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Abstract—Predicting ad click-through rates is the core
problem in display advertising, which has received much
attention from the machine learning community in recent
years. In this paper, we present an online learning algo-
rithm for click-though rate prediction, namely Follow-
The-Regularized-Factorized-Leader (FTRFL), which in-
corporates the Follow-The-Regularized-Leader (FTRL-
Proximal) algorithm with per-coordinate learning rates
into Factorization machines. Experiments on a real-
world advertising dataset show that the FTRFL method
outperforms the baseline with stochastic gradient de-
scent, and has a faster rate of convergence.
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I. INTRODUCTION

Internet advertising is a multi-billion dollar busi-

ness and is growing rapidly. There are several major

channels on the web for online advertising such as

display advertising and search advertising. Display

advertising is different from the search advertising in

that it uses graphical banners placed on the publishers’

web pages [1]. In online advertising, advertisers can

choose between Cost per Click (CPC), Cost per Action

(CPA) or Cost per Impression (CPM) pricing methods

to purchase display ads. Among them, CPC is the most

popular option, in which advertisers only pay when a

user clicks on the ad. As a consequence, click through

rate (CTR) prediction, which is defined as the problem

of estimating the probability that a user clicks on an ad

in a specific context, is crucial to online advertising.

Predicting CTR in display advertising has been

widely studied in the literature. Logistic regression

(LR) is commonly used in industry due to its ease

of implementation and effective performance in large-

scale systems [1][2][3][4]. Numerous optimization

methods have been applied to train logistic regression

models, including Stochastic (online) Gradient Descent

(SGD) [5], Newton and Quasi-Newton methods (e.g.

L-BFGS), Coordinate Descent [6]. SGD has proved

to be effective in solving these kinds of problems,

producing good prediction accuracy. Its resulting mod-

els, however, are not sparse enough, making them ex-

tremely expensive to store in production. Many efforts

have been made to produce sparser models, e.g., the

FOBOS algorithm [7], the Regularized Dual Averag-

ing (RDA) algorithm [8], the Follow-The-Regularized

Leader algorithm [9]. Among these algorithms, FTRL-

Proximal has shown to be more effective at producing

sparsity and better performance [9].

Despite their success, logistic regression-based

methods can not capture higher order interactions (i.e.,

non-linear information) between features, which have

proved to be important in CTR prediction [1]. One

can manually select and construct conjunction features

from the original ones as the input for LR models. This

approach, however, will result in quadratic number of

new features, making it really difficult to learn the

model. A new line of research based on the use of

feature engineering and matrix design, called Factor-

ization Machines (FM), has recently emerged as very

successful models for CTR prediction [10]. Indeed, FM

combines the advantages of Support Vector Machines

with factorization models, which are able to model

all interactions between variables even with extreme

sparsity of data. An implementation of FM, which

supports some optimization algorithms including SGD,

Alternating Least Squares (ALS), and Markov Chain

Monto Carlo (MCMC), has been provided [11].

In this paper, we attempt to get both the sparsity

provided by FTRL-Proximal and the ability of estimat-

ing higher order information of FM. To this end, we

present the Follow-The-Regularized-Factorized-Leader

(FTRFL) algorithm, which incorporates the FTRL-

proximal with per-coordinate learning rates into FM.
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This method has been used as part of our real-world

deployments. The rest of this paper is organized as

follows. An overview of our method is given in Section

II. Experimental results are described in Section III,

and conclusions are drawn in Section IV.

II. PROPOSED METHOD

A. Model

Our model is based on the second-order FM model

[10], which is defined as

φ(w, x) =

n∑
i

n∑
j>i

〈vi, vj〉xixj (1)

where 〈., .〉 is the dot product of two vectors of size

k, and the model parameters w = (vi, vj) ∈ R
n×k.

k ∈ N
+
0 is a hyperparameter that defines the number of

latent factors. x ∈ R
n is a real-value input vector. Note

that, the linear and bias terms are excluded from our

FM-based model, as they do not give any improvement

to the model for the CTR prediction task, and make

convergence slower1. Here we want to model only

second-order interactions between variables.

