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Feedback Control in 
Programmatic Advertising

THE FRONTIER OF OPTIMIZATION IN REAL-TIME BIDDING

F
eedback control is critical in the scalable optimization of Internet ad-
vertising, and it is, therefore, an enabling technology. However, it is 
challenging to model the plant and design the controller because the 
plant is nonlinear, time varying, stochastic, and poorly known. A 
closed-loop system model easily becomes unrealistic or extremely 

complicated and intractable to analyze.
Some of the technical challenges are discussed at length in this article. 

However, first consider the business significance of online advertising as 
a whole. Worldwide digital advertisement (ad for short) spending is 
growing at a double-digit rate and is projected to reach US$385 billion in 
2020 [1]. The same projection for the United States alone is US$81 billion, 
out of which US$70 billion is programmatic advertising [2].

As discussed in “Summary,” the goal of this article is to uncover why 
and how feedback is used in online advertising. Feedback control is used in 
most areas of the industry. However, a particularly interesting application 
is found in the subdiscipline of programmatic advertising, which is the auto-
mated optimization of advertising. An advertiser’s goal in programmatic 
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advertising is to exploit an automated system and bid in real 
time on advertising inventory sold on one or more open 
exchanges, such that an ad is shown to the right person at 
the right time and place. The inventory consists of impres-
sions, which provide an opportunity to show an ad creative 
(for example, a banner ad, text ad, or preroll video commer-
cial) to an Internet user. Programmatic advertising is at the 
heart of the business model for companies such as Google, 
Facebook, and Verizon Media.

Before diving deep into feedback control, it is helpful 
to understand the impression allocation process of 
programmatic advertising. The basic process is illus-
trated in Figure 1. An Internet user loads a webpage to 
consume content. It may be a social media webpage, news 
site, or any other Internet destination. The publisher of 
the webpage presents the requested content to the user 
(for example, a news article) and often makes money via 
the webpage traffic by also selling space on the page for 
advertising. This so-called ad inventory is frequently 
sold on an open exchange using an auction. A publisher 
may then leverage a supply-side platform (SSP) to sell its ad 
inventory. An SSP is a technology platform that enables 
web publishers to manage their advertising space inven-
tory, fill it with ads, and receive revenue.

Many advertisers have an interest in serving ads to each 
user. A demand-side platform (DSP) on behalf of an adver-
tiser (sometimes via an agency) computes and submits a 
bid in real time for the opportunity to show its ad. A DSP is 
a system that allows buyers of digital advertising inventory 
to manage multiple ad- and data-exchange accounts 
through one interface and with built-in optimization capa-
bilities. The highest-bidding advertiser wins the impres-
sion opportunity and serves the ad. A DSP is a business 
model specific for programmatic advertising.

Programmatic advertising in general (and DSPs specifi-
cally) addresses many problems and technologies. It is not 
practical to cover everything in a single article. This article 
considers one popular DSP optimization problem; demon-
strates how to turn it into a control problem; and illus-
trates, in a tutorial fashion, how to model the plant, design 

the controller, and establish stability conditions of the 
closed-loop system. The optimization problem is a value-
maximization problem subject to a single constraint. Bid-
ding across campaigns is noncooperative, and we assume, 
without loss of generality, that the DSP represents a single 
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FIGURE 1 The basic advertisement allocation process.

Summary

The use of feedback control in online advertising is a hid-

den technology, and the goal of this article is to uncover 

why and how feedback is used. First, programmatic adver-

tising is introduced as a system for the automated optimiza-

tion of online advertising based on real-time bidding. The 

decision variables are given by the bids for a specific ad 

campaign, which amount to millions or billions every day. A 

popular optimization problem is defined and decomposed 

into separate prediction and control problems.

Thereafter, physical reasoning is used to justify a plant 

model that forms the basis for control design. The model 

is dynamic, discontinuous, periodic, and stochastic. To 

overcome the challenges associated with discontinuities, a 

bid-randomization technique is introduced. The randomiza-

tion of bids makes plant linearization possible, and a con-

trol system is then proposed to take advantage of this. It 

consists of pure integral (I)-error feedback control, dynamic 

periodic feedforward control, and persistent excitation. 

Conditions for the stability of the expected trajectory and 

the variance of the trajectory are derived.

The stability conditions involve the loop gain, which is 

the product of the controller and plant gains. To ensure 

stability, a system-identification algorithm is proposed to 

estimate the plant gain. It is a recursive least-squares al-

gorithm and completes an adaptive control system. The 

control system is simulated, and the impact of adding bid 

randomization and persistent excitation is demonstrated. 

The examples demonstrate the complementary benefit of 

bid randomization, persistent excitation, dynamic periodic 

feedforward control, and pure I-error feedback control.
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ad campaign. Millions or billions of impression opportu-
nities are available every day, and each bid for an impres-
sion is a decision variable. Scalability is, therefore, an 
important consideration in solving the problem. In this 
article, the problem is first decomposed into separate 
impression valuation and control subproblems. Thereafter, 
the control problem is discussed in depth, and it is shown 
how to overcome some of the obstacles related to plant 
modeling and control design.

Value maximization depends on how the advertiser 
defines advertising value. Each ad campaign is associated 
with its own definition and involves some combination of 
branding and performance. Branding is about reaching new 
Internet users, developing a brand recognition, and plant-
ing the seeds for future customers. Performance, on the 
other hand, is about generating near-term sales and other 
user engagement. The most basic pure branding objective 
is a value function defined as the total number of served 
impressions. Similarly, the most trivial pure performance 
objective is a value function defined as the total number of 
conversions (where a conversion is defined to be a user 
action, such as a product purchase).

The most common constraint of the optimization 
problem (and the only constraint considered in this arti-
cle) relates to the total spend. An advertiser specifies a 
total campaign budget and wishes to spend the budget 
evenly over time. The advertiser does not want to spend 
everything on the first day, or the last day, of a campaign 
flight. Other constraints may involve how much to spend 
across different inventory sources, how much (at most) to 
pay for individual impressions, or how much (at most) to 
pay, on average, per click or per action. Although outside 
the scope of this article, the principal methodology used 
for the single-constraint case can be generalized to prob-
lems involving multiple constraints.

