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In the real-time bidding (RTB) display advertising ecosystem, when receiving a bid request, the demand-
side platform (DSP) needs to predict the click-through rate (CTR) for ads and calculate the bid price
according to the CTR estimated. In addition to challenges similar to those encountered in sponsored
search advertising, such as data sparsity and cold start problems, more complicated feature interactions
involving multi-aspects, such as the user, publisher and advertiser, make CTR estimation in RTB more dif-
ficult. We consider CTR estimation in RTB as a tensor complement problem and propose a fully coupled
interactions tensor factorization (FCTF) model based on Tucker decomposition (TD) to model three pair-
wise interactions between the user, publisher and advertiser and ultimately complete the tensor comple-
ment task. FCTF is a special case of the Tucker decomposition model; however, it is linear in runtime for
both learning and prediction. Different from pairwise interaction tensor factorization (PITF), which is
another special case of TD, FCTF is independent from the Bayesian personalized ranking optimization
algorithm and is applicable to generic third-order tensor decomposition with popular simple optimiza-
tions, such as the least square method or mean square error. In addition, we also incorporate all explicit
information obtained from different aspects into the FCTF model to alleviate the impact of cold start and
sparse data on the final performance. We compare the performance and runtime complexity of our
method with Tucker decomposition, canonical decomposition and other popular methods for CTR predic-
tion over real-world advertising datasets. Our experimental results demonstrate that the improved model
not only achieves better prediction quality than the others due to considering fully coupled interactions
between three entities, user, publisher and advertiser but also can accomplish training and prediction
with linear runtime.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

With the emergence and development of spot markets, real-
time bidding (RTB) advertising has become an increasingly impor-
tant way for publishers to sell their ad inventory. In the RTB-
enabled display advertising ecosystem (see Fig. 1), there are three
major entities: the supply-side platform (on behalf of publishers),
ad exchange and demand-side platform (on behalf of advertisers).
The arrows in Fig. 1 represent the path an advertiser’s dollar could
take to reach a publisher. Publishers supply advertising inventory
to advertisers through ad exchange systems. Ad exchanges aggre-
gate advertising inventory from multiple publishers and sell ads
to several demand-side platforms (DSPs) via real-time auction or
bidding. DSPs help many advertisers manage their display adver-
tising campaigns simultaneously across multiple direct ad
exchanges and employ specialized technology solutions to reach
the most receptive online audiences in the right context, who will
then hopefully click their displayed ads and eventually take a
desired action.

The display of an ad on a webpage to a user is considered an ad
impression. The life of a programmatic RTB ad impression is illus-
trated in Fig. 2. When a user clicks a hyperlink to a publisher’s web-
page, besides producing and showing high-quality content to the
user, the publisher’s main task is to sell its ad inventory to adver-
tisers for monetization. If the publisher decides to monetize the ad
impression through RTB, the publisher would pass the ad slot
information to an ad exchange through a supply-side platform
(SSP), and then the ad exchange composes a bid request and sends
it to several DSPs. When receiving a bid request, a DSP needs to use
bidding algorithms to decide whether to bid for the ad impression
and what the appropriate bidding price is and then reply to the ad
exchange in real-time. The impression will be sold to the highest
bidder in the public auction. The publisher’s web server requests
the advertiser’s ad server for the winning ad creative and displays
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Fig. 1. Real-time bidding ecosystem through the lens of advertisers.
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it on their webpage. Finally, the user will see the ad on the pub-
lisher’s webpage. Note that the entire life of a programmatic RTB
ad impression, from a user clicking a hyperlink to the publisher’s
webpage to a final ad impression, must be accomplished during a
very short interval of time, such as 100 ms.

From the perspective of a DSP, to achieve optimal return on
investment (ROI), each bid price must be lower than the expected
cost-per-impression (eCPM) of that impression. If cost per click
(CPC) is the pricing model between DSPs and advertisers, eCPM
is equal to the click-through-rate (CTR) for the impression multi-
plied by the CPC (or click value for advertisers). Therefore, the
Fig. 2. The life of a programm
eCPM directly depends on how well the CTR can be estimated. If
the CTR is overestimated, bid prices will be higher than what they
should be, and the campaign budget of advertisers will be wasted
on useless impressions. Conversely, if these quantities are underes-
timated, high-value impressions that may have led to actions will
be missed, and the campaign will under-deliver (Lee et al. 2012).

In this paper, we focus on the DSP’s approach for CTR estimation
for ad impressions in real-time bidding systems. We consider the
CTR prediction problem as a recommendation problem, where
ads must be recommended for appropriate users and collaborative
filtering techniques are employed to handle this. However, com-
pared with recommender systems or sponsored search advertising,
there are at least three new challenges specific to this problem.
Firstly, more complicated interactions between multiple features
primarily involving at least three different aspects (the user, pub-
lisher and advertiser) greatly increase the difficulty of CTR predic-
tion in RTB. This is because a user’s response to an impression
relies on how well the topic of the ad matches the user’s require-
ments, as well as the quality of the publishing context. Publishing
context involves the size, position and format of an ad slot, the con-
tent of the surrounding webpage, etc. For example, if an ad is out-
side the range of a user’s vision, even if the content of the ad
exactly satisfies the user’s taste, the probability of the ad being
clicked will still be dramatically reduced. Secondly, RTB compels
the DSP to reply to the bid request in real-time. Therefore, the
DSP must select a time-saving prediction algorithm for ad CTR to
ensure its timely response. Lastly, the data in RTB being more
extremely sparse and imbalanced than in other systems makes it
more difficult to achieve better optimal prediction results. Data
statistics show that the average CTR for desktop display advertising
in practice is usually approximately 0.1%. This quantity is not only
far less than that in recommendation datasets, such as the approx-
imate 4.5% in MovieLens or 1.2% in Netflix (Lü et al. 2012), but it is
also far lower than the average click-through rate on AdWords paid
search ads (2%) according to Google. Factorization models provide
a powerful technique to make use of explicit data to overcome the
sparsity of the implicit data. Popular latent factor models based on
a matrix for collaborative filtering have been successfully used to
address the recommendation problem (Koren et al. 2009; Chen
et al. 2012) and even ad CTR prediction for sponsored search
(Wu et al. 2012). In typical recommender systems or sponsored
atic RTB ad impression.
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search advertising, the relations that need to be learned are usually
binary ones between users and candidate items (ads). However, for
display advertising in RTB, the complicated interactions are ternary
relations between users, publishers and ads, as shown in Fig. 3.
Both the matrix factorization model and linear regression model
widely used in industrial systems are weak in regard to learning
these complicated interactions. Therefore, factorization models
based on the Tucker decomposition model (TD), such as higher
order singular value decomposition (HOSVD) (Symeonidis 2008)
and ranking tensor factorization (Rendle et al. 2009), which have
been used to exploit ternary relations between users, items and
tags for personalized tag recommendation, are skilled in learning
these complicated interactions between more than three aspects.
However, the drawback of using the full TD is that the model equa-
tion is cubic in the factorization dimension. This makes it unfeasi-
ble for TD models to be used with a high factorization dimension
for midsized and large datasets (Rendle and Schmidt-Thieme
2010). Thus, it is difficult to apply TD models directly to address
CTR estimation in real-time for RTB. There are other tensor decom-
position models, such as the canonical decomposition (CD) and the
pairwise interaction tensor factorization (PITF) (Rendle and
Schmidt-Thieme 2010), that have linear runtime complexity for
the number of factorization dimensions, but the performance of
the CD model for solving our problem is not outstanding, and the
PITF model depends on specific optimization criteria and particular
data interpretations that are not suitable for our circumstances. To
address these problems, we propose a novel tensor factorization
named fully coupled interaction tensor factorization (FCTF), which
is based on the Tucker decomposition model. Because it considers
fully coupled interactions between three entities (the user, pub-
lisher and advertiser), FCTF not only has linear runtime complexity
for training and prediction but also has more promising perfor-
mance than traditional factorization models.

