆ Θ, where A|T denotes the submatrix of A restricted to the indices in T .

i.) In this case JG = ∂G(µ, r)/∂µ, and the result follows directly from item iii.) of Lemma B.2.

ii.) We prove the result in two steps. First, we characterize the entries of the Jacobian JG. Second,

we show that the Jacobian J−G = −JG is a P-matrix.

Step 1. In the proof of item iii.) from Lemma B.2 we characterized the diagonal entries of

the Jacobian, that is, ∂Gθ(µ, r)/∂µθ. Using a similar notation, we characterize the off-diagonal

entries as follows.

We have that the partial derivative of the type θ expenditure w.r.t. the multiplier of type θ′ is

∂Gθ
∂µθ′

= rF̄v((1 + µθ)r)
∂Fd
∂µθ′

+
∂

∂µθ′

∫ V̄

r
xF̄v((1 + µθ)x)

∂Fd
∂x

dx

= rF̄v((1 + µθ)r)
∂Fd
∂µθ′

+

∫ V̄

r
xF̄v((1 + µθ)x)

∂2Fd
∂µθ′∂x

dx

= −
∫ V̄

r

∂

∂x

(
xF̄v((1 + µθ)x)

) ∂Fd
∂µθ′

dx

= (1 + µθ)p̂θ′〈fθfθ′〉 − p̂θ′〈fθ′F̄θ〉, (14)

where the second equality follows from exchanging integration and differentiation; and the third

from exchanging partial derivatives by Clairaut’s theorem, integrating by parts, and canceling

terms.
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Step 2. Next, we show that the Jacobian matrix of −G is a P-matrix. We denote by 1 the

low-type and by 2 the high-type. The Jacobian of G is given by

JG =

(
∂G1
∂µ1

∂G1
∂µ2

∂G2
∂µ1

∂G2
∂µ2

)
.

From item iii.) of Lemma B.2 one concludes that the principal minors J |{1} and J |{2} are negative

(they are, in fact, negative scalars), so the corresponding principal minors of −G are positive.

The determinant of the remaining minor J |{1,2} is that of the whole Jacobian, which is given by

det(J) =
∂G1

∂µ1

∂G2

∂µ2
− ∂G1

∂µ2

∂G2

∂µ1

= (1 + µ1)p̂2
1〈f1f2〉〈f1F̄1〉+ (1 + µ1)p̂1p̂2〈f1f2〉〈f1F̄2〉

+ (1 + µ2)p̂1p̂2〈f1f2〉〈f2F̄1〉+ (1 + µ2)p̂2
2〈f1f2〉〈f2F̄2〉

+ p̂1p̂2〈f1F̄1〉〈f2F̄2〉 − p̂1p̂2〈f1F̄2〉〈f2F̄1〉,

where the third equation follows from substituting the expressions for the partial derivatives and

canceling two terms (here we assumed, without loss of generality, that r = 0 since the sum of

a positive diagonal matrix with a P-matrix is a P-matrix). Notice that all terms are positive

with the exception of the last one. We conclude that the determinant is positive by showing that

the fifth term dominates the last one. From positively homogeneous assumption we can write

fi(x) = xfv((1 + µi)x) = xhv((1 + µi)x)F̄v((1 + µi)x) = (1 + µi)
nxhv(x)F̄i(x). Defining a new

weight function w̃(x) = xhv(x)w(x) and using Cauchy-Schwartz inequality one gets that

〈f1F̄1〉〈f2F̄2〉 = (1 + µ1)n(1 + µ2)n〈F̄1F̄1〉w̃〈F̄2F̄2〉w̃
≥ (1 + µ1)n(1 + µ2)n〈F̄1F̄2〉w̃〈F̄1F̄2〉w̃ = 〈f1F̄2〉〈f2F̄1〉.

Hence, the corresponding principal minor of −G is also positive and the result follows.

D Fluid Model

In this section, we prove Theorem 6.2. We first state a corollary for exponential and uniform valuations.

Corollary D.1. Suppose that the reserve price is zero and that V D
k > V FMFE

k . Then

i.) If valuations are exponentially distributed, then the optimal strategy w̄(v) is given by

w̄(v) =
v − EV (K − 1)−1(1 + µ−k)

−1p∗−k
1 + p∗k − (K − 1)−1p∗−k

.
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ii.) If valuations are uniform [0, V̄ ], then the optimal strategy w̄(v) is given by

w̄(v) =
v − V̄ (K − 1)−1(1 + µ−k)

−1p∗−k
1 + p∗k − 2(K − 1)−1p∗−k

.

Hence, it follows, that in the cases of uniform and exponential distributions, one may restrict

attention to affine bidding functions when searching for a best response.17 Now, we provide the proofs

of both results.

Proof of Theorem 6.2. Let B be the space of control policies defined at the beginning of this section.

We will divide the space of controls based on the depletion times they induce on the competitors. For

this purpose, let τ̄ = inf{t ∈ [0, s] : x−k(t) = 0} where we let τ̄ =∞ if the set {t ∈ [0, s] : x−k(t) = 0}
is empty. τ̄ is the first at which competitors run out of budget. We define the set of controls B1 ⊆ B,

such that for all β ∈ B1, we have τ̄ ≥ s. We will show that any control in this set is dominated in

terms of payoff by the FMFE strategy. Let B2 ⊆ B, such that for all β ∈ B2, we have τ̄ ≤ s. We will

show that any control within this set is dominated by the strategy characterized by w̄(v). Hence, the

result follows by comparing the value of the FMFE strategy with that of the strategy characterized by

w̄(v).

Now, we consider the two cases mentioned above.

Case 1 (τ̄ ≥ s). In this case we consider controls in the set B1 for which competitors do not

deplete their budgets before the end of the horizon. We shall show that any control β ∈ B1 is weakly

dominated in terms of payoff by the FMFE strategy, given by wF
f (v) = v/(1 + µk).