Feedback control has been used in online advertising 
for at least 15 years. However, most published work is not 
based on solid control engineering principles. The lack of 
a solid foundation is unfortunate and a missed opportu-
nity. One explanation is that few algorithm developers in 
the online advertising industry have a background in con-
trol theory. Online advertising engineers frequently rein-
vent techniques that were developed in the control 
community a long time ago, or they struggle with prob-
lems that have published and well-documented solutions. 
Because of the algorithm developers’ inadequate back-
ground in feedback systems, it is also common that con-
trol problems are not recognized as such or the solutions 
end up being nonrobust or unstable. 

As an example, system behavior that is triggered by 
feedback is often mischaracterized simply as process 
noise. The true cause may be instability, limit cycles, bifur-
cations, chaos, or other behaviors that are introduced by 
human-made feedback algorithms. The limited apprecia-
tion of what feedback can result in (for better or worse) and 

the mischaracterization of the system behavior have a dra-
matic impact on the evolution of algorithms. Algorithms 
are made increasingly complex to address what is 
misperceived as process noise. The added complexity not 
only makes the systems harder to maintain, but it also 
introduces additional nonlinear behavior. Moreover, the 
incorrect understanding of the dynamics compromises 
both performance and robustness. Recognizing the true 
cause of system behavior may guide the engineer to a 
simple solution with better performance and robustness.

An early pre-DSP publication on feedback control 
applied to online advertising [3] outlines several important 
challenges and provides a glimpse into a possible plant 
model and control design but omits details. A more com-
prehensive overview of the control problem is presented in 
[4], in which bid randomization [5] is proposed to overcome 
complexities due to a discontinuous plant. Bid randomiza-
tion is used in [6] as a secondary feedback control signal 
in a model reference adaptive controller to regulate the 
effective loop gain. In [7], a model reference adaptive con-
troller is proposed for a single control signal to implement 
a high-fidelity reference tracking system for a budget-con-
strained campaign.

An extensive and insightful overview of optimal real-
time bidding for display advertising is provided in [8]. 
Many aspects of the problem are covered in some detail. 
However, the treatment related to feedback control is thin 
and somewhat ad hoc. An updated treatment of the con-
trol problem by the same author in [9] adds detail. How-
ever, it is largely an empirical study of the observed 
performance of an ad hoc actuator combined with a stan-
dard proportional-integral-derivative controller. The abil-
ity to model and simulate the plant is a key aspect of 
developing a controller. A systematic methodology for 
offline modeling of advertising plants is proposed in [10]. 
The methodology is used to simulate realistic plants in a 
testbed for control algorithms.

A primitive control system that considers the periodic 
aspect of the plant is proposed in [11]. It is a proportional-
integral (PI)-error feedback controller with a periodic pro-
portional gain. An improved solution (and the basis of the 
control design in this article) is described in [12]. That con-
trol system consists of a periodic feedforward controller, 
pure integral (I)-error feedback controller, persistent-exci-
tation controller, and plant gain estimator. It is shown how 
the relationship between the loop gain (the product of the 
controller and plant gains), plant seasonality, and latency 
dictates the closed-loop stability.

A robust method to estimate the seasonality of an online 
advertising process is proposed in [13], and a Bayesian 
plant gain estimator involving a prior estimate of the 
response curve and bid randomization is presented in [14]. 
In [15], a framework is provided to analyze the budget-pac-
ing problem by means of variational calculus techniques. 
A continuous-time approach is taken, and a simple 
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characterization of the optimality conditions is described, 
which leads to an implementation in the form of a feedback 
control system. However, it is strictly a theoretical method, 
and its practical value is unclear.

Feedback control solves many problems in program-
matic advertising that are not covered in this article (for 
example, control of the click-through rate, conversion rate, 
or any other event rate). A solution for event-rate control 
of a discontinuous plant is developed in [16] and [17]. The 
solution includes a novel approach of making the dis -
continuous plant effectively continuous. The proposed 
smoothing process is inspired by the method described 
in this article, but with fundamental differences since it 
does not perturb the bids. The most important parame-
ters, variables, and functions used in this article are 
listed in Table 1 with their names, symbols, units, and a 
brief description.

OPTIMIZATION PROBLEM FORMULATION
Consider an advertising campaign managed by a DSP on 
behalf of an advertiser. The objective is to spend an 
advertising budget in a way that maximizes the expected 
total advertising value. Set X  represents all impression 
opportunities i made available for sale in one or more 
real-time marketplaces. The decision variables are given 
by the bid prices b Ri !  for all ,i !X  which are used to 
compete for the impression inventory. Budget constraint 
p  and impression value vi are both defined by the adver-
tiser. Typically, vi depends on a user’s likelihood to 
engage with the ad (performance) or a user’s exposure to 
the ad (branding).

Any DSP or advertiser is permitted to participate in the 
bidding, and the marketplaces are, therefore, referred to as 
open. Furthermore, each impression i ! X  is allocated in a 
sealed auction; that is, participating bidders independently 
submit bids with no knowledge of other bids. The highest 
bidder wins and pays an amount equal to the second-high-
est bid, which corresponds to a so-called second-price cost 
model [18].

The highest competing bid of impression i is unknown 
and represented by the variable ,B Ri !

*  where the upper-
case letter indicates it is random. A lowercase letter bi

*  
denotes its expected value (if it is a future event) or a real-
ization (if it is a historical event).

The cumulative distribution function of Bi
*  is de -

noted ( ),F bBi
*  while the probability density function is 

( ) ( )/ .f b dF b dbB Bi i=* *  Both are unknown but assumed con-
tinuous, with support for nonnegative bid values. The 
impression is awarded if ,b bi i$ *  where bi

*  (according to 
the described convention) is the realized value of Bi

*. In 
this case, the advertiser is charged an ad cost bi

*  (consistent 
with the second-price cost model).

Typically, the impression value v Ri 0! $  of an awarded 
impression i is a priori unknown and must be esti-
mated. However, to keep things focused on feedback 

control, it is assumed in this article to be a known quan-
tity. Let V denote the total value and C denote the cumu-
lative ad cost, where

 ,V v I{ }i
i

b Bi i=
!

$

X

*/  (1)

 ,C B I{ }i
i

b Bi i= *

!

$

X

*/  (2)

and where IX  is the indicator function satisfying 1IX =  if 
X true=  (and 0IX =  if falseX = ).