The rest of the paper is organized as follows:
We discuss related work in the next section. In Section 3, we

give the notations and formulate the task performed in our system.
Section 4 gives the specific implementation of tensor factorization
models and explains the relationship between FCTF and these
approaches. In Section 5, we propose the featured-based FCTF
model, which incorporates side information to relieve the impact
of sparse data on the final performance. Experimental results and
analyses are given in Section 6, and in the last section, we summa-
rize and outline the possible future work in this research direction.
2. Related work

2.1. Ad click-through rate prediction

Existing methods for CTR prediction can be categorized as
feature-based or maximum likelihood estimate-based. MLE-based
methods usually smooth the raw MLE via statistical models of
clicks and impressions, with popular choices being the Gamma-
Poisson model (Agarwal et al. 2009; Agarwal et al. 2010) and Bino-
mial model (Lee et al. 2012). Feature-based learning methods often
use standard classification or regression models in which all factors
that have an impact on a user’s response are included explicitly as
features (Yan et al. 2014; Chapelle et al. 2014; Menon et al. 2011;
Shan et al. 2014; Richardson et al. 2007; Zhang et al. 2014; Graepel
et al. 2010). Fighting against data sparsity is one of the main tasks
for CTR prediction. Data hierarchies of explicit features of the pub-
lisher, advertiser or user are frequently used to relieve data spar-
sity in both MLE-based and feature-based methods (Lee et al.
2012; Menon et al. 2011; Agarwal et al. 2010; Oentaryo et al.
2014; Wang et al. 2010). Owing to its easy implementation, imme-
diate prediction and acceptable performance, logistic regression
(LR) or generalized linear models have been widely applied for
ad CTR prediction (Lee et al. 2012; Yan et al. 2014; Chapelle et al.
2014) based on features in display advertising, especially in indus-
trial systems (Graepel et al. 2010). However, LR is a linear model in
which the features contribute to the final prediction indepen-
dently. Therefore, other collaborative filtering models, such as
matrix factorization or its variants, which are popular in recom-
mender systems owing to their significant performance (Koren
et al. 2009), are adopted to create a personalized click model for
web search (Shen et al. 2012) or to cope with response prediction
for online advertising (Wu et al. 2012; Menon et al. 2011. Kuan-
Wei Wu et al. model the ad CTR prediction in sponsored search
advertising (track 2 of KDD Cup 2012) as a recommendation prob-
lem solvable by matrix factorization (MF) (Wu et al. 2012), which
becomes the best individual model they have. Collaborative filter-
ing techniques are again used in De Lathauwer et al. (2000) with
hierarchies and side information for response prediction for pub-
lishers to counter sparse data and cold-start pages and ads. How-
ever, CTR prediction in display advertising encounters more
difficult situations than in recommender systems or in sponsored
search advertising. In addition to sparser data, there are more
diverse types of ad formats, a richer variety of ad slots, and more
possible actions of the user than in sponsored search. Thus, all
these factors lead to more complicated interactions between these
features, which must be exploited for better-quality CTR estima-
tion. Both LR and MF models are weak in regard to capturing the
ternary complex relationship between features of the user, pub-
lisher and ad in RTB display advertising. Therefore, some tensor
factorization models have been attempted to learn such ternary
relations (Shan et al. 2014), and they have achieved better predic-
tion quality than various traditional models. However, the runtime
complexity of a tensor factorization model is cubic, which makes it
unfeasible for large datasets when using high factorization
dimensions.

2.2. Tensor factorization models

Tensor factorization models have been widely applied to solve
the personalized recommendation problem in recommender sys-
tems (Symeonidis 2008; Rendle et al. 2009) and train personalized
click models for web search (Shen et al. 2012). Factorization mod-
els based on the Tucker decomposition (TD) model, such as higher
order singular value decomposition (HOSVD) (Symeonidis 2008)
and ranking tensor factorization (Rendle et al. 2009), have been
used to exploit ternary relations between users, items and tags
for personalized tag recommendation. Although these models can
directly exploit all information of the ternary relations between
users, items and tags, due to the high time complexity of these ten-
sor factorization models for training and prediction, it is unfeasible
to directly apply them to cope with ad CTR prediction in RTB.

There is another tensor factorization-based model, the pairwise
interaction tensor factorization (PITF) model (Rendle and Schmidt-
Thieme 2010), that is also used to address personalized tag recom-
mendation and presents outstanding prediction quality over other
personalized tag recommendation algorithms. Furthermore, PITF is
indeed linear in runtime complexity for training and prediction.
However, the PITF model is dependent on Bayesian personalized
ranking (BPR) optimization criteria, which are specially designed
for the personalized tag recommendation scenario, and not all
problems have a BRP optimization-based solution (including CTR
prediction in RTB). To overcome this problem, we extend the
two-pairwise-interactions tensor factorization model that fits per-
sonalized tag recommendation based on BPR optimization to a
three-dimensional fully coupled interactions model that fits gen-
eric third-order tensor factorization. Consequently, not only is
the runtime complexity of the model equation linear for the



Fig. 3. A 3rd-order tensor with missing values represents a ternary relation D between users U, ads A and publisher P. If user u clicks ad a in the context of publisher p, then
the cell (u, p, a) is assigned ‘‘ + ”; otherwise, it is assigned ‘‘-.” If the triple (u, p, a) has never been observed before, the entry is left empty.
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number of factorization dimensions, but this model is suitable for
generic third-order tensor factorization as well, no matter what
type of optimization strategy is used.
3. Problem formulation

A bid request that an ad exchange sends to a DSP is denoted as

bid ¼ user : u; publishing contextðor publisherÞ : pf g ð1Þ
This indicates that a user u has just clicked a link to a webpage

where there is an ad impression occasion with the publishing con-
text p. An ad impression occasion refers to there being an ad slot on
a publisher’s webpage where an ad has a chance of being dis-
played. The publishing context p primarily consists of the page
domain, size of the ad slot, slot format and/or slot position. There-
fore, we also refer to this information as publisher features. The
DSP has an ad set A = {a1, a2, ..., an} whose elements need to be dis-
played on the publisher’s webpage. Furthermore, the DSP collects
user features offline to target a personalized audience for their
advertisers. Therefore, when a bid request arrives, information rel-
evant to the users, publishers and ads is aggregated together on the
DSP side. The bidding algorithm of the DSP estimates the click-
through rate for each ad and then determines the next action.