Any such control is a feasible solution of a variation of the FMFE problem (1) in which all com-

petitors bid according to the FMFE and never run out of budget (and we allow for potentially non-

stationary strategies):

max
βk(t,x),τ

∫ τ

0
uk
(
βk(t,x(t)),wF

−k
)

dt (15)

s.t.
dx(t)

dt
= −g

(
βk(t,x(t)),wF

−k
)
,

x(0) = b, xk(τ) ≥ 0, τ ≤ s.

In this problem the terminal time (at which bidder k stops participating in the auctions) τ ≤ s is free,

and it satisfies that xk(τ) ≥ 0. Note that in problem (15), the budget constraints of the competitors

are not taken into account; hence a feasible solution to (15) may potentially violate these constraints

in the original problem.

After integrating the advertiser’s budget constraint, we introduce pk ≥ 0 as the Lagrange multiplier

17The proof of the first case of exponential distributions requires a simple additional step relative to the proof of the
theorem to deal with the unbounded support of the value distribution.
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for the budget constraint to obtain that (15) is upper bounded by

sup
βk(t),τ≤s

∫ τ

0

(
uk
(
βk(t),w

F
−k
)
− pkgk

(
βk(t),w

F
−k
))

dt+ pkbk

(a)
= sup

τ≤s

∫ τ

0

(
sup
w∈B

uk
(
w,wF

−k
)
− pkgk

(
w,wF

−k
))

dt+ pkbk

(b)
= sup

τ≤s
τ sup
w∈B

αE
[
1{D−k ≤ w(V )}(V − (1 + pk)D−k)

]
+ pkbk

(c)
= sup

τ≤s
ταE

[
V − (1 + pk)D−k

]+
+ pkbk

(d)
= αsE

[
V − (1 + pk)D−k

]+
+ pkbk

(e)
= JF

k

where (a) follows from optimizing point-wise for each time; (b) follows since the integrand is constant

in time; (c) is a consequence of the optimal control being equal to wF
k(v) = v/(1 + pk); for (d) we use

that the term in the supremum is non-negative, and for (e), we use the fact that there is no duality

gap in the FMFE problem according to Proposition 3.1 and by choosing pk to be the FMFE multiplier

µk.

Hence, we have established that any policy in B1 may not achieve higher rewards than JF
k , and the

latter is achieved by the FMFE strategy. Moreover, by its construction, the FMFE strategy is feasible

for problem (15) and competitors’ budget constraints are not violated when firm k implements it.

Case 2 (τ̄ ≤ s). In this case we consider controls β ∈ B2 such that the competitors deplete before

the end of the horizon. Any such control is a solution of a control problem in which we impose that

at a free time τ ≤ s the competitors have no budget, and after that time the advertiser wins all the

auctions for free obtaining a total profit of (s − τ)αEV . We do allow, however, that the advertiser

runs out of budget before her competitors and still wins the auctions when the competitors run out

of budget (as we will see, this relaxation will still be dominated by a solution in which the advertiser

never runs out of budget before the competitors). The optimization problem is:

max
βk(t,x),τ

∫ τ

0
uk
(
βk(t,x(t)),wF

−k
)

dt+ (s− τ)αEV (16)

s.t.
dx(t)

dt
= −g

(
βk(t,x(t)),wF

−k
)
,

x(0) = b, x−k(τ) = 0, xk(τ) ≥ 0, τ ≤ s.

Note that one may remove the constraint that τ ≤ s because for any solution with τ∗ > s, one can

construct a solution with τ ≤ s while weakly increasing rewards. To see this let β ∈ B2 be any such

solution and consider a deviation β̂ in which the advertiser bids according to β during time [0, s] and

zero afterwards. This deviation is clearly feasible for the original control problem (6) and attains a

profit ∫ s

0
uk
(
βk(t,x(t)),wF

−k
)

dt ≥
∫ τ∗

0
uk
(
βk(t,x(t)),wF

−k
)

dt+ (s− τ∗)αEV ,
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because uk(·,wF
−k) ≤ αEV .

In the remainder of the proof we use a duality argument to construct an optimal solution for

problem (16).

After integrating both budget constraints, we introduce Lagrange multipliers pk ≥ 0 for the decision-

maker’s budget constraint and p−k for the competitors’ budget (recall, we only keep track of one of the

competitors’ budget since all of them follow the same evolution) to obtain that (16) is upper bounded

by

sup
βk(t),τ≥0

∫ τ

0
H
(
βk(t),p

)
dt+ (s− τ)αEV + pkbk + p−kb−k

= sup
τ≥0

∫ τ

0
sup
w∈B

H(w,p) dt+ (s− τ)αEV + pkbk + p−kb−k

= sup
τ≥0

τ

(
sup
w∈B

H(w,p)− αEV
)

+ sαEV + pkbk + p−kb−k

where the second equation follows from optimizing point-wise for each time, and the third because the

integrand is constant in time. The dual problem is obtained by minimizing over the dual variables,

and using that the dual function is unbounded if the Hamiltonian H is greater than αEV . We thus

obtain that the dual problem is exactly given by Problem (7).

In the remainder of the proof we assume that the dual problem (7) is bounded from below. If this

is not the case, then (16) is infeasible and the set B2 is empty.

The rest of the argument is divided in the following five steps.

(i) We show that at an optimal solution, constraint (7b) is binding, and p−k ≤ 0.

(ii) Let H(y,p; v) be the value of the Hamiltonian when the decision-maker’s value is v, her bid is

y, and the dual variables are p. We establish that for each value v, the problem supyH(y,p; v)

admits a unique solution. Furthermore, we deduce that the solution bid function w̄(p) ∈ B
amounts to bidding the unique root y ∈ R of

v =

(
1 + pk −

p−k
K − 1

)
y +

p−k

hv
(
(1 + µ−k)y

)
(K − 1)(1 + µ−k)

(17)

when v ≤ v ≤ v̄, bidding V̄ /(1 + µ−k) when v > v̄, and bidding V /(1 + µ−k) when v ≤ v; where

v̄ = V̄ (1+pk− p−k
K−1)/(1+µ−k) and v = V (1+pk− p−k

K−1)/(1+µ−k)+p−k/((K−1)(1+µ−k)fv(V )).