Mathematically, the optimization problem is defined by

 EVmaximize
{ | }b iRi 6! !X

 (3)

subject to

 E ,C # p  (4)

where R 0!p $  is the specified advertising budget. In 
real applications, advertisers often care about addi-
tional metrics. For example, an advertiser may set a 
maximum acceptable average cost per conversion or 
click or an upper bound of how much to pay for an indi-
vidual impression.

AN OPTIMAL BIDDING MECHANISM
The derivation of an optimal bidding mechanism makes 
use of the following relationships.

Lemma 1

 ( ) ( ),F bE I{ }b B B ii i i=$ * *  (5)

 ( ) ( ) ( ) .B b F b F z dzE I{ }i b B i B i B
b

0
i i i i

i

= -*
$ * * *#  (6)

Proof
1) Identity (5) is obtained from ( )E I I{ } { }b B b zi i i=

3

3
$ $

-

* #
( ) ( ) ( ).f z dz f z dz F bB B

b
B ii i

i

i= =
3-

* * *#
2) Identity (6) is obtained via integration by parts 

from ( ) ( ) ( )E B z f z dz z f z dzI I{ } { }i b B b z B
b

B
0 0

i i i i

i

i= = =* 3
$ $* * *# #

( ) ( ) ,b F b F z dzi B i B
b

0
i i

i

-* *#  which completes the proof. Y
Since the number of impression opportunities is extr-

aordinarily large, so is the dimensionality of the optimiza-
tion problem. This, combined with the unknown distribution 
of the highest competing bid Bi

*, makes a centralized and 
plan-based solution impractical. Instead, the Lagrangian 
method is used to rewrite the problem as two largely inde-
pendent subproblems that can be solved with feedback-
based and scalable methods. The result is given by the 
following theorem.

Theorem 1
The optimal bid price bopt

i  solving (3) and (4) takes the form

,b uvopt
i i=
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Name Symbol Unit Description 

Bid 
optimization

Impression i — Index representing an impression opportunity 

Bid price ,B bi i US$ Bid used by our advertiser for impression i 

Bid uncertainty ,b u,u i u — Relative standard deviation used to randomly 
perturb bid bi 

Highest competing  
bid price 

,B bi i
**  US$ Highest bid used by any other advertiser for 

impression i 

Impression value vi US$ Performance + branding value of impression i 

Total campaign value V, v US$ Total value of awarded impressions 

Total campaign cost C, c US$ Total cost of awarded impressions 

Campaign budget p US$ Budget available for acquisition of impressions 

Lagrange multiplier m — Multiplier associated with constrained optimization 
problem 

Plant 
smoothing

Control signal U, u — Random final and nominal control, ( )U uE =  

Uncertainty signal uu — Relative standard deviation of final control, 
( )U u uStd u=  

Response Y Varies Bayesian response, ,Y Y Y UE I{ }j
a

U U j
a

jj j ;= $` j/  

Response step location ,U ujj — Bayesian expected step location, ( )U uE j j=  

Response step height ,Y yj
a

j
a  Varies Bayesian expected step height, ( )Y yE j

a
j
a=  

Step location standard 
deviation

jv — Bayesian relative standard deviation of ,U j  
( )U uStd j j jv=

Win rate W j — Bayesian impression win rate 

Win rate sensitivity /dW duj  — Bayesian impression win rate sensitivity 

Response sensitivity dY/du — Bayesian response sensitivity, also  
known as plant gain 

Feedback 
control

Time point t — Time point index, , ,t 1 2 f=  

Sampling time T  h Time difference between two consecutive  
time points 

Time steps per day T — Integer satisfying T 24T=  h 

Setpoint value ( )u tcr  US$ Budget per sample period 

Adjusted setpoint value ( )u tc  US$ Feedforward adjusted budget per sample period 

Servo control signal ( )u t0  — Pre-excitation control signal 

Excitation signal ( )w tu  — Artificially generated white noise perturbation 

Excitation standard 
deviation 

uv — Standard deviation of excitation signal 

Uncertainty signal ( )u tu  — Relative standard deviation used to perturb each bid 

Control signal ( )u t  — Multiplicative bid adjustment 

Realized ad spend ( )tyl  US$ Ad spend attributed to ( )u t  

Observed ad spend ( )ty  US$ Observed ad spend in time interval t 

Tracking error ( )te  US$ Error signal, ( ) ( ) ( )e t u t y tc= -  

Response curve ( )g u  US$ Preseasonality adjusted expected response, 
( ) ( )y t g u?l  

Seasonality function ( )th  — Time-of-day periodic function, ( ) ( )y t h t1? +l  

Process noise ( )w tm  — Multiplicative stochastic noise, ( ) ( )y t w t1 m? +l  

Noise standard deviation mv — Standard deviation of process noise 

TABLE 1 The important parameters, variables, and functions used in the article.

(Continued)
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for all i ! X  and where u 0$  is the largest value for which 
E .C # p  If there is no finite value of u such that E ,C p=  
then bopt

i " 3 .

Proof
The Lagrangian of (3) and (4) is

 E (E ),V CL m p= - -  (7)

and the Lagrangian sufficiency theorem [19] states that, if 
there exists bi, for all i ! X  and 0$m , such that the bis max-
imize , ECL # p  and ( ) ,EC 0m p- =  then these values of bi 
solve the original optimization problem.

Assume m  is known and compute the optimal values of 
bi. Thereafter, use m  as a knob adjusted by a feedback con-
trol system until the constraint is satisfied.

Combine (1) and (5) to obtain the expected total value as

E

( ).

V v

v F b

E I{ }i
i

b B

i
i

B i

i i

i

=

=

!

!

$

X

X

*

*c m/
/

Similarly, express the expected cost using (2) and (6) as

E

( ) ( ) .

C B

b F b F z dz

E I{ }i
i

b B

i B i B
b

i 0

i i

i i

i

=

= -

*

!

!

$

X

X

* *

*c

c

m

m

/

/ #

Substitute the derived expressions for EV  and EC  into (7) 
and rearrange the terms as

 ( ) ( ) ( ) .