For the formalization of ad click-through rate prediction, we
define a triple (u,p,a) as an impression in which an ad a is
impressed to a user u in a publishing context p. In this paper, we
define a user response to an impression as either a click behavior
or non-click behavior. We let U be the set of all users, P the set of
all publishing contexts (publishers) and A the set of all ads. The his-
torical impression information is denoted by a triple set
D#U � P � A. A triple ðu; p; aÞ 2 D means that an ad a has ever
been impressed to a user u in a publishing context p in the past.
Given a training set T ¼ ei; rið Þji ¼ 1; . . . ;Nf g in which ei 2 D with
the form ðu; p; aÞ and ri 2 0;1f g with ri = 1 denoting a click event
and ri = 0 denoting a non-click event after an ad impression, an
incomplete third-order tensor R 2 RjUj�jPj�jAj is created to represent
the ternary relationships between users, publishers and ads, as
shown in Fig. 3. Each element of (u, p, a) has one of three values:
1, 0 and unknown. If (u, p, a) is observed in historical impressions,
that is to say, ðu; p; aÞ 2 D, the entry at ðu; p; aÞ is the user response
to that impression, ‘‘1” for a click event and ‘‘0” for a non-click
event. If (u, p, a) is un-occurred in historical impressions, that is
to say, ðu; p; aÞ R D, the entry at ðu; p; aÞ is defined as unknown or
missing. Then, our purpose is to fill in these unknown entries with
the predicted scores that indicate the probabilities of a user’s click
behavior after ad impressions. We treat this problem as a cube
complement problem for the tensor R and employ a tensor factor-
ization model to predict the unknown values inside R.
4. CTR Prediction with tensor factorization models

Display advertising in an RTB system involves more features
regarding contexts (publishers) as well as users and ads (advertis-
ers), such as the position of an ad slot in a webpage, ad format
(fixed, pop, float, background, etc.), and ad visibility (first view, sec-
ond view, etc.). This induces more complicated tripartite interac-
tions between these features, which should be taken into
consideration when CTR is predicted. However, approaches that
are currently widely used in industrial systems, such as linear
models and regularized matrix factorization models, are weak in
modeling these complicated tripartite interactions between pub-
lishers, users and ads. For example, for matrix factorization models
and the bilateral interactions between users and items, although
three types of attributes are available according to a user, an ad
and a publisher in our problem, these features are divided into
two groups. Without loss of generality, it is alleged that one group
is composed of all attributes from a user and that the other group is
composed of those from an ad or a publisher. Thus, the interactions
between the ad and the publisher, both inside the second group,
will not be learned. The CTR estimation in RTB is a tripartite inter-
action between publishers, users and ads. For example, an ad has a
lower probability of being clicked if it is placed outside of the first
view than in the first view (publisher’s aspect), no matter how well
the content of the ad (ad’s aspect) conforms to the user’s prefer-
ences (user’s aspect). For another example, the topic of the web-
page clicked by a user reveals the user’s real-time intention, and
whether the user will click an ad on the page is influenced not only
by how well the topic of the ad satisfies the preference of the user
(bilateral interaction) but also by to what extent the content of the
ad matches the topic of the page (tripartite interaction). For exam-
ple, if the same ad related to merchandise discounts is displayed to
the same user but under different publishing contexts, one time on
an online learning website, and another time on an e-commence
website, it seems reasonable to obtain different CTR estimation
values for these different ad impressions. Therefore, we consider
this interaction as a ternary relation between users, publishers
and ads, as shown in Fig. 3, and apply a tensor factorization model
to address the three-dimensional cube complement problem (Shan
et al. 2014). The main idea is to capture the underlying relation-
ships between users-publishers-ads by reducing the rank of the
original tensor to minimize the effect of noise on the underlying
population.
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There are two main approaches to tensor factorization, the so-
called Tucker/higher-order singular value decomposition (Tucker
1966; De Lathauwer et al. 2000) and canonical decomposition
(Carroll and Chang 1970), and parallel factors (Harshman 1970)
(the CP expansion). In fact, they are all based on Tucker decompo-
sition. In this section, we give the specific implementation of these
approaches and explain the relationship between our FCTF model
and other approaches.

4.1. Tucker decomposition and canonical decomposition model

Tucker decomposition (TD) (Tucker 1966) and high-order sin-
gular value decomposition (HOSVD) (De Lathauwer et al. 2000)
extend two-dimensional-matrix singular value decomposition
(SVD) to high-order tensors. According to their main ideas, a
third-order tensor R 2 RjUj�jPj�jAj can be factored into (see Fig. 4):

R ¼ C�uU�pP�aA ð2Þ
in which,

C 2 Rku�kp�ka ;U 2 RjUj�ku ; P 2 RjPj�kp ;A 2 RjAj�ka ð3Þ

and ku; kp and ka are latent factor numbers corresponding to user,
publisher and ad, respectively. We apply the Tucker decomposition
factorization model to address the third-order tensor R comple-
ment problem (Shan et al. 2014), and then, according to the Tucker
decomposition model, the value of element (u, p, a) can be esti-
mated by the following equation:

r̂TDu;p;a ¼
Xku
l

Xkp
m

Xka
n

cl;m;n � uu;l � pp;m � aa;n ð4Þ

where cl;m;n 2 R;uu;l 2 R;pp;m 2 R and aa;n 2 R are all model parame-
ters that need to be learned. Then, for example, given any instance
triple (u, p, a), where u, p and a are features respectively corre-
sponding to user, publisher and advertiser, three latent factor vec-
tors uu 2 Rku ;pp 2 Rkp ; and aa 2 Rka , respectively corresponding to
the features u, p and a, and C, a smaller tensor than R, are learned
through training. The entry value at (u, p, a) can be estimated by
Eq. (4).

Obviously, if k ¼ min ku; kp; ka
� �

, the runtime complexity for

predicting one triple (u, p, a) is O k3
� �

. This makes it unfeasible

to use a high factorization dimension for midsized and large data-
sets and also difficult to satisfy the high real-time requirement in
RTB for CTR estimation.
Fig. 4. Tensor Factorization models: C;U;P and A are all of the model parameters. The c
however. The factorization dimensions can differ in TD and be equal in others. In Pairw
which corresponds to modeling pairwise interaction.
In fact, there is another tensor factorization model that can
achieve prediction with linear runtime complexity called the
canonical decomposition model (CD) (Carroll and Chang 1970;
Harshman 1970). CD is a special case of the general Tucker decom-
position model, as illustrated in Fig. 4, when the core tensor C is a
diagonal one where:

cl;m;n ¼ 1; if l ¼ m ¼ n
0; else

�
ð5Þ

The above assumption results in the triple (u, p, a) being esti-
mated by:

r̂CDu;p;a ¼
Xk
f

uu;f � pp;f � aa;f ð6Þ

where uu;f � pp;f and aa;f are all model parameters that need to be
learned. The corresponding tensor product formula is:

R ¼ C�uU�pP�aA ð7Þ
where, excluding tensor C, U; P and A are all model parameters

that need to be learned. Obviously, only the first k ¼ min ku; kp; ka
� �

features are used, i.e., if the dimensionality of the feature matrices
differs, some features are not used, as the core will be 0 for these
entries (Rendle and Schmidt-Thieme 2010). Obviously, the CD
model has a much better runtime complexity as the model equa-
tion contains no nested sums and thus is in O(k). Although better
runtime complexity makes CD feasible for application to a high fac-
torization dimension for midsized or large datasets, the TD or CD
model does not consider the individual interaction information
between each couple within the three entities u, p, and a. More
specifically, from Eqs. (4) and (6), we can find that, using the TD
or CD model, we can achieve only one factor vector for each entity
of the triple (u, p, a). Each factor vector is learned through interact-
ing simultaneously with the other two objects. For instance, the
latent factor û is learned for user u as its new representation by
interacting simultaneously with the other two objects, p and a.
Therefore, to achieve such a trade-off between interacting with p
and a, û is actually neither the best representation of user U inter-
relating with p nor the best representation of user U interrelating
with a. Thus, as we can see from the following experiment results,
its performance is not outstanding.

HOSVD is a special case of Tucker decomposition when the
matrices involved in Eq. (7) are orthogonal and matrix slices of core
tensor C are mutually orthogonal.
ore C in Tucker Decomposition is variable, but it is fixed as a diagonal one in others,
ise and Fully Coupled Interactions, different parts of the feature matrices are fixed,
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4.2. Pairwise Interaction tensor factorization model

Another tensor factorization model with linear runtime com-
plexity for training and prediction is the pairwise interaction ten-
sor factorization (PITF) model, which was proposed for
personalized tag recommendation. This model builds on special
optimization criterion Bayesian personalized ranking (BPR)
(Rendle and Schmidt-Thieme 2010; Rendle et al. 2009). The BPR
learning algorithm is elaborately designed for personalized tag rec-
ommendation to learn the interaction between users, items and
tags. However, due to this particular algorithm, PITF explicitly
models only two pair interactions, users-tags and items-tags,
excluding users-items. More details are given as follows.

The purpose of a personalized tag recommender is to recom-
mend a personalized list of tags that depends on both the user
and the item. That is to say, for a given post (u, i), the personalized
tag recommender needs to rank all candidate tags according to
their relevance to the post (u, i) and recommend the top N tags
of the ranking to user u based on the tagging of item i. The person-
alized tag recommender takes the user’s past tagging behavior into
account when recommending tags. According to the BPR learning
algorithm, a training sample is constructed into a quadruple
u; i; tA; tBð Þ, which indicates that user u assigns tag tA and not tB
to item i. The optimization function of BPR is:

BPR �OPT ¼ ln
Y

u;i;tA ;tBð Þ2D
r yu;i;tA ;tB
� �

pðHÞ ð8Þ

where yu;i;tA ;tB = yu;i;tA � yu;i;tB , y is a scoring function for a triple (u, i,
t), and r is the logistic function:

r xð Þ ¼ 1
1þ e�x

From Eq. (8), we can see that, for tag recommendation, when
given a post (u, i), the interaction score between user u and item
i in yu;i;tA equals that in yu;i;tB (first necessary condition). Thus, the
user-item interaction score does not affect the final value, yu;i;tA ;tB .
Then, the user-item interaction score is removed from the finally
estimated score, and only two other interaction relationships are
retained, as shown in Eq. (9). However, such an approach will
not change the final ranking of all candidate tags (second necessary
condition). This results in the final model equation as the PITF
model (Rendle and Schmidt-Thieme 2010):

yu;i;t ¼
X
f

uu;f � tUt;f þ
X
f

ii;f � tIt;f ð9Þ

with the following model parameters: U 2 RjUj�k; I 2
RjIj�k; TU 2 RjTj�k; TI 2 RjTj�k and uu; tUt ; t

I
t ; ii;2 Rk are latent factors

corresponding to the user u, tag t involved with the user, and tag
t involved with the item. Meanwhile, uu 2 Rk is one of the row vec-
tors corresponding to user u in U, and uu;f 2 R is the f-th entry in the
vector uu. There are similar relationships between other parameters,
though they are not repeated here to conserve space.

PITF is a special case of the CD model with 2�k dimensionality
(see Fig. 4) where:

uCD
u;f ¼

uu;f ; if f � k

1; else

�
iCDi;f ¼ 1 if f � k

ii;f�k; else

�

tCDu;f ¼
tUt;f ; if f � k

tIt;f�k; else

(
ð10Þ

As a special case of the CD model, the PITF model also has a
much better runtime complexity than the TD model and is in
O kð Þ for predicting a triple (u, i, t). Furthermore, due to taking into
consideration the two pairs of interactions between user, tag and
item, the PITF model demonstrates better performance than the
TD and CD models in tag recommendation. However, PITF is
derived from the combination of personalized tag recommenda-
tion and Bayesian personalized ranking optimization criteria. The
necessary conditions for such a combination are not available in
the scenario of CTR prediction. As for the CTR prediction problem,
our purpose is to fill in the missing values in the tensor instead of
only ranking scores. Thus, no part of the estimated score can be
discarded, as otherwise the estimated CTR score will deviate signif-
icantly from the real value. Then, the second necessary condition
for PITF is unsatisfied. Alternately, we need to estimate the score
for triples (u, p, a) where pairs (u, p) (equivalent to (u, i) in PITF)
are not always identical in different instances. Thus, the second
necessary condition for BPR mentioned above is also unsatisfied.
In spite of having state-of-the-art performance, it is impossible to
straightforwardly apply it to predict ad CTR in RTB. Therefore, we
modify it into the form of FCTF, which can be used to address
the CTR prediction issue based on any type of optimization
method, including a simple quadratic loss function optimization
algorithm.

4.3. Fully coupled interaction tensor factorization model

Inspired by the PITF model, we take into account the fully cou-
pled interactions between three entities, the user, publisher and
advertiser, instead of only one trilateral interaction as the TD and
CD models do and call this model the fully coupled interaction ten-
sor factorization (FCTF) model. As seen from Eq. (11), the FCTF
model trains two different factor matrixes for each entity, and each
factor matrix represents that entity’s interaction with one of two
other objects. Therefore, each of the pair interactions achieves a
better match when unnecessarily satisfying the trade-off condition
as TD or CD demands. For example, for user u, two factors,
uA 2 Rk and uP 2 Rk, are learned; uA is the representation of user
u for interaction with ad A, and uP is another representation for
interaction with publisher p. Therefore, the FCTF model is able to
explicitly learn fully coupled interactions between three entities,
which is difficult to accomplish via the TD or CD model.