(iii) We show that the function H(p) , supw∈BH(w,p) is differentiable in p, and its gradient is

∇pH(p) =
(
−gk(w̄(p),wF

−k),−g−k(w̄(p),wF
−k)
)
. (18)

(iv) We construct a candidate primal feasible solution for (16) using the first-order conditions of (7).
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(v) We show that the candidate solution is primal optimal by showing that it achieves the value of

the dual objective (7).

Step (i). Suppose that the constraint (7b) is not binding. Recall that supw∈BH(w,p) is a convex

function, and therefore, continuous in p−k. Because the constraints are linear and the coefficients are

positive, one could improve on the solution by decreasing the value of p−k while keeping feasibility.

A contradiction because the dual problem is bounded. Hence it must be that (7b) is binding at an

optimal solution.

Next, we show that p−k ≤ 0 by contradiction. Suppose otherwise. Discarding the third term of

the hamiltonian, which is strictly positive (since B2 is assumed non-empty, competitors eventually run

out of budget), one obtains that

H(w,p) < uk
(
w,wF

−k
)
− pkgk

(
w,wF

−k
)

= αE
[
1{D−k ≤ w(V )}(V − (1 + pk)D−k)

]
≤ αEV

where the second inequality follows from D−k ≥ 0. This contradicts the fact that the hamiltonian is

equal to αEV . Hence it must be the case that p−k ≤ 0.

Step (ii). Let H(y,p; v) be the value of the Hamiltonian when the decision-maker’s value is v, her

bid is y, and the dual variables are p. Note that here we denote y as the bid submitted for a given

value v, that is, in this context y is a number and not a function. For the remainder of this step we

remove the dependence on p to simplify the notation. Point-wise for each value v the bid y should

maximize the expression

H(y; v) = αE
[
1{D−k ≤ y}(v − (1 + pk)D−k)

]
− p−kαE

[
1{Dk ≤ V−k/(1 + µ−k)}Dk

]
,

where D−k = D̃K is the maximum competing bid observed by advertiser k, Dk = D̃K−1 ∨Mky is the

maximum competing bid observed by the competing advertisers, and D̃K = max
{
MjVj/(1+µ−k)

}K−1

j=1

is the maximum of K − 1 matching bids from the competitors. Setting q(x) = F̄v((1 + µ−k)x)x the

previous expression can be written as

H(y; v) =αFKd (y)v − (1 + pk)α

∫ y

D
x dFKd (x)− p−kα

∫ D̄

D
(αq(y ∨ x) + (1− α)q(x)) dFK−1

d (x) .

Taking derivatives with respect to the bid y we obtain that

∂H(y; v)

∂y
= αfKd (y)v − (1 + pk)αyf

K
d (y)− p−kα2q′(y)FK−1

d (y)

= α2(K − 1)FK−1
d (y)

(
(v − (1 + pk −

p−k
K − 1

)y)fv
(
(1 + µ−k)y

)
(1 + µ−k)−

p−k
K − 1

F̄v
(
(1 + µ−k)y

))
,

where the latter follows from fKd (x) = α(K − 1)fv((1 +µ−k)x)(1 +µ−k)F
K−1
d (x), and q′(x) = F̄v((1 +

µ−k)x)− fv((1 +µ−k)x)(1 +µ−k)x. Equating the last expression to zero we get that the control policy
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should satisfy

(v − (1 + pk −
p−k
K − 1

)y)hv
(
(1 + µ−k)y

)
(1 + µ−k)−

p−k
K − 1

= 0 .

By the IFR assumption and the fact that p−k ≤ 0, we have that the left-hand side is decreasing at

every root, and thus Poincare-Hopf Theorem implies that a root is unique whenever it exists. As a

result, the function H(y; v) is strictly quasi-concave in y. By evaluating the derivative at the extreme

points V /(1 + µ−k) and V̄ /(1 + µ−k), we obtain that v ≤ v ≤ v̄ implies that the derivative crosses the

zero axis, the root exists, and equation (17) follows. When v ≥ v̄ the optimal bid is V̄ /(1 + µ−k) since

the latter implies that H(y; v) is non-decreasing in y. A similar argument follows when v ≤ v. Hence,

w̄(v) is well-defined and characterized as just described.

Step (iii). Note that H(p) = supw∈BH(w,p) = EV [supyH(y,p;V )]. So we first show that the

envelope theorem holds for supyH(y,p; v) point-wise in v, and then invoke Leibniz’s rule to show that

the expectation is differentiable.

Fix the value v. Because the distribution of values has continuous densities, we have that H(y,p; v)

is continuous in y, and the gradient ∇pH(y,p; v) is jointly continuous in y and p. Because the solution

w̄(p)(v) is unique, by Corollary 2 of Milgrom (1999) we get that the envelope theorem holds and

∇p sup
y
H(y,p; v) =

(
−gk(w̄(p)(v),wF

−k; v),−g−k(w̄(p)(v),wF
−k; v)

)
,

where gk(y,w
F
−k; v), g−k(y,w

F
−k; v) are the expenditures when the value is v and the advertiser bids y.

Note that the expenditure for the advertiser is bounded by gk(y,w
F
−k; v) ≤ αED̃K ≤ αKEV/(1+µ−k) ≤

KEV < ∞ because for x ∈ RK we have that max{xk}Kk=1 ≤
∑K

k |xi|. Similarly, we have that

g−k(y,w
F
−k; v) ≤ α(ED̃K−1 + y) ≤ [(K − 2)EV + V̄ ] < ∞. Thus ∇p supyH(y,p; v) is bounded by an

integrable function, and thus we can invoke Leibniz’s rule to show that the expectation is differentiable,

and the gradient expression (18) follows.