E EV C

v F b b F b F z dz

L

i B i i B i B
b

i 0
i i i

i

m mp

m mp

= - - +

= - +

!X

* * *c c mm/ #  (8)

The solution is given by the bis that maximize .L  Consider 
the following two cases:

 » If m  = 0, then ( ).v F bL i i B iiR= !X *  However, v 0i $  
while ( )F bB ii

*  is nonnegative and nondecreasing. 
Hence, ,argmaxb Lopt

i bi " 3=  which also means the 
budget constraint is not violated for any bid price.

 » If ,02m  then a simple rearrangement of (8) yields

 ( ) ( ) .v b F b F z dzL i
i B i B

b

i 0
i i

i

m
m

mp= - + +
!X

* *c` j m/ #  (9)

For a given m , the bid price optimization for different 
impression opportunities is independent, and the optimal 
bid for impression i must satisfy

,argmaxb Lopt
i

b
i

i

=

where

( ) ( ) .v b F b F z dzLi
i

i B i B
b

0
i i

i

m
= - +* *` j #

It is straightforward to show that

( ).b
v b f bL

i

i i
i B ii2

2
m

= - *` j

Since ( ) ,f b 0B ii $*  it follows that

if / ,
if / .b

b v
b v

0
0 >

L
i

i i i

i i2
2 $

#

# m

m
'

As a result, Li  is maximized at the optimal bid price

if .b v 0>opt
i

i

m
m=

Optimality requires that EC # p  and (E ) ,C 0m p- = where 
.0$m  It is easily shown that EV  and EC  are both nonin-

creasing functions of .m  Therefore, optimal bidding corre-
sponds to the smallest nonnegative value of m  for which 
EC # p  and (E ) .C 0m p- =  If ,02m  then the optimal bid 
price can be expressed as ,b uvopt

i i=  where the control 

Name Symbol Unit Description 

Feedback 
control

Plant offset a0 US$ Intercept of linearized response curve, 
( )g u a a u0 1. +  

Plant gain a1 US$ Slope of linearized response curve, ( )g u a a u0 1. +  

Plant latency a2 — Latency a e /T
2

P= T-  with plant time constant TP  

Excitation latency a3 — Latency a e /T
3

PE= T-  with excitation time  
constant TPE  

Integral gain cI  US$–1 Gain of integral-error controller 

State variables , , ,x x x x1 2 3 4  US$, —, —, — Plant state x1  and controller states , ,x x x2 3 4  

TABLE 1 The important parameters, variables, and functions used in the article (Continued).
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signal u 0$  is the largest value for which E .C # p  If there 
is no finite value of u such that E ,C p=  then .bopt

i " 3  This 
completes the proof.  Y

Theorem 1 shows that only vi and u are needed to 
determine the optimal bid. Although they are unknown 
a priori and must be estimated, they can be computed 
separately. In an implementation, vi is replaced by an 
estimate vit  produced by an impression valuation system, 
which performs statistical inference based on historical 
data and large-scale machine learning algorithms. Con-
trol signal u is computed by a campaign control system 
as the largest value for which (4) is not violated. The bid 
is then computed as the product between u and vit  
according to

 ,b uvi i= t  (10)

as shown in Figure 2. Impression valuation consumes 
granular impression engagement data but does not 
depend on the campaign constraints. Campaign con-
trol consumes only campaign-level information, such 
as the budget constraint and observed campaign-level 
spending. The controller increases u if the campaign 
is trending toward E ,C 1 p  decreases u if it is trending 
toward E ,C 2 p  and keeps u unchanged if it is trend-
ing toward E .C p=

In practice, an advertiser imposes an upper bound on 
the bid price. A natural choice is to never bid more than 
the impression value, which, in an implementation, cor-
responds to a bound b vi i# t  or u 1# . However, vit  is an 
unreliable estimate of ,vi  and an advertiser often priori-
tizes full delivery of the budget and specifies a signifi-
cantly higher maximum permitted bid bmax

i  that must not 
be exceeded.

Computing vit  is outside the scope of this article, and 
the remainder explores the control problem. See “Optimal 

Bidding Intuitively” for an intuitive explanation of the opti-
mal bidding mechanism or the appendix of [4] for a differ-
ent derivation of the optimal mechanism.

FEEDBACK CONTROL PROBLEM FORMULATION
The control objective is to compute the optimal u in (10) 
based on feedback as a time-varying signal ( ) .u t R 0! $  
Consider a time-sampled implementation of the control 
system with equidistant time points indexed , , ,t 1 2 f=  
where the sampling time Δ is, for example, 5 min.

The optimal bidding for the original problem (3) and (4) 
is associated with one specific value of the Lagrangian mul-
tiplier m  (independent of i). Hence, optimality corresponds 
to a value of u that is constant for all impression opportu-
nities and all time points. However, although not cap-
tured by problem statements (3) and (4), an advertiser also 
desires an even delivery of the budget, which suggests the 
optimal u(t) may vary over time. The even delivery 
requirement is handled by mapping the total campaign 
budget p  into a setpoint value ( ) ,u t Rc 0! $r  which is the 
budget per sample period. For example, ( )u tcr  may equal p  
divided by the total number of sample periods in the cam-
paign flight, which, most often, is one month long. The 
setpoint value, together with an observed ad spend per 
sample period y(t), is used to adjust u(t). Together with an 
impression value estimate vit  for impression opportunity 
i, the final bid is computed as ( ) ( ) ,b t u t vi i= t  in accordance 
with (10).

The advertiser demands a certain daily delivery and 
value maximization but does not have a preference about 
the intraday budget delivery. In light of this, the argument 
that u(t) should be constant holds without caveats within 
each day. It falls upon the control system to distribute 
each daily budget across the day by adjusting ( )u tcr  so that 
the error feedback system produces a control signal u(t) 
that converges to a constant value while delivering the 
daily budget.

An initially too-high value of control signal u(t) results 
in a premature delivery of the daily budget. The high 
value implies that some unnecessary expensive impres-
sions are acquired. At some point during the day, it 
becomes necessary to reduce the control signal to avoid 
a spend in excess of the budget. When this reduction 
takes place, an opportunity cost occurs from high-yield 
impressions that are not purchased. Similarly, if u(t) at 
the beginning of the day is too small, then there comes 
a time before the end of the day when u(t) must 
increase significantly to catch up and deliver the daily 
budget. In this phase, unnecessarily expensive impres-
sions are purchased.