FCTF models the three pairs of interactions between users, pub-
lishers and ads: users-publishers, publishers-ads and users-ads.
Accordingly, r̂u;p;a is estimated as:

r̂u;p;a ¼
X
f

uP
u;f � pU

p;f þ
X
f

pA
p;f � aPa;f þ

X
f

uA
u;f � aUa;f ð11Þ

with the following model parameters to be learned:

UA 2 RjUj�k;UP 2 RjUj�k; AU 2 RjAj�k; AP 2 RjAj�k; PU 2 RjPj�k;

PA 2 RjPj�k

Like PITF, FCTF is another special case of the CD model with a
dimensionality of 3�k (see Fig. 4) where:

uCD
u;f ¼

uP
u;f ; if f � k

uA
u;f�k; if k < f � 2k

1; else

8>><
>>:

pCD
p;f ¼

pU
p;f ; if f � k

1; if k < f � 2k

pA
p;f�2k; else

8>><
>>:

aCDa;f ¼
1; if f � k

aUa;f�k; if k < f � 2k

aPa;f�2k; else

8>><
>>:

ð12Þ

Fig. 4 illustrates the relation between TD, CD, PITF and FCTF.
Eq. (11) has another equivalent form:
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r̂u;p;a ¼ uP
u � pU

p

� �T
þ pA

p � aPa
� �T þ uA

u � aU
a

� �T ð13Þ

where uP
u; p

U
p ;p

A
p ; a

P
a ; u

A
u ; and aU

a 2 Rk are latent factors correspond-
ing to different entities interacting with other objects, and k is the
factor number. Obviously, each of the addends in Eq. (13) is a dot
product of two vectors, both with length k. Thus, the FCTF model
also takes linear time O(k) to predict r̂u;p;a for a triple (u, p, a). This
makes it feasible for real-time CTR prediction in RTB.

Due to its easy implementation, we also use a stochastic gradi-
ent descent algorithm to learn the model parameters. The gradi-
ents for the FCTF model are:

@r̂u;p;a
@uP

u;f
¼ pU

p;f ;
@r̂u;p;a
@pU

p;f
¼ uP

u;f ;
@r̂u;p;a
@pA

p;f
¼ aPa;f

@r̂u;p;a
@aP

a;f
¼ pA

p;f ;
@r̂u;p;a
@uA

u;f
¼ aUa;f ;

@r̂u;p;a
@aU

a;f
¼ uA

u;f

ð14Þ

Different from PITF, FCTF is independent from any BPR opti-
mization criterion, and thus it fits the generic third-order tensor
factorization task and can be trained by least square error opti-
mization or other popular optimization algorithms, which are easy
to implement. FCTF captures enhanced relations between objects,
and the results of our experiments, given below, also confirm this
argument.

5. Incorporating side-information with FCTF

5.1. Feature-based FCTF model

Ad CTR prediction suffers from sparse data more seriously than
the recommendation problem (Lü et al. 2012) or sponsored search
advertising do and also encounters the cold start problem whereby
CTR estimation becomes more difficult for new ads or new users.
Fortunately, there are many types of side-information available
regarding users, publishers and ads. For example, a user often
has tags and location (i.e., region and city) features. In addition
to the URL, there are domain, slot width and height features related
to the publishing context. As for the ad, the advertiser, campaign
features, and even text description of the ad are usually supplied
to the DSP. We incorporate this side-information into the FCTF
model to smooth the estimation value with more collaborative
information and thereby effectively alleviate the impact of data
sparsity on the final performance. When a user has no direct his-
torical click data to be taken for reference, CTR estimation can be
achieved based on the user’s other features, such as tags or loca-
tion. We call the FCTF model that incorporates side-information
the feature-based FCTF model. Similar ideas have been successfully
applied in matrix factorization for recommender systems (Koren
et al. 2009; Chen et al. 2012) to cope with similar challenges.

In practise, we divide all information in the dataset into two
categories. One consists of single-value attributes, such as the
region or city, etc., and one user has at most one feature value in
each corresponding value field. The other type of information is
multiple-value attributes, such as user tags, where one user may
have dozens of them or even none. It is good practice to normalize
multi-value attributes.

Taking the representation of a user u for example, it is supposed

that the user u has only one multi-value feature tag and several
single-value features. Let the notation T(u) denote the set of tags
of the user u and C(u) denote a set of other single-value attributes;
then, the user u can be represented via Eq. (15):

uu ¼ jTðuÞj�0:5
X
i2TðuÞ

ti þ
X
c2C uð Þ

uc ð15Þ

where ti 2 R f is the latent factor for tag i and uc 2 R f is the latent

factor for attribute c. jTðuÞj�0:5 is the normalization coefficient for
multi-value feature tags.
Similarly, a publisher p and an ad a both receive similar treat-
ment. C(p) is used to characterize single-value attributes of the
publisher p, and C(a) is for the ad a.

Thus, the feature-based FCTF model is as follows:

r̂u;p;a ¼
X
f

uP
u;f � pU

p;f þ
X
f

pA
p;f � aP

a;f þ
X
f

uA
u;f � aUa;f ð16Þ

where uP
u;f ; p

U
p;f ;p

A
p;f ; a

P
a;f ;u

A
u;f ; and aU

a;f 2 R are the f-th elements of

uP
u;p

U
p ;p

A
p ; a

P
a ;u

A
u ; and aUa 2 R f , respectively, which are defined as:

uP
u ¼ jTðuÞj�0:5

X
i2TðuÞ

tPi þ
X
c2C uð Þ

uP
c ;p

U
p ¼

X
c2C pð Þ

pU
c ;

pA
p ¼

X
c2CðpÞ

pA
c ; a

P
a ¼

X
c2CðaÞ

aPc ;

uA
u ¼ jTðuÞj�0:5

X
i2TðuÞ

t Ai þ
X
c2C uð Þ

uA
c ; a

U
a ¼

X
c2C að Þ

aUc:

ð17Þ

Note that tPi 2 R f and t Ai 2 R f are two different latent factors of
tag i, respectively corresponding to interactions with the publisher
p and the ad a, and the same applies for the other two pair factors.

5.2. Adding biases

One benefit of the factorization model is its flexibility in dealing
with various data aspects. However, much of the observed varia-
tion in click events is due to effects associated with users, publish-
ers or ads, known as biases or intercepts, independent of any
interactions (Koren et al. 2009). For example, some users exhibit
a higher tendency to click ads than other users, and some ads also
receive more clicks than other ads. Therefore, a first-order approx-

imation of the bias b̂ involved in r̂u;p;a is presented as Eq. (18):

b ¼
P

t2TðuÞbt

jTðuÞj þ
X

c2CðuÞ
S

CðpÞ
S

CðaÞ
bc ð18Þ

The notation bt involved in b indicates the observed deviations
of the tag t, and bc indicates the observed deviations of the feature c
that the user u, publisher p or ad a possess. The final estimation
formulation with the bias extent is presented as Eq. (19):

r̂u;p;a ¼
X
f

uP
u;f � pU

p;f þ
X
f

pA
p;f � aP

a;f þ
X
f

uA
u;f � aUa;f þ

P
t2TðuÞbt

jTðuÞj
þ

X
c2CðuÞ

S
CðpÞ
S

CðaÞ
bc ð19Þ

The parameters are learned by minimizing the squared error
function of the training dataset with a stochastic gradient-
descent algorithm. The gradients for the feature-based FCTF model
are:

@r̂u;p;a
@tPi;f

¼ jTðuÞj�0:5
X
c2C pð Þ

pU
c;f ;

@r̂u;p;a
@uP

c;f

¼
X
c2C pð Þ

pU
c;f ;

@r̂u;p;a
@pU

c;f

¼ jTðuÞj�0:5
X
i2TðuÞ

tPi;f þ
X
c2C uð Þ

uP
c;f ;

@r̂u;p;a
@pA

c;f

¼
X
c2CðaÞ

aPc;f ;
@r̂u;p;a
@aPc;f

¼
X
c2CðpÞ

pA
c;f ;

@r̂u;p;a
@t Ai;f

¼ jTðuÞj�0:5
X
c2C að Þ

aUc;f ;
@r̂u;p;a
@uA

c;f

¼
X
c2C að Þ

aUc;f ;

@r̂u;p;a
@aUc;f

¼ jTðuÞj�0:5
X
i2TðuÞ

t Ai;f þ
X
c2C uð Þ

uA
c;f : ð20Þ
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To update the model, we use the following update rules to per-
form stochastic gradient descent training, where k is the regular-
ization coefficient, a is the learning rate and eu;p;a ¼ ru;p;a � r̂u;p;a.

tPi;fþ ¼ a eu;p;a � @r̂u;p;a
@tUi;f

� k � tPi;f
 !

; uP
c;fþ ¼ a eu;p;a � @r̂u;p;a

@uP
c;f

� k � uP
c;f

 !

pU
c;fþ ¼ a eu;p;a � @r̂u;p;a

@pU
c;f

� k � pU
c;f

 !
;pA

c;fþ ¼ a eu;p;a � @r̂u;p;a
@pA

c;f

� k � pA
c;f

 !

aPc;fþ ¼ a eu;p;a � @r̂u;p;a
@aPc;f

� k � aPc;f
 !

; t Ai;fþ ¼ a eu;p;a � @r̂u;p;a
@t Ai;f

� k � t Ai;f
 !

uA
c;fþ ¼ a eu;p;a � @r̂u;p;a

@uA
c;f

� k � uA
c;f

 !
; aU

c;fþ ¼ a eu;p;a � @r̂u;p;a
@aUc;f

� k � aUc;f
 !

ð21Þ
6. Experimental evaluation

6.1. Datasets

We used three season datasets of a global bidding algorithm
competition released by the DSP company iPinYou (Liao et al.
2014) in 2014 to evaluate our proposed method. Each season data-
set contains impression, click, and conversion logs collected from
several advertisers during various days and is divided into two
parts, a training dataset and test dataset. For each season dataset,
we split the training dataset into two parts according to the
impression date and use the last two or three days of data as a val-
idation dataset to train model hyperparameters, such as the learn-
ing rate and regularization coefficient. For example, the training
dataset of season 2 contains historical bidding logs collected from
5 advertisers during the seven days from June 6th to 12th, and a
dataset collected from the following three days from June 13th to
15th is used for offline testing purposes. We extracted the last
two days of data (from June 11th to June 12th) from the training
dataset as a validation dataset. We present the corresponding date
for each season’s data in Table 1.

The number of impressions (samples), clicks and statistical CTR
results respectively corresponding to each dataset or advertiser
key are given in Tables 1–3. The advertiser keys and their industrial
categories are listed in Table 4 (Liao et al. 2014).

Note that, in season 1, there is no advertiser ID column, but the
landing page URL can be used as the key to distinguish different
advertisers (Liao et al. 2014). From these tables, we can see that
all CTRs, either on each dataset or on each advertiser, are less than
0.1% except for advertiser 2997 (0.444%). The average CTR for desk-
top display advertising in practice is usually approximately 0.1%,
which is far less than that in MovieLens (approximately 4.5%) or
Netflix (approximately 1.2%) (Lü et al. 2012). However, advertiser
Table 1
Characteristics for three season datasets.

Season Dataset Date Impressions Clicks CTR (%)

1 Training May 11–May 17 9,262,861 7482 0.076
Test May 18–May 20 2,594,386 8934 0.075

2 Training June 6–June 12 12,237,229 8961 0.073
Test June 3–June 15 2,524,630 1873 0.074

3 Training October 19–October
27

3,158,171 2709 0.086

Test October 21–October
28

1,579,086 1120 0.071
2997 is a mobile e-commerce app install related to the mobile
environment (see Table 4), where an increased number of inadver-
tent clicks are easily generated by fat fingers due to the limited
space of touchscreens. The detailed log data format and the dimen-
sionality of major features are shown in Tables 5 and 6.

Generally, each record contains four types of information: user
features (iPinYou ID, user-agent, region, city, etc.), publisher fea-
tures (ad slot ID, slot width, slot height, domain etc.), ad features
(creative ID, advertiser ID, landing page URL, etc.) and other fea-
tures regarding the auction (ad exchange, bidding price, paying
price, etc.). Features related to the auction are usually exploited
for real-time bidding strategies or bid optimization research
(Zhang et al. 2014; Wu et al. 2015; Zhang et al. 2014; Zhang and
Wang 2015). We discarded these features regarding the auction
when estimating CTR.

6.2. Experimental setup

To verify the effectiveness of our approach, we used the feature-
based Tucker decomposition model and feature-based canonical
decomposition model as the baselines, which estimated the CTR
via Eqs. (22) and (23), respectively

r̂TDu;p;a ¼
Xku
l

Xkp
m

Xka
n

� cl;m;n � uu;l � pp;m � aa;n þ b ð22Þ

r̂CDu;p;a ¼
Xk
f

uu;f � pp;f � aa;f þ b ð23Þ

where the bias b is defined by equation (18). The parameters
uu;f ;pp;fandaa;f are the f-th elements of uu 2 R f ;pp 2 R f and

aa 2 R f , respectively, which are defined as:

uu ¼ jTðuÞj�0:5
X
i2TðuÞ

ti þ
X
c2C uð Þ

uc; pp ¼
X
c2CðpÞ

pc; aa ¼
X
c2C að Þ

ac ð24Þ

To update the model, we conducted stochastic gradient descent
training. The learning rate was set to 0.00001, and the regulariza-
tion coefficient to 0.001. The model parameters were initialized
with small random values drawn from the normal distribution N
(0,0.0001). We also designed experiments to investigate the impact
of the number of latent factors on the final prediction quality.

Furthermore, we also implemented the logistic regression-
based method and used its performance as a reference. The exper-
imental results of the gradient boosting regression tree (GBRT)
reported in Zhang et al. (2014) are also directly presented as
reference.