B. Learning

Given an observed dataset {(xi, yi)|i = (1, .., L)},

in which xi is of length n representing the input

features, and yi ∈ {1, 0} indicating a click or non-

click in an impression, the CTR prediction problem

is to learn a function h(x), which can be used to

predict the probability of a user clicking on an ad.

Similar to the likelihood of LR, h(x) = Pr(y =
1|x,w) = σ(φ(w, x)), where σ(a) = 1

1+exp(−a) is the

sigmoid/logistic function. The model parameters are

estimated by minimizing the following regularized loss

function:

argmin
w

∑
i

l(φ(w, x), y) + λ× r(w) (2)

where r is a regularization function, and l is the

LogLoss (logistic loss) function, given as

l(w) = −y log(φ(w, x))−(1−y) log(1−φ(w, x)) (3)

Several learning algorithms, e.g., SGD, have been

proposed [11] to solve equation 2. In this work, the per-

coordinate FTRL-Proximal algorithm was employed

1This has been confirmed by our experiments. In fact, in our
real-world setting we train a separate model for linear terms

to induce sparsity and yield better performance. In

particular, at each step, we update the weight vector

on a per-coordinate basis, where the learning rate for

each latent factor vi,f at iteration t is set to

ηt,i,f =
α

β +
√

Σt
s=1�2

t,i,f

(4)

where α, β are two tunable parameters, as proposed

in [9]. Due to the limit of space, the details of the

algorithm are omitted here. The interested readers are

referred to [9] for similar formulations used with LR.

III. EXPERIMENTAL RESULTS

A. Experimental setup

We choose the DownPour SGD method introduced

in [12] for parallel processing to train our model. The

proposed method was implemented in c++, and run on

28 CPUs with 139G shared memory.

Evaluation metrics: the area under the ROC curve

(auROC) was used as a test metric in our experiments.

B. Dataset

To evaluate our method, a portion of 11 days from

our real-world dataset2 was used to build the model

parameters, and a subset of the data from the three

consecutive days were used to test the trained model.

There are 45 millions of impression instances in the

training set. The test set contains 30M of impressions.

The average CTR in the training set ( #clicks
#impressions ) is

0.0063. The early stopping technique was employed in

the training to prevent overfitting. In particular, 20%
samples from the last days in the training set were

randomly selected as the validation set, and we stop

the training process when the validation error begins

to increase.

C. Features

We consider different feature families, including

advertiser (ad ID, campaign ID, ...), publisher (url,

publisher ID, ...), user (CRM data) and time features

(serve time, click time, ...). The hashing trick, which

was made popular by the Vowpal Wabbit learning

software, was applied to reduce the dimensionality

of the model. In our experiments, the number of

bits used for hashing was 22, yielding a model with

4M × k parameters, where k is the dimensionality of

the factorization.

2Log data from July 2015 at Zebestof: http://www.zebestof.com
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D. Results

We compared our method against the standard FM

with SGD [11]. For both methods, we started training

on a small part of data to choose the tuning parameters,

i.e., select the parameters that provide the smallest

error on the validation data. Once the parameters are

determined, the model is then learned from the entire

training set. For the number of latent factors, k = 20
is used in all experiments. Table I shows a comparison

of our results obtained from the test set with those

of the baseline (FM) using SGD. It can be seen that

Table I
Results for the proposed method and the FM model with SGD.

The accuracy is measured by the area under the ROC curve.

���������Test data
Model

Our method (FTRFL) FM with SGD

Day 1 0.9836 0.9128

Day 2 0.9818 0.9105

Day 3 0.9809 0.9021

the proposed method overcomes the baseline one by

over 7%. In industry, this has significant impact to the

overall system performance. In terms of convergence

rate, we observed that the FTRFL method normally

converges after 5 iterations, while the FM with SGD

usually converges after 20 iterations.

IV. CONCLUSION

In this paper, we have applied the FTRL-Proximal

algorithm with per-coordinate learning rate to FM. The

proposed algorithm produces a sparse model, making it

applicable to real-world scenarios (i.e., in production,

one can store only the non-zero coefficients of the

model). Experimental results show that the FTRFL

method outperforms the standard FM with SGD, and

has a much faster rate of convergence.
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