If different days have the same dist r ibut ions of 
{ , | }v B ii i ! X* , the same number of impression oppor-
tunities, and the same daily budget, then the optimi-
zation problems for the different days are identical 
and t ranslate to the same opt imal and constant 

ξ u bi

bi
∗

Exchange

Campaign-Level Feedback c

νi

"

Impression
Valuation

Campaign
Control

Event-Level
Feedback

FIGURE 2 The optimal bidding mechanism. The block diagram 
illustrates the modularized nature of the bid calculation. Impres-
sion valuation consumes granular impression engagement data 
and produces an impression value estimate. Campaign control 
consumes the budget constraint and observed campaign-level 
spend to produce a control signal. The bid price is calculated as 
the product of the impression value estimate and control signal.
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control signal u(t). In reality, days are similar but not 
identical. It is, therefore, reasonable to ant icipate 
that the optimal value of u(t) is approximately (but 
not precisely) the same for different days. The best 
computed control signal for a previous day can 

normally be used as a good initial control signal for 
the next day. The main goal is to design a servo con-
troller for daily spend with a control signal having a 
short transient, little overshoot, and small steady-
state oscillations.

Optimal Bidding Intuitively

The (optimization) objective is to spend an advertiser’s on-

line marketing budget in such a way that the total adver-

tisement value, or return on investment (ROI), is maximized. 

In the special case of a second-price cost model and a single 

campaign-level budget constraint, the optimal bidding mecha-

nism can be constructed convincingly using a simple geomet-

ric construction. This provides intuition and a better apprecia-

tion of the problem at hand.

A monetary budget is provided by the advertiser, which is 

typically a fixed daily budget for the duration of a campaign flight. 

An optimization metric related to performance or branding is also 

given. Click or conversion counts are examples of performance 

metrics, while impression count is an example of a branding val-

ue metric. The advertiser may associate a different value to each 

click or conversion and a different branding value to each im-

pression based on user characteristics and site properties. The 

total value of an impression i is denoted vi. The impression value 

encodes both branding and performance value. For example,

,v v p v, , ,i B i CTR i C i= +

where v ,B i  is the branding value of serving an ad to a user, 

p ,CTR i  is the probability the user clicks on the ad, and v ,C i  is the 

advertiser-defined value of a click generated by the user. The 

total advertisement value v of an ad campaign is the cumula-

tive value of all awarded impressions, and the total cost c is the 

cumulative cost for these impressions. The second-price cost 

model implies that

.

,v v

c b I

I

{ }

{ }i
i

b b

i
i

b b

i i

i i

=

= *
$

$ *

*

/

/

Each impression on which to bid is associated with a value 

vi and a cost bi
*  and, hence, can be mapped to a coordinate in 

a value-versus-cost plot, as shown in Figure S1. Impressions in 

the upper-left corner with high value and low cost correspond to 

the highest-ROI impressions since they translate to the largest 

value per ad dollar spent. Impressions along a straight line going 

through the origin all have the same ROI, and impressions in the 

lower-right corner with low value and high cost correspond to the 

lowest-ROI impressions. Finally, impressions in the green-shad-

ed region all have higher ROIs than impressions in the orange-

shaded region.

By bidding along the straight line, all impressions in the 

green region are awarded, and the optimization problem is 

effectively decoupled into an impression value computation 

problem and a control problem. The optimal bidding strategy 

takes the form

,b uvi i=

and the optimal u is given by the largest fixed value for which 

the budget constraint is not violated. This bidding strategy is 

consistent with the solution derived in the “Optimal Bidding 

Mechanism” section. Note that to compute the optimal bid, it 

is necessary to know the impression value vi (or an estimate 

thereof) but not the highest competing bid price .bi
*  By observ-

ing the aggregate cost of awarded impressions, the control sig-

nal may be adjusted toward its optimal value, with no need to 

observe or predict the cost of individual impressions.

The impression value computation problem is really a 

prediction problem and involves large-scale machine learn-

ing based on user features and historical engagement data to 

compute the best possible estimate of vi for impressions to bid 

on. A feedback controller independently adjusts u dynamically 

based on the delivered budget. The focus in this article is on the 

control problem, and vi is assumed known. An important prop-

erty using the bidding mechanism b uvi i=  is that v(u), c(u), and 

( ) / ( )v u c u  are monotonic functions of u. This guarantees the op-

timization problem is convex with u as an optimization variable.
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FIGURE S1 The impression value versus cost plot and optimal 
bidding strategy. The plot shows the relative return on invest-
ment (ROI) of different impression opportunities, where each 
impression is associated with an impression value vi and a 
cost .bi

*  High ROI impressions are located in the upper-left 
corner, and low ROI impressions are located in the bottom-
right corner. Impressions in the green-shaded region are 
awarded, and impressions in the orange-shaded region are 
not. (From [12].)
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PLANT MODELING AND SMOOTHING

Modeling
The plant is defined by the map from control signal u(t) 
and process noise ( )w tm  to observed spend y(t). It can 
be represented by a concatenation of an actuator and a 
sensor process.

In the actuator, u(t) is combined with impression value 
estimates to produce bid prices that participate in the bid-
ding for impressions. Influenced by ( )w tm , the process 
output is a realized (but not yet observed) ad spend 

( ) .ty R 0! $l  Actuator dynamics are insignificant, and the 
map from u(t) to ( )y tl  is, therefore, modeled as static. How-
ever, the map exhibits three key challenges.

First, the auction-based allocation mechanism of impres-
sions implies that the map is discontinuous. Denote the 
relationship ( ) ( ( ))y t g u t?l , where ?  represents proportional 
to, and g(u) is a nonnegative and nondecreasing function. It 
is described by graphs similar to what is shown in Figure 3, 
which depicts the relationship for two real campaigns. 
In Figure 3(a), the steps in the staircase are so small that the 
curve is effectively smooth, while in (b), the steps are large 
and cannot be ignored during the control design. As a 

consequence of the discontinuity, there exists no fixed-
point solution for most setpoint values ( )u tcr .