6.3. Experimental results and discussions

We employed the area under the ROC curve (AUC) Fawcett
(2004) and the root mean square error (RMSE) to compare the pre-
diction quality of our model with that of the baselines. AUC is a
widely used metric for testing the quality of ad CTR prediction
(Wu et al. 2012; Yan et al. 2014; Zhang et al. 2014; Wu et al.
2015; Graepel et al. 2010; Oentaryo et al. 2014), and we
implemented algorithm 3 from Fawcett (2004) to calculate AUC.
RMSE is also chosen as the evaluation measure in the final
prediction quality comparison as it is widely used in various
regression tasks.

6.3.1. Impact of the dimension of latent factors
Firstly, we investigated the influence of the dimension of latent

factors on the prediction quality. Similar experimental results
obtained on three different datasets indicate that, with the increase
of the dimension of latent factors, the prediction quality increased



Table 2
Training dataset statistics.

Season Advertiser key Imps Clicks CTR (%)

1 9f4e2f16b6873a7eb504df6f61b24044 3,251,782 3055 0.094
1 3a7eb50444df6f61b2409f4e2f16b687 3,182,633 2644 0.083
1 df6f61b2409f4e2f16b6873a7eb50444 2,828,446 1303 0.046
2 1458 3,083,056 2454 0.080
2 3358 1,742,104 1358 0.078
2 3386 2,847,802 2076 0.073
2 3427 2,593,765 1926 0.074
2 3476 1,970,360 1027 0.052
3 2259 835,556 280 0.034
3 2261 687,617 207 0.030
3 2821 1,322,561 843 0.064
3 2997 312,437 1386 0.444

Total 12 24,658,119 18,559 0.075

Table 3
Test dataset statistics.

Season Advertiser Key Imps Clicks CTR
(%)

1 9f4e2f16b6873a7eb504df6f61b24044 896,908 850 0.095
1 3a7eb50444df6f61b2409f4e2f16b687 918,846 679 0.074
1 df6f61b2409f4e2f16b6873a7eb50444 778,632 403 0.052
2 1458 614,638 543 0.088
2 3358 300,928 339 0.113
2 3386 542,421 496 0.091
2 3427 536,795 395 0.074
2 3476 523,848 302 0.058
3 2259 417,179 131 0.031
3 2261 343,862 97 0.028
3 2821 661,964 394 0.060
3 2997 153,063 533 0.348

Total 12 6,689,084 5162 0.077

Table 4
Advertiser category. The advertiser key is the landing page URL for season 1 and the
advertiser ID for seasons 2 and 3.

Advertiser key Season Industrial category

df6f61b2409f4e2f16b6873a7eb50444 1 Consumer packaged Goods
(CPG)

3a7eb50444df6f61b2409f4e2f16b687 1 Chinese vertical e-
commerce

9f4e2f16b6873a7eb504df6f61b24044 1 Vertical online media
1458 2 Chinese vertical e-

commerce
3358 2 Software
386 2 International e-commerce
3427 2 Oil
3476 2 Tire
2259 3 Milk powder
2261 3 Telecom
2821 3 Footwear
2997 3 Mobile e-commerce app

install

Table 5
Dimensionality of major features for three season datasets.

Season Dataset Users Tags Slots URLs Advertisers Campaigns Creatives

1 Training 6,799,908 Null 124,684 2,082,249 1 3 32
Test 2,164,525 58,945 811,585 1 3 33

2 Training 10,146,491 45 141,515 2,362,123 5 18 74
Test 2,310,303 68 48,458 663,218 5 18 74

3 Training 2,818,424 69 53,518 963,576 4 4 57
Test 1,490,321 58 43,603 552,694 4 4 54

Table 6
The log data format. Columns with ⁄ contain data that is hashed or modified before
the log is released. Columns with y are only available in season 2 and season 3, not in
season 1.

Col
#

Description Example

⁄1 Bid ID 015300008a77e7ac18823f5a4f5121
2 Timestamp 20130218001203638
3 Log type 1
⁄4 iPinYou ID 35605620124122340227135
5 User-Agent Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1;

WOW64; Trident/5.0)
⁄6 IP 118.81.189⁄

7 Region ID 15
8 City ID 16
9 Ad Exchange 2
⁄10 Domain e80f4ec7f5bfbc9ca416a8c01cd1a049
⁄11 URL hz55b000008e5a94ac18823d6f275121
12 Anonymous

URL
null

13 Ad Slot ID 2,147,689 8,764,813
14 Ad Slot

Width
300

15 Ad Slot
Height

250

16 Ad Slot
Visibility

SecondView

17 Ad Slot
Format

Fixed

18 Ad Slot Floor
Price

0

19 Creative ID e39e178ffdf366606f8cab791ee56bcd
⁄20 Bidding Price 753
⁄21 Paying Price 15
⁄22 Landing page

URL
a8be178ffdf366606f8cab791ee56bcd

y23 Advertiser ID 2345
⁄y24 User Profile

IDs
123,5678,3456
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dramatically in the beginning and then slowly reached a relatively
steady value when the dimension was close to 8. Here, we take the
experimental results on the season 2 dataset as an example. Fig. 5
presents the results for season 2; the horizontal axis is the dimen-
sion of factors from 2 to 64, and the legends are the size of the
training data from one day’s worth to seven days’ worth. As shown
in the figure, when the dimension was varied from 2 to 64, our
model showed a similar improvement in performance on diverse
sizes of training data. When the dimension of factors increased
to 8, the prediction quality was relatively stable on all sizes of
training data. In the inference algorithm, an appropriate choice of
this parameter from 8 to 64 could achieve an optimal balance
between better prediction quality and less training time. The
improvement of 64 dimensions over 32 dimensions is nearly neg-
ligible. To achieve a better and more stable prediction quality, the
dimension should not be less than 32 (denoted as FCTF 32).

6.3.2. Learning runtime
In this section, we also take the experimental results obtained

on season 2 as an example to explain the difference of learning
runtime between different models. Fig. 6 presents the comparison
of the convergence of feature-based FCTF with other tensor
factorization-based models on season 2. After a model was trained
over a span of 100 min, improvement of the prediction quality
occurred. FCTF 32 and CD 32 models converged much faster than
TD 32. The CD model achieved convergence after only 30 min of
training, while FCTF needed more training time, 60 min, to con-
verge. The reason is that the FCTF model needs to update twice
the number of parameters of the CD model.

In contrast, as shown in Fig. 7, the TD 32 model needed at least
100 h to converge. It needed more than 50 h to achieve a prediction
quality as good as that of CD 32. Even after 150 h of training, the
quality of TD was still worse than that of FCTF 32. This worse
empirical runtime result of the TD model in comparison to CD
and FCTF matches the theoretical runtime complexity analysis of
the model equations (Rendle and Schmidt-Thieme 2010).

6.3.3. Prediction quality
Finally, we compared the quality of the FCTF factorization

model to the baselines in terms of AUC and RMSE. Table 7 and
Table 8 respectively show the AUC and RMSE prediction quality
of different methods on the three season datasets. Note that the
experimental results of GBRT are directly referenced from Zhang
et al. (2014) for comparison and that there are no results for GBRT
on the 1st season dataset because they did not give them in the
Fig. 5. Impact of the dimension of latent facto
literature. They also presented the experimental results of their
LR model, which are slightly poorer than ours. Because of the huge
imbalance of click/unclick instances, the empirically best regres-
sion model usually predicted the CTR as being very close to zero.
This results in the RMSE having quite a small value for all models,
and the improvement in RMSE is much slighter compared with
AUC (Zhang et al. 2014).