Step (iv). Because the dual problem (7) is convex and its primitives differentiable, one may

employ the Karush-Kuhn-Tucker (KKT) conditions to characterize its optimal solution. Additionally,

from the previous steps we know that w̄(p) achieves the supremum of H(w,p) for given p, and that we

can use the envelope theorem to differentiate H(w̄(p),p) with respect to p. The Karush-Kuhn-Tucker

(KKT) conditions for the dual problem are

bk − γ1gk
(
w̄(p),wF

−k
)
− γ2 = 0 , (19)

b−k − γ1g−k
(
w̄(p),wF

−k
)

= 0 , (20)

H(w̄(p),p) = αEV ,

pk ≥ 0 ⊥ γ2 ≥ 0 , (21)

γ1 ≥ 0 , (22)

where γ1 is the Lagrange multiplier corresponding to the constraint (7b) and γ2 is the one corresponding

to pk ≥ 0, and we used the fact that the constraint on the hamiltonian binds by step (i).
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We next construct a primal feasible solution. Set τ̄ , γ1, and set the bidding strategy to be

βk(t,x)(·) = w̄(·) from 0 until τ̄ and 0 afterwards. Then it follows from the KKT conditions that this

solution is feasible for the relaxed primal problem (16) without the constraint τ̄ ≤ s.
Step (v). We conclude by showing that the candidate primal feasible solution achieves the dual

optimal objective. Indeed, the primal objective value is

τ̄uk(w̄(p),wF
−k) + (s− τ̄)αEV

= αsEV + τ̄
(
H(w̄(p),p)− αEV + pkgk(w̄(p),wF

−k) + p−kg−k(w̄(p),wF
−k)
)

= αsEV + pkτ̄ gk(w̄(p),wF
−k) + p−kτ̄ g−k(w̄(p),wF

−k)

= αsEV + pkbk + p−kb−k ,

where the second equation follows from rearranging terms, the third and last follow from the KKT

conditions (19), (20), and (21) above.

Proof of Corollary D.1. In the case when the valuations are exponential distributed one can use the

fact hv(x) = 1/EV and exploit (17) to obtain that the optimal strategy is

w̄(v) =
v − EV (K − 1)−1(1 + µ−k)

−1p−k
1 + pk − (K − 1)−1p−k

.

Note that in the proof we only used the fact that valuations were bounded to show that g−k(y,w
F
−k; v)

is bounded by an integrable function. This claim holds in this setting too by exploiting the linearity

of the bidding strategy.

Similarly when valuations are uniform [0, V̄ ], the failure rate is hv(x) =
(
V̄ − x

)−1
and one obtains

that the optimal strategy is

w̄(v) =
v − V̄ (K − 1)−1(1 + µ−k)

−1p−k
1 + pk − 2(K − 1)−1p−k

.

E Other Auction Design Decisions

The previous analysis focused on optimally setting the reserve price. Similarly, one can use our frame-

work to study other important auction design decisions for the publisher. In this section we briefly

discuss results for two such decisions.

These results complement the ones in the previous sections and show that proper adjustment of

the reserve price is key in (1) making profitable for the publisher to try selling all impressions in the

exchange before utilizing the alternative channel; and (2) compensating for the thinner markets created

by greater disclosure of viewers’ information.
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E.1 Optimal Allocation of Impressions

Up to this point we assumed that all users visiting the web-site were shared with the exchange. However,

the publisher may have an incentive to allocate only a fraction of the web-site’s traffic and sell the rest

through an alternative channel. In the following we study, for a fixed reserve price r and information

disclosure ι, the publisher’s selection of an optimal allocation of impressions to the exchange η ∈ [0, η̄],

where η̄ > 0 denotes the total number of users per unit of time visiting the website. Here, I0(r) denotes

the probability that the impression is won by some advertiser in the exchange when advertisers bid

truthfully and the publisher sets a reserve price r. The following result characterizes the optimal rate

of the impressions in the presence of an opportunity cost c.

Theorem E.1. (Optimal allocation of impressions). Suppose that r and ι are fixed. If cI0(r) ≥
αλsG0(r), then the publisher is better off not participating in the exchange, and the optimal rate of

impressions is η∗ = 0. If cI0(r) < αλsG0(r), then the publisher stands to gain from participating in

the exchange, and the optimal allocation of impressions to the exchange is η∗(r) = min{η0(r), η̄} where

η0(r) = b/(αsG0(r)).

The first condition corresponds to the expected opportunity cost being greater or equal than the

average revenue per impression when bidders are truthful and in such a case, it is natural to expect that

the publisher should not allocate any impressions to the exchange. Interestingly, when the publisher

benefits from participating in the exchange, he need not always allocate all the impressions to the

exchange. While it may seem at first sight that the exchange is a “free option” to test, it is not so due

to the presence of budget constraints as we now explain.

Initially, when the supply is sufficiently small, bidders do not deplete their budget and hence are

truthful (cf. Proposition 4.1). In such a region, increasing the allocation of impressions yields larger

revenues for the publisher, which is in line with intuition. However, when the rate of impressions is high

enough, all advertisers deplete their budgets by the end of their campaign and no further revenue may

be extracted by allocating more impressions to the exchange, which corresponds to the market being

“saturated”. The smallest rate at which saturation takes place is exactly given by η0(r) = b/(αsG0(r)).

At that rate, advertisers are truthful; beyond that rate, bidders start shading their bids. Allocating

further impressions to the exchange does not yield additional revenues since advertisers are already

spending all their budget and hence the key resides in understanding the impact of an increase in supply

on the opportunity cost. When the publisher increases the impression rate above market saturation,

there are again two effects to consider; (1) the direct effect: sending more impressions to the exchange

directly increases the publisher’s opportunity cost if these impressions are won; and (2) the indirect

effect: as more impressions are available, advertisers shade their bids more and in the presence of a

reserve price, the probability of a sell and the opportunity cost decrease. In the proof we show that

the direct effect dominates and increasing the rate above market saturation is suboptimal. Thus, the

optimal rate of impression is the minimum of η0(r) and η̄.

Next we characterize the optimal decision of the publisher when she optimizes over both the allo-

cation of impressions and the reserve price. In contrast to Theorem E.1, when jointly optimizing over
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the reserve price and the rate of impressions, the publisher is always better off allocating η̄ impressions

to the exchange. In this case, because the reserve price optimization considers the alternative channel,

the exchange becomes a “free option” that is always worth testing.

Corollary E.1. (Joint allocation and reserve price optimization). Suppose that ι is fixed. The optimal

decision for the publisher is to send all impressions to the exchange, and set the reserve price according

to Theorem 5.1. That is, the unique optimal rate of impressions is η∗ = η̄, and the optimal reserve

price is equal to max{r∗c , r̄(η̄)}, where r̄(η) = supR∗(η) and R∗(η) = {r : αηsG0(r) ≥ b}.