The next challenge is related to the natural time-of-day 
pattern in Internet users’ online presence and (to a lesser 
extent) to (imperfect) periodic and otherwise time-varying 
bidding strategies among competing bidders. This leads to 
a dramatic daily seasonality in the available number of 
impression opportunities and the expected number of 
impressions that are awarded at each value of u(t). Denote 
the relationship ( ) ( ),y t h t1? +l  where the seasonality func-
tion h(t) is T periodic and satisfies ( ) .h t 12-  The impres-
sion rate per hour for a fixed control signal is approximately 
10 times higher in the middle of the day than it is late 
at night, which implies that ( )max h tt  is approximately 
10 times larger than ( ).min h tt

The third challenge concerns the random behavior of 
Internet traffic, which is approximately independent 
and scale-invariant (Poisson-like) stochastic noise. The 
relationship is described by ( ) ( ),y t w t1 m? +l  where pro-
cess noise ( )w tm  is modeled by a zero-mean white noise 
(WN) process ( )~WN( , )w t 0m m

2v , and mv  is the standard 
deviation of the noise. As such, the distribution of the 
number of impression opportunities is skewed with a 
variance that is larger near the daily peak in traffic than 
the daily low.

Combined, the actuator model is

( ) ( ( )) ( ( )) ( ( )),y t h t g u t w t1 1 m= + +l

where it is assumed that ( )h i 0i
T

1R ==  without a loss of gen-
erality. The model factorizes the seasonality and the control 
signal-dependent function by considering the dominant 
effects of the plant. A more accurate model would allow for 
the seasonality (·)h  and the response curve (·)g  to depend 
explicitly on both t and u and wm to be colored noise with 
time-varying standard deviation. However, this leads to a 
more challenging system-identification problem, with few 
benefits in practice.

In the sensor, the spend rate y(t) is generated from the 
realized ad spend ( )y tl  and fed to the control system. More 
precisely, awarded impressions are identified across a fleet 
of geographically noncolocated ad servers. The aggregate 
cost of the impressions is computed, and designated data 
feeds connected to the control system are populated. The 
process represents the lag introduced by the engineering 
platform. A well-designed and properly dimensioned 
engineering infrastructure can reduce the lag but not 
remove it completely. The dynamics are approximately 
linear time invariant and are modeled using a first-order 
linear filter operating on ( )y tl  according to

( ) ( ) ( ) ( ),y t a y t a ty1 12 2+ = + - l

where plant latency parameter a2 satisfies a0 12 1# . Note, 
the static gain of the sensor equals one, which means 
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FIGURE 3 Two representative response curves. The graphs illustrate 
the characteristic staircase shape of spend y versus control signal u. 
In (a), the staircase steps are so small that the curve is effectively 
smooth; in (b), the steps are significant and cannot be ignored during 
the control design. (From [12].)
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that all realized ad spend is eventually observed. There 
is no leakage and no falsely reported ad spend in the 
reporting system.

It is convenient to characterize the latency in terms of a 
plant time constant TP rather than a2, which are related 
according to a e /T

2
P= D- . Parameterizing the model using 

TP rather than a2 makes the plant model approximately 
sampling time independent.

Smoothing
A plant without an almost continuous response curve 
relationship leads to extremely complex closed-loop 
dynamics. Fortunately, Heisenberg bidding [4], [5] can be 
used to turn a discontinuous plant in a bidding system 
effectively continuous. It is a bid-randomization tech-
nique by which each computed nominal bid b uvi i= t  is per-
turbed randomly before it is submitted to the auction 
exchange. It can be implemented with other probability 
distributions. However, the gamma distribution (see 
“Useful Probability Distributions”) is a particularly good 
choice since it has support for all positive values of bi and 
possesses other useful properties as a member of the 
family of exponential distributions. See “Useful Probabil-
ity Distributions” for basic facts about the gamma distri-
bution and “Heisenberg Bidding” for other use cases of 
Heisenberg bidding.

The perturbed bid for impression opportunity i used in 
the actual bidding is a realization of a random variable Bi 
defined by

 Gamma , if ,B
b b b

b b1 1 0>
, ,

,i
u i i u i

i u i2 2+ c m , (11)

and B bi i=  otherwise. The gamma distribution is conve-
niently parameterized by nominal bid bi and bid uncertainty 
b ,u i . In terms of shape parameter a  and inverse scale 
parameter ,b  the distribution is defined by /b1 ,u i

2a =  and 
/( )b b1 ,i u i

2b = . The expected value and variance of Bi are 
given by E( )B bi i=  and Var .B b b ,i i u i

2 2=^ h  Furthermore, the 
relative standard deviation Std( )/ ,B B bE ,i i u i=^ h  implies 
that b ,u i  is a scale parameter of the bid  distribution.

In a general application of bid randomization, a dif-
ferent value of b ,u i  can be used for each impression 
opportunity. The value may, for example, depend on the 
confidence in vit  as an estimate of vi. This provides a 
lever that supports exploration, which is the process of 
exposing a wide range of different users to an ad to learn 
how effective the ad is. Note, unless some impressions 
are awarded, it is impossible to improve the accuracy of 
the impression value estimate of similar impressions. If 
b ,u i  is large, then it is likely that at least some realized 
bids are large enough to win impressions. Thompson 
sampling [20] is based on this idea, and it is also the idea 
behind Heisenberg bidding-based exploration and 
exploitation [4].

A less granular application of Heisenberg bidding is to 
use the same bid uncertainty b u,u i u=  for all impression 
opportunities. Bid uncertainty is, then, a campaign-level 
signal, and the randomization can be interpreted as a 
perturbation of u (for each individual bid) during analy-
sis. Because bid uncertainty is a scale parameter of 
the gamma bid dist r ibut ion,  th is  rei nter pretat ion 
i s  particularly straightforward. Indeed, if X is a gamma 
random variable defined by ~Gamma( , ),X a b  then, for 
any k > 0, it holds true that ~ Gamma( , / )kX ka b  [21]. 
Hence, whenever

 Gamma , if , ,U
u uu

u u1 1 0>
u u

u2 2+ c m  (12)

and U = u otherwise, then

: Gamma , if , , ,B Uv
u uv u

u v u1 1 0>i i
u i u

i u2 2+= t
t

tc m

and B uv bi i i/= t . The distribution of the final perturbed bid 
is the same whether the nominal control signal u is perturbed 
first and then multiplied by vi or the nominal bid price bi = uvi  
is perturbed after the nominal control signal u has already 
been multiplied by vi. 