From the experimental results, we can see that different adver-
tisers have significant differences in terms of AUC or RMSE due to
the different user behaviors in different contexts. For example,
although advertiser 2997 has the highest overall CTR (0.444%) in
the historical impression log, that advertiser also has both the low-
est observation number (see Table 3) and more noise in the histor-
ical impression log due to the ‘‘fat finger” effect in the mobile
environment substantially increasing the difficulty of predicting
CTR. Therefore, all models present poorer prediction performance
for advertiser 2997 than for the other advertisers.

We conducted a separate experiment on the second season
dataset in which only the tag feature was applied to represent
users, and the other conditions were not changed. This experimen-
tal result shows that the AUC value was close to 0.9, which indi-
cates that the tag feature of users in season 2 shows very strong
informative capability in addressing this problem. As there is no
tag information available in season 1, the prediction quality in it
decreased significantly compared to that in season 2 and season
3 where an appropriate number of tags can be exploited. In addi-
tion, as shown in Tables 7 and 8, all models achieved much better
performance on advertisers in season 2 than in season 3, although
they have the similar feature structures. iPinYou technicians
explained that this is due to the different user segmentation sys-
tems between season 2 and season 3 (Zhang et al. 2014).

From the point of view of different methods, the overall perfor-
mance of the logistic regression model was lower than that of all
factorization models; only the CD model was competitive, as it
slightly outperformed the LR.

Our model outperformed the baseline approaches. In particular,
the FCTF model outperformed both TD and CD in terms of total
AUC or RMSE on different datasets. As described in Section 4.3,
both the TD and CD models obtain only one latent factor for each
entity simultaneously interacting with two other entities, so this
factor is not the optimal factor interacting with any entity of the
other two. However, FCTF takes into account both optimal interac-
tion scores of each entity involving the two other sides and there-
fore it could exquisitely capture the underlying pairwise
relationships between users, publishers and ads that the other
rs on the prediction quality on season 2.



Fig. 6. AUC-Measure after training a model for x minutes on the second season dataset. The FCTF and TC models already give good prediction quality after 60 and 30 min,
respectively.

Fig. 7. AUC-Measure after training the TD model for x hours on the second season dataset. Learning a high-quality TD model takes several days.

Table 7
CTR estimation performance in terms of AUC.

AUC

Season Advertiser key LR (%) GBRT (%) TD 4 (%) CD 4 (%) FCTF 4 (%)

1 9f4e2f16b6873a7eb504df6f61b24044 73.47 / 74.75 74.36 75.79
1 df6f61b2409f4e2f16b6873a7eb50444 72.60 / 73.86 73.69 75.73
1 3a7eb50444df6f61b2409f4e2f16b687 69.04 / 68.66 67.36 69.99

2 1458 97.93 97.07 97.73 97.94 98.18
2 3358 96.80 97.22 96.88 97.63 98.31
2 3386 78.48 76.86 75.50 74.79 76.22
2 3427 97.17 93.42 96.18 96.15 96.54
2 3476 92.04 94.22 93.82 92.69 94.29

3 2259 72.34 67.91 69.16 71.80 72.61
3 2261 65.21 57.39 61.26 63.81 64.99
3 2821 67.02 58.20 66.79 66.85 68.63
3 2997 53.30 59.79 56.20 52.29 53.02

1 Total 72.43 / 73.20 73.04 74.47
2 Total 91.83 92.00 92.08 91.94 93.31
3 Total 76.51 77.15 77.36 77.74 78.95
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Table 8
CTR estimation performance in terms of RMSE.

RMSE

Season Advertiser key LR GBRT TD 4 CD 4 FCTF 4

1 9f4e2f16b6873a7eb504df6f61b24044 0.0301 / 0.0305 0.0304 0.0306
1 df6f61b2409f4e2f16b6873a7eb50444 0.0217 / 0.0225 0.0225 0.0228
1 3a7eb50444df6f61b2409f4e2f16b687 0.0263 / 0.0270 0.0271 0.0270

2 1458 0.0195 0.0263 0.0235 0.0223 0.0221
2 3358 0.0308 0.0279 0.0268 0.0271 0.0292
2 3386 0.0328 0.0285 0.0271 0.0291 0.0315
2 3427 0.0237 0.0245 0.0237 0.0258 0.0317
2 3476 0.0256 0.0231 0.2165 0.0236 0.0263

3 2259 0.0169 0.0176 0.0175 0.0168 0.0167
3 2261 0.0160 0.0167 0.0163 0.0159 0.0158
3 2821 0.0226 0.0238 0.0229 0.0224 0.0223
3 2997 0.0615 0.0581 0.0601 0.0612 0.0601

1 Total 0.0274 / 0.0235 0.0275 0.0272
2 Total 0.0262 0.0260 0.026 0.0262 0.0256
3 Total 0.0268 0.0268 0.0267 0.0266 0.0264

L. Shan et al. / Electronic Commerce Research and Applications 16 (2016) 30–42 41
two methods could not catch. The experimental results demon-
strate that the FCTF model has a superior ability to address this
problem, as we expected.

7. Conclusions and future work

In this paper, we examine the ad CTR prediction problem in RTB
for DSPs. We address the issue by presenting the fully coupled
interaction model (FCTF) based on the Tucker decomposition
(TD) model. The FCTF model has three major advantages for
addressing this problem. Firstly, FCTF is a third-order tensor factor-
ization model that can effectively capture complicated ternary
relations between three players: the user, publisher and advertiser
in RTB. Instead of training only one latent matrix for each object,
FCTF learns two different latent matrices, each of which is trained
by interacting with each of another two objects. Therefore, without
the loss of attempting to compromise as in TD or CD, FCTF achieves
better performance than other TD-based models such as TD and CD
in real-world datasets. Furthermore, our model also shows rela-
tively stable performance for both diverse numbers of factors and
different sizes of the training dataset. Secondly, the runtime com-
plexity of the FCTF equation is linear for the number of factoriza-
tion dimensions, which makes it feasible for high dimensions
even when fulfilling real-time tasks. Lastly, compared with PITF,
which is accompanied by the BPR algorithm and a specific data
interpretation, FCTF is suitable for generic third-order tensor fac-
torization tasks regardless of what optimization strategy is applied,
including simple methods such as a quadratic loss function or log-
arithmic loss function.

Moreover, we incorporate all types of side information related
to multi-aspects into the FCTF model to represent users, publishers
and ads. This approach enormously alleviates the issue of the spar-
sity of training data and simultaneously overcomes the cold-start
problem to a certain extent.

In future work, to relieve the impact of the imbalance of posi-
tive and negative samples in the training dataset on the final result,
we will attempt to apply a pairwise learning algorithm to train
FCTF to optimize the AUC directly. We also want to study how
the preferences of users change over time and find the proper size
for the training dataset.
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