We study the joint optimization problem by partitioning it in two stages. In the first stage the

publisher looks for the allocation of impressions that maximizes the optimal value of the second-

stage problem, obtained from optimizing over reserve prices. Exploiting Theorem 5.1 to characterize

the maximum profit over reserve prices, we show that the second-stage objective value is increasing

with the rate of impressions. Therefore, when jointly optimizing over reserve prices and the rate of

impressions, the publisher is better off allocating η̄ impressions to the exchange.

Indeed, when η < η0(r∗c ), advertisers bid truthfully and the auctions decouple. Since the optimal

reserve price r∗c is larger than the opportunity cost, any given impression will potentially raise more

revenues in the exchange than in the alternative channel, and the publisher is better off increasing

the supply to the exchange. When η ≥ η0(r∗c ), the publisher sets the reserve price in a way that the

advertisers deplete their budgets in expectation while bidding truthfully. In this case the publisher’s

revenue is constant and does not increase as she increases the supply to the exchange, so we focus

on the probability of selling an impression in the exchange. Note that for η ≥ η0(r∗c ), there is no

indirect effect as in the previous cases; for all such values of η, when the reserve price is optimally set,

advertisers bid truthfully in equilibrium. In the proof we show, however, that the direct effect decreases

the opportunity cost as the allocation of impressions increase. As more impressions are allocated, the

reserve price is increased in a way that the advertisers spend the same amount on average, but pay

a higher price per impression and receive fewer impressions. As a result, the publisher is better off

increasing the allocation to the exchange.

E.2 Optimal Disclosure of Information

When the publisher posts an impression in the exchange she can decide which user information (if any)

to disclose to the advertisers. The publisher may decide to disclose, e.g., the content of the web-page,

user geographical location, user demographics, or cookie-based behavioral information (which allows

bidders to track the user’s past activity in the web). On the one hand, each additional level of targeting

may reduce the probability that an advertiser matches with a given user, because more criteria need

to be satisfied to do so. This may lead to thinner markets and could decrease the publisher’s revenue.

On the other hand, more information provides better targeting that results in higher valuations and

higher bids, conditional on a match. Our FMFE framework can be used to analyze (numerically or

analytically) different settings regarding the impact of information disclosure on the publisher’s profit.
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Below, we illustrate this through a particular stylized model for information disclosure.18

We assume that information disclosure ι is continuous, and that there is a one-to-one decreasing

mapping between information and the matching probability; which, allows one to parameterize infor-

mation disclosure by α. As a consequence, the publisher can indirectly choose an α ∈ [0, 1]. Fix a

distribution of values Fv(·). We assume that, conditional on the choice of α, for some σ(α) > 0, the

distribution of values of the advertisers is such that

Fv(α)(x) = Fv(x/σ(α)), (23)

ασ(α) = 1, for all α ∈ (0, 1].

The first condition corresponds to the values being scaled by a deterministic factor σ(α) (i.e., under

this scaling the new values V (α) , σ(α)V ). In other words, the model is one in which information

impacts the scale but not the shape of distribution of valuations. The second assumption governs the

relationship between the matching probability and the scaling factor. Ensuring that ασ(α) is constant

guarantees that the ex-ante mean valuation is independent of the level of information disclosure (the

ex-ante mean value is given by αE[V (α)] = ασ(α)EV ). That is, under such a model, when the matching

probability is halved, advertisers participate in half the number of auctions on average, but in each

auction their values are doubled.

With some abuse of notation, let Π(µ, r, α) be the publisher’s long-run average profit as a function of

the reserve price r and the matching probability α, when advertisers employ a multiplier µ, with values

scaled as above. For a fixed matching probability α, the publisher’s objective is to maximize profit by

choosing a reserve price. The publisher’s maximum profit is given by Π(α) = maxr≥0 Π(µ(r, α), r, α),

where µ(r, α) denotes the equilibrium multiplier for the given auction parameters.

Theorem E.2. (Joint information disclosure and reserve price optimization). Suppose that η is fixed

and that advertisers’ valuations follow (23). When the publisher reacts to thinner markets by setting an

appropriate reserve price, then disclosing more information improves the profit, that is, the publisher’s

profit Π(α) = maxr≥0 Π(µ(r, α), r, α) is non-increasing in α.

We provide the main ideas behind the argument. First, in view of Theorem 5.1, advertisers bid

truthfully at the optimal reserve price, and there is no need to take into account the shading of bids.

Hence, when changing α, there is no indirect effect, and it is enough to show that the direct effect of

decreasing α (corresponding to the impact of having thinner markets but larger valuations) increases

the publisher’s profits. Now, there are two cases to consider. When the expenditure at r∗c (α) does

not exceed the budget, we have that r∗c (α) is the optimal reserve price. In the proof, we show that

in this case profits increase as α decreases. When the expenditure at r∗c (α) exceeds the budget, then

the publisher prices at r̄(α) = sup{r ≥ 0 : αηsG0(r, α) ≥ b}, and advertisers deplete their budgets

18Previous papers have analyzed the trade-off introduced by targeting between increasing valuations by improving the
match and reducing revenues by creating thinner markets. Bergemann and Bonatti (2011) does so in a market with a
continuum of advertisers and a continuum of consumers and Board (2009) in a static auction setting with a fixed reserve
price.
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in expectation. Here, we show that as the matching probability decreases, the optimal reserve price

r̄(α) changes, resulting in more impressions returned to the publisher, and a lower opportunity cost,

increasing publishers’ profits.

A key piece in the previous result is that the publisher reacts to changes in the distribution of

values by adjusting the reserve price. In this case, the publisher can extract advertisers’ surplus even

if markets are thin. However, failing to properly adjust the reserve price may prevent the publisher

from extracting the surplus generated by targeting. In fact, the publisher’s revenue may deteriorate

when disclosing more information if the reserve price is not properly adjusted as we now explain.