By interpreting u and uu as two campaign-level control 
signals, it is insightful to study the impact on the relation-
ship between u and y for different values of uu. The map-
ping from u to y is referred to as the (primary) input–output 
relationship of the plant, which can be made arbitrarily 
smooth by adjusting uu. Figure 4 illustrates this capability 
by adding the dimension of uncertainty signal uu to the 
response curve in Figure 3(b). The campaign-level bid 
uncertainty can be used as a secondary campaign-level 
control signal that is updated based on feedback to achieve 
a desired relationship between u and y. This was attempted 
in [6], where the control objective was to regulate the effec-
tive loop gain.
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FIGURE 4 A plant smoothing surface. The plot shows how the spend 
rate y of the campaign in Figure 3(b) depends on the nominal control 
signal u and uncertainty signal uu. Note how the relationship between 
y and u is discontinuous only when uu equals zero. (From [12].)
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Alternatively, a constant value of uu can be used, 
which is treated as a configuration parameter. This 
passive plant smoothing makes Heisenberg bidding 
particularly safe since it avoids adding hard-to-ana-
lyze dynamics to the closed-loop system. It is also the 
choice made in this article. The uncertainty signal is 

simply assumed to have a fixed nonzero value to guar-
antee a smooth response curve. The challenges and 
benefits of adjusting uu over time are outside the scope 
of this article.

Once the relationship between u(t) and ( )y tl  is made 
smooth in the expected sense, it is linearizable in a small 

Useful Probability Distributions

BINOMIAL DISTRIBUTION

The binomial distribution with parameters n and p is a dis-

crete probability distribution. If the random variable X fol-

lows the binomial distribution, we write ( , ).X n pBinomial+  The 

probability mass function of x is

 f x x
n p p1X

nx x= - -^ ` ^h j h  (S1)

for , , , .x n0 1 f=  Parameters { , , }n 1 2 f!  and [ , ]p 0 1!  are 

referred to as the number of trials and success probability in 

each trial, respectively. The expected value of X is ( ) ,npXE =  

while the variance is ( ) ( ).X np p1Var = -

BETA DISTRIBUTION

The beta distribution with parameters a  and b  is a continu-

ous probability distribution. If the random variable X follows the 

beta distribution, we write ( , ).X Beta+ a b  The probability den-

sity function of x is

 
,

f x
B

x x1
X

1 1

a b
=

-a b- -

^ ^
^h h

h
 (S2)

for ,x0 11 1  where ( , )B a b  is the beta function (also called 

the Euler integral) defined by ( , ) ( ) .B x dx x11

0

1 1a b = -a b- -#  

Parameters 02a  and 02b  are referred to as shape parame-

ters. The expected value and variance of X are ( ) / ( )XE a a b= +  

and ( ) / [( ) ( )].X 1Var 2ab a b a b= + + +

GAMMA DISTRIBUTION

In consideration of its role in Heisenberg bidding, the gamma 

distribution deserves a longer introduction. It is a two-param-

eter family of continuous probability distributions with support 

on [ , ).0 3  It is a versatile probability distribution with many 

applications.

It has been used in queuing models, climatology, and ac-

tuarial sciences. Examples of events that have been modeled 

by gamma distributions include rainfall, the size of insurance 

claims, load and data latencies on web servers, and signal 

power fading in wireless communication. The exponential dis-

tribution, Erlang distribution, and chi-squared distribution are 

all special cases of the gamma distribution.

Different parameterizations are in common use. However, 

in Bayesian statistics, it appears most common to define a 

gamma distribution in terms of shape parameter 02a  and in-

verse scale parameter 02b  (also called the rate parameter). 

If the random variable X follows the gamma distribution, we 

write ( , ).X Gamma+ a b  The probability density function of x is

 f x x e x
X

1

a

b

C
=

a
a b- -^ ^h h  (S3)

for ,x 02  where ( )aC  is the gamma function defined by 

( ) .e t dtt

0

1aC =
3 a- -#  The expected value and variance of X are

( ) ,

( ) .

X

X

E

Var 2

b
a

b
a

=

=

In Bayesian inference, the gamma distribution is the con-

jugate prior to many likelihood distributions, for example, the 

Poisson, exponential, normal (with known mean), Pareto, gam-

ma with known shape ,a  inverse gamma with known shape 

parameter, and Gompertz with known scale parameter.

Figure S2 shows five examples of gamma probabi l ity 

density functions parameterized by the shape and in-

verse scale parameters. Note that the distributions with 

( , ) ( , ), ( , ) ( , ),4 400 25 2500a b a b= =  and ( , ) ( , , )100 10 000a b =  

have the same expected value but different variance.

As a member of the exponential family of distributions, the 

gamma distribution is closely related to familiar distributions, such 

as Bernoulli, Poisson, normal, and Dirichlet. As a consequence, 

multiple conversions are possible among these distributions.
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FIGURE S2 Gamma probability density functions. The figure shows 
five illustrative gamma probability density functions, parameterized 
by the shape a  and inverse scale b  parameters. 
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neighborhood of each u. The static relationship locally can, 
then, be expressed as

 ( ( )) ( ( )) ( ( ))y t h t a a u t1E 0 1= + +l  (13)

for some values of plant offset a0 and plant gain a 01 2  and 
for some T-periodic function h(t) satisfying ( ) ( ),h t T h t+ =

( ) ,h i 0i
T

1R ==  and ( )h t 12-  for all t. Some useful mathe-
matical results to help in the analysis are provided in “The 
Mathematics of Plant Smoothing.”

An Effective Plant Model
Passive plant smoothing can be implemented inside the 
actuator out of sight of the feedback control system that 
computes the nominal control signal. The feedback control-
ler only needs to know that the plant model is linearizable 
and (13) is approximately true in a local neighborhood of 
the operating point. From the vantage point of the control 
engineer, the linearized plant model is

( ) ( ) ( ) ( ( )) ( ( )) ( ( )),y t a y t a h t a a u t w t1 1 1 1 m2 2 0 1+ = + - + + +  
 (14)

where ( ) ~ WN( , ).w t 0m m
2v  Plant parameters a0 and a1 are con-

trol signal dependent and, in practice, also time varying. How-
ever, the described plant smoothing ensures they depend on 
the control signal in a smooth manner. As long as the control 
signal is not excessively volatile and the linearization does not 
change rapidly over time for each value of u, (14) can be used as 
the basis for an adaptive control system, where a0 and a1 are 
estimated online.