Suppose that the publisher is disclosing an initial level of information that attains a matching

probability α0, she is pricing at the optimal reserve price r∗c (α0), and the advertiser’s expenditure does

not exceed the budget. Consider the publisher’s profit as a function of the matching probability when

the reserve price is not adjusted, which is given by Π(r∗c (α0), α) (we dropped the dependence on µ(r, α)

to simplify the notation). One can show that Π(r∗c (α0), α) is locally non-increasing near α0, that is, a

small increment in the disclosure of information actually increases profits.19 Nonetheless, it is possible

to show that disclosing more information and further decreasing α may cause profits to decrease.

E.3 Proof of Results

E.3.1 Proof of Theorem E.1

We use the following lemma to prove the theorem.

Lemma E.1. Let Y be a non-negative continuous random variable with increasing generalized failure

rate. Then for all y > 0

P{Y ≥ y} ≥ ξY (y)− 1

ξY (y)y
E[Y 1{Y ≥ y}],

where ξY (y) is the generalized failure rate of Y .

Proof. Notice that the bound is trivial when ξY (y) ≤ 1. We prove the equivalent bound E[Y |Y ≥ y] ≤
y ξY (y)
ξY (y)−1 when ξY (y) > 1. Let Yy , Y |Y ≥ y be the random variable Y conditional on Y being larger

that y. Clearly, the generalized failure rates ξY (x) and ξYy(x) coincide whenever x ≥ y. By the IGFR

assumption we have that the failure rate of the conditional random variable is larger than that of a

Pareto random variable with scale y and shape ξY (y), which we denote by Py. Indeed,

hYy(x) =
ξYy(x)

x
=
ξY (x)

x
≥ ξY (y)

x
= hPy(x).

Thus, we have that the random variable Py dominates Yy in the failure rate order, which in turns

19This follows from the fact that Π(α) is the envelope of Π(r, α) over reserve prices, r∗(α0) is optimal at α0, and that
Π(α) is non-increasing.
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implies that Py first-order stochastically dominates Yy (see, e.g., Ross (1996)). Thus,

E[Y |Y ≥ y] = E[Yy] ≤ E[Py] = y
ξY (y)

ξY (y)− 1
.

Proof of Theorem E.1. Fix r ≥ 0 and let Π(µ, η) be the publisher’s profit as a function of the rate of

impressions, and the equilibrium multiplier, respectively. The publisher’s problem amounts to solving

max0≤η≤η̄ Π(µ(η), η). We use Proposition 4.1 to analyze the dependence of the FMFE multiplier on

the rate of impressions, µ(η). When η < η0 advertisers bid truthfully and the equilibrium multiplier is

µ(η) = 0. When η ≥ η0 advertisers shade their bids so as to deplete their budgets in expectation and

the multiplier is the unique solution of the equation αηsG0

(
(1 + µ)r

)
= (1 + µ)b. We deduce that

Π(η) =

η
(
αλsG0(r)− cI0(r)

)
, if η < η0,

λb− ηcI0

(
(1 + µ(η))r

)
, if η ≥ η0.

Notice that Π(η) is continuous in η, and that the first piece is linear in η.

When the opportunity cost is greater or equal to the average revenue per impression (i.e., cI0(r) ≥
αλsG0(r)), the revenue function Π(η) is decreasing in its domain, and the optimal rate of impres-

sions is η∗ = 0. When the opportunity cost is less than the average revenue per impression (i.e.,

cI0(r) < αλsG0(r)), the slope of the first piece is positive and the publisher is better off allocating

more impressions.

In the remainder of the proof we prove the claim that Π(η) is decreasing for η ≥ η0, and thus the

optimal rate of impressions is min{η0, η̄}. Note that in that set, revenues are fixed equal to λb, so it

suffices to study the impact of η on the probability of selling an impression in the exchange. Taking

derivatives w.r.t. η we obtain that

dΠ

dη
= −cI0

(
(1 + µ)r

)
− ηcI ′0

(
(1 + µ)r

)
r

dµ

dη
,

where we dropped the dependence of µ on η. Once again, the impact of increasing the rate of im-

pressions can be separated in a direct and an indirect effect. The first term above corresponds to

the direct effect (the impact of increasing the supply, assuming advertisers’ strategies are fixed), and

the second to the indirect effect (the impact of the change of advertisers’ strategies). Invoking the

Implicit Function Theorem we may write the derivative of the equilibrium multiplier w.r.t. the rate of

impressions as
dµ

dη
= − G(µ, r)

ηG′µ(µ, r)
=

(1 + µ)b

η(b− αηsrG′0((1 + µ)r))
,

where the second equation follows from writing G(µ, r) = G((1 + µ)r)/(1 + µ), and using the fact that

αηsG(µ, r) = b. Note that from Lemma B.2 point iii.) one gets that G′µ(µ, r) < 0, which allows one to

conclude that the multiplier is increasing with the rate of impressions. In the remainder of the proof

we show that the direct effect dominates the indirect effect.
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Combining terms and using the facts that I ′0(y) = −αλsfv(y)(1 − I0(y)), and G′0(y) = (F̄v(y) −
fv(y)y)(1− I0(y)) one obtains

dΠ

dη
= −cI0 + cαλs(1 + µ)rfv(1− I0)

b

b− αηsrG′0

=
c

λb− αληsrG′0

((
λb− ηrI0︸ ︷︷ ︸

(A)

)
αλs(1 + µ)rfv(1− I0)−

(
λb− αληsrF̄v(1− I0)︸ ︷︷ ︸

(B)

)
I0

)
.

Next, we consider each term in parenthesis at a time.

For the first term in parenthesis, use the fact that the expenditure of the advertisers is equal to the

revenue of the publisher and that the probability that the impression is won as P{Ŵ1:M̂ ≥ r} = I0 to

write

λb− ηrI0 = ηE
[
1{Ŵ1:M̂ ≥ r}

(
max{Ŵ2:M̂ , r}

)]
− ηrP{Ŵ1:M̂ ≥ r}

= ηE
[
1{Ŵ1:M̂ ≥ r}

(
Ŵ2:M̂ − r

)+
]

= ηE
[
1{Ŵ2:M̂ ≥ r}

(
Ŵ2:M̂ − r

)]
(24)

= ηE
[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
− ηrP{Ŵ2:M̂ ≥ r},

where the second equation follows from writing the maximum as max{x, y} = x + (y − x)+. Notice

that this expression is equivalent to the expected publisher’s revenue in excess of the reserve price.

We next bound the first term from above. Using an expression for the distribution of the second-

highest bid (see, e.g., David and Nagaraja (2003)) for the first equation, and the probability generating

function for the Poisson random variable M̂ with mean αλs for the second equation, we may write

Fw2:M (x) = E
[
Fw(x)M̂ + M̂Fw(x)M̂−1F̄w(x)

]
= (1 + αλsF̄w(x))e−αλsF̄w(x),

where Fw(x) = Fv((1 + µ)x) is the shaded distribution of values. Similarly, the p.d.f. is given by

fw2:M (x) = (αλs)2fw(x)F̄w(x)e−αλsF̄w(x). Note that for every multiplier µ, the resulting distribution

of the second-highest bid has IGFR whenever the distribution of valuations exhibits IGFR. Indeed,

letting ξw2:M (x) = xfw2:M (x)/F̄w2:M (x) we have that ξw2:M (x) = ξw(x)ψ
(
αλsF̄w(x)

)
, with ψ(x) =

x2/(ex − 1− x) positive and decreasing. Since, ξw(x) is increasing and F̄w(x) decreasing, we conclude

that ξw2:M (x) is increasing.

Using Lemma E.1, one may bound from above term (A) above

λb− ηrI0 ≤ η
1

ξw2:M (r)
E
[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
.

For the second term in parenthesis, we proceed in a similar fashion. Using the joint distribution of

the highest and second-highest bid (see, e.g., David and Nagaraja (2003)) we have that the probability

that the impression is won and the reserve price is paid is given by P{Ŵ1:M̂ ≥ r,W2:M̂ < r} =
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(αλs)F̄v(1− I0). Thus, we obtain that

λb− ηr(αλs)F̄v(1− I0) = ηE
[
1{Ŵ1:M̂ ≥ r}

(
max{Ŵ2:M̂ , r}

)]
− ηrP{Ŵ1:M̂ ≥ r, Ŵ2:M̂ < r}

= ηE
[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
.

Thus, the second term is equal to the expected publisher’s revenue when the second-highest bid is

above the reserve price.

Putting it all together, one obtains

dΠ

dη
≤
cηE

[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
λb− αληsrG′0

(
1

ξw2:M (r)
αλs(1 + µ)rfv(1− I0)− I0

)

=
cηE

[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
λb− αληsrG′0

(
αλsF̄v

ψ(αλsF̄v)
e−αλsF̄v − (1− e−αλsF̄v)

)

=
cηE

[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
λb− αληsrG′0

(
φ
(
αλsF̄v

)
− 1
)
≤ 0

with φ(x) = (1− e−x)/x ≤ 1 for all x ≥ 0.

E.3.2 Proof of Corollary E.1

Let Π(µ, r, η) be the publisher’s profit as a function of the equilibrium multiplier, the rate of impressions,

and the reserve price, respectively. The publisher’s problem amounts to solving maxr≥0,0≤η≤η̄ Π(µ(r, η), r, η),

where µ(r, η) is the equilibrium multiplier for the given auction parameters. We prove the result by

partitioning the publisher’s problem in two stages: in the inner stage, the optimization is conducted

over r, while in the outer stage over η.

Let Π(η) = maxr≥0 Π(µ(r, η), r, η) be the objective of the inner optimization. By Theorem 5.1 we

have that

Π(η) =

Π(0, r∗c , η), if η ≤ η0(r∗c ),

Π(0, r̄(η), η), if η > η0(r∗c ).

Notice that Π(η) is continuous in η since r̄(η0(r∗c )) = r∗c . Also note that for all values of η, once the

reserve price is set optimally, advertisers bid truthfully. In that sense, changing η does not have an

indirect effect of changing the equilibrium strategies. We next show that Π(η) in increasing in η.

For the first piece, we have that Π(0, r∗c , η) = αληsG0(r∗c )− ηcI0(r∗c ), which is linear and increasing

in η. For the second piece, the objective is Π(0, r̄(η), η) = λb − ηcI0(r̄(η)). Revenues are fixed and

equal to λb, and we focus on the opportunity cost. Taking the derivative w.r.t. η, one obtains that

dΠ

dη
= −cI0(r̄) + c

(
1− I0(r̄)

)
fv(r̄)αληs

dr̄

dη
,
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where we dropped the dependence of r̄ on η. Since αηsG0(r̄) = b, one may invoke the Implicit Function

Theorem to write dr̄/dη = −b/(αη2sG′0(r̄)). Note that G′0(r̄) < 0 because r̄ > r∗0, and thus the optimal

reserve price is non-decreasing with the rate of impressions. Combining expressions and using that

G′0(r̄) = (1− I0(r̄))(F̄v(r̄)− r̄fv(r̄)) by Lemma B.1(ii), one obtains

dΠ

dη
=
c
(

1− I0(r̄)
)

−ηG′0(r̄)

(
ηI0(r̄)F̄v(r̄) +

(
λb− ηI0(r̄)r̄

)
fv(r̄)

)
.

Note that the publisher’s revenue (λb) is lower bounded by ηr̄I0(r̄) since advertisers pay at least the

reserve price of the auction. Hence the derivative above is positive and the proof is complete.

E.3.3 Proof of Theorem E.2

Fix α in (0, 1]. In view of Theorem 5.1, advertisers bid truthfully at the optimal reserve price. Note

that the generalized failure rate of the value distribution (23) is ξv(α)(x) = ξv(x/σ(α)), and the failure

rate is hv(α)(x) = hv(x/σ(α))/σ(α). Let Π0(r, α) denote the publisher’s profit when advertisers bid

truthfully, which after integrating by parts is given by

Π0(r, α) = αληs

∫ ∞
r

F̄v(α)(x)
(
ξv(α)(x)− 1

)
e−αλsF̄v(α)(x) dx− cη

(
1− e−αλsF̄v(α)(r)

)
= ασ(α)ληs

∫ ∞
r/σ(α)

F̄v(x)
(
ξv(x)− 1

)
e−αλsF̄v(x) dx− cη

(
1− e−αλsF̄v(r/σ(α))

)
= ληs

∫ ∞
αr

F̄v(x)
(
ξv(x)− 1

)
e−αλsF̄v(x) dx− cη

(
1− e−αλsF̄v(αr)

)
,

where the second equation follows from our scaling of values and changing the integration variable,

and the last from ασ(α) = 1. Notice that the profit depends on the reserve price exclusively through

αr. Hence to simplify the analysis we perform the change of variables y = αr, and define the scaled

profit as Πy(y, α) = Π0(y/α, α).

For any given α, by Theorem 5.1, the optimal reserve price is unique, bidders bid truthfully at

the optimal reserve, and the optimal profit is given by Π0(max{r∗c (α), r̄(α)}, α) (with some abuse of

notation, we make the dependence on α explicit). The result follows by separately analyzing the two

possible cases: (1) r∗c (α) is the optimal reserve price; and (2) r̄(α) is the optimal reserve price. With

some abuse of notation, let G0(r, α) denote the expected expenditure-per-auction in the absence of

budget constraints when advertisers bid truthfully.

Case 1. Suppose that αηsG0(r∗c (α), α) < b, i.e., the expenditure at r∗c (α) does not exceed the

budget. Then r∗c (α) is the optimal reserve price. First, we study the dependence of the optimal reserve

value of the one-shot second-price auction on values. Let r∗c (α) be the optimal reserve price under

information α and opportunity cost c. Since, the optimal reserve price solves for 1/hv(α)(x) = x − c,
we get that r∗c (α) = σ(α)r∗c/σ(α), where r∗c is the reserve price at α = 1 and σ(1) = 1.

We need to show that Π0(r∗c (α), α) = maxr≥0 Π0(r, α) is non-increasing in α. Or alternatively, by

App. 29



using our scaling ασ(α) = 1 we need to show that

Π0(r∗c (α), α) = Πy(ασ(α)r∗c/σ(α), α) = Πy(r
∗
αc, α)

is non-increasing in α. Since r∗cα is the optimal reserve price for Πy and the budget constraint is not

binding, we may invoke the Envelope Theorem to get that

dΠy(r
∗
αc, α)

dα
=
∂Πy

∂α
(r∗αc, α) +

∂Πy

∂y
(r∗αc, α)

dr∗αc
dα

=
∂Πy

∂α
(r∗αc, α)

= −(λs)2η

∫ ∞
r∗αc

F̄ 2
v (x)

(
ξv(x)− 1

)
e−αλsF̄v(x) dx− cλsηF̄v(r∗αc)e−αλsF̄v(r∗αc),

where the third equation follows from differentiating under the integral sign, which is valid because

the derivative of the integrand is continuous on its domain. The IGFR assumption and the fact

that the optimal reserve price is increasing with the opportunity cost imply that for all x ≥ r∗αc,

ξv(x) ≥ ξv(r
∗
αc) ≥ ξv(r

∗
0) = 1 and hence the integrand above is positive. We conclude that the

derivative is negative.

Case 2. Suppose that αηsG0(r∗c (α), α) > b, i.e., the expenditure at r∗c (α) exceeds the budget. Then

r̄(α) = sup{r ≥ 0 : αηsG0(r, α) = b} is the optimal reserve price. Using the scaling and integrating by

parts, we obtain that the optimal reserve price r̄(α) satisfies the equation

b = αηsG0(r̄(α), α) = ηs

∫ ∞
αr̄(α)

F̄v(x)
(
ξv(x)− 1

)
e−αλsF̄v(x) dx. (25)

Now advertisers deplete their budgets in expectation and the publisher’s profit is given by

Π0(r, α) = λb− cη
(

1− e−αλsF̄v(αr)
)
.

Applying the change of variables y = αr, and defining ȳ(α) as the scaled optimal reserve price; we

obtain that the optimal profit is given by Π0(r̄(α), α) = Πy(ȳ(α), α). Taking derivatives w.r.t. the

matching probability we obtain

dΠy(ȳ(α), α)

dα
=
∂Πy

∂α
(ȳ(α), α) +

∂Πy

∂y
(ȳ(α), α)

dȳ(α)

dα
.

To conclude that the profit is non-increasing we shall show that both terms are non-positive. Indeed, the

partial derivative w.r.t. the matching probability is ∂Πy/∂α = −cλsηF̄v(ȳ(α))e−αλsF̄v(ȳ(α)) ≤ 0. Simi-

larly, the partial derivative w.r.t. the scaled reserve price is ∂Πy/∂y = cηαλsfv(ȳ(α))e−αλsF̄v(ȳ(α)) ≥ 0.

Finally, invoking the Implicit Function Theorem we get from equation (25) that the total derivative of
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the scaled optimal reserve price is

dȳ(α)

dα
= −

λs
∫∞
ȳ(α) F̄

2
v (x)

(
ξv(x)− 1

)
e−αλsF̄v(x) dx.

F̄v(y(α))
(
ξv(y(α))− 1

)
e−αλsF̄v(y(α))

≤ 0.

For the last inequality recall that, by assumption, r̄(α) > r∗c (α), which implies that ȳ(α) > r∗αc ≥ r∗0.

Using the IGFR assumption we obtain that ξv(y(α)) > ξv(r
∗
0) ≥ 1, and then both the numerator

and the denominator are non-negative. Hence, the optimal reserve price is non-increasing with the

matching probability.

Putting it all together. The optimal profit is given by

Π(α) = Π0(max{r∗c (α), r̄(α)}, α) = Πy(max{r∗αc, ȳ(α)}, α),

where Πy(y, α) is jointly continuous in y and α. From case 1 and 2, we know that r∗αc is continuous

and increasing in α, while ȳ(α) is continuous and non-increasing in α. Thus, Π(α) is continuous in α;

r∗αc = ȳ(α) in at most one point; and the profit is non-decreasing in α. This concludes the proof.
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