Latency parameter a2 is approximately constant, and sea-
sonality function h(t) is approximately time invariant. They 
can be estimated offline in advance or refined online [13]. In 
this article, they are assumed known.

CONTROL DESIGN AND CLOSED-LOOP DYNAMICS
In preparation for a closed-loop analysis of the system 
dynamics, plant model (14) can be expressed in state-space 
form as the following first-order stochastic differ-
ence equations

 
( ) ( ) ( ) ( ( ))

( ( )) ( ( )),
x t a x t a h t

a a u t w t

1 1 1
1 m

1 2 1 2

0 1

+ = + - +

+ +
 

(15)

 ( ) ( ),y t x t1=  (16)

where ( ) ~ WN( , ).w t 0m m
2v  The model is time periodic and 

subject to multiplicative process noise. Moreover, it is 
locally linear in the state and control signal, thanks to the pre-
viously described plant smoothing. The plant is defined by 
h(t), vm, a0, a1, and a2. Function h(t) and parameter a2 are 
assumed known, while parameters vm, a0, and a1 are not.

To solve the control (optimization) problem, consider 
pure I-error feedback servo control with feedforward 
adjustment of the reference signal and open-loop 

persistent excitation of the servo control signal. The feed-
forward controller is used to distribute a daily ad budget 
throughout the day according to the seasonality of the im-
pression supply. This avoids a situation where the control 
system raises the control signal and hikes the bid prices 
during times of the day when there is a limited impression 
supply. It is achieved by modifying the deterministic, and 
often constant, setpoint input signal ( )u tcr  based on known 
values of a2 and h(t) and computing an adjusted setpoint 
value ( )u tc . The feedforward controller dynamics are 
described by

 ( ) ( ) ( ) ( ( )) ( ),x t a x t a h t u t1 1 1 c3 2 3 2+ = + - + r  (17)

 ( ) ( ) .u t x tc 3=  (18)

The pure I controller computes a servo control signal 
( )u t0  based on a tracking error signal e(t) to minimize or 

reduce the marginal and cumulative tracking error via an 
approximately constant ( )u t0 , thereby maximizing the pro-
duced advertising value of the campaign. The feedback 
controller dynamics are

 ( ) ( ) ( ),e t u t y tc= -  (19)

 ( ) ( ) ( ),x t x t c e t1 I2 2+ = +  (20)

 ( ) ( ) ( ),u t x t c e tI0 2= +  (21)

where cI is the I gain of the feedback controller. This feed-
back mechanism has several benefits. First, it is well 
known that I-error feedback control guarantees zero 
steady-state error under certain conditions on the setpoint 
signal. Furthermore, a pure I controller is a low-pass filter, 
which makes the closed-loop system less sensitive to 
high-frequency process noise and more robust to a chal-
lenging response curve than a system using, for example, 
a PI feedback controller. In many other applications 
where the plant latency is long, a pure I control may not 
permit satisfactorily fast closed-loop dynamics. However, 
the plant dynamics for the problem considered here are 
reasonably fast and permit a high-gain I controller. The 
absence of proportional and derivative control action 
is, therefore, not a concern. Finally, using pure I control 
implies only one feedback controller parameter needs to 
be tuned. This significantly simplifies the commission-
ing of the control system.

To guarantee stability, it is later shown that cI must be 
chosen as a function of a1 or, in practice, as a function of an 
estimate a1t  thereof. For now, assume cI is a given constant. 
The estimation of a1 is discussed later. However, to make 
the identification of a1 possible in light of an approximately 
constant ( )u t0 , persistent excitation must be ensured. Com-
plementing the I controller with an open-loop, persistent-
excitation controller achieves this. The excitation controller 
computes a final control signal u(t) from
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 ( ) ( ) ( ),x t a x t a w t1 1 u4 3 4 3
2+ = + -  (22)

 ( ) ( ) ( ( )),u t u t x t10 4= +  (23)

where excitation signal ( )w tu  is an artificially generated 
WN( , )0 u

2v  perturbation, a3  is an excitation latency design 
parameter, and uv  is the excitation standard deviation. The 
specific structure of the perturbation system is chosen 
deliberately to reduce the need for customization, as the 
control system is used by different campaigns. Note, large 
DSPs manage tens of thousands (or more) of ad campaigns 
simultaneously.

The design of the excitation controller implies that 
Var( ) Var( )x wu u4

2/ v=  at the steady state, where uv  is a 
design parameter. Since x4 perturbs the servo control 
signal u0 multiplicatively, the relative standard devia-
tion of the control signal induced by the persistent exci-
tation equals uv , regardless what the values of a3 and u0 

are. Hence, while the operating point of u(t) for one 

campaign may be hundreds or thousands times larger 
or smaller than that of another campaign, the relative 
standard deviation of the control signals and the final 
bid prices remain the same for all campaigns. A random 
process (as opposed to a deterministic signal) is used to 
eliminate the risk of unintended synchronized excita-
tion of competing campaigns. In practice, a3 is not set 
directly but, rather, computed from a manually selected 
persistent-excitation time constant TPE via the relationship 

.a e /T
3

PE= D-

The choice of a first-order, linear time-invariant, persis-
tent-excitation controller makes it easy and intuitive to 
tune. Using a dynamic in persistent excitation (as opposed 
to only WN) improves the system identification robust-
ness to an imperfect plant latency model. If the plant 
latency is accurately described by the proposed first-order, 
linear time-invariant model and defined by a specific 
value of a2 or TP, then it is reasonable to use WN for 
more excitation .a 03 =^ h  But if the latency model is poor 

Heisenberg Bidding

Imagine occasionally winning an impression that is not sup-

posed to be won based on the computed bid price. This is 

like quantum tunneling in programmatic advertising. Heisen-

berg bidding was proposed in [5] as a robust and scalable so-

lution to this figurative quantum tunneling. It is an engineered 

mechanism that makes an otherwise losing (winning) bid for an 

ad impression a winning (losing) bid with a small probability. 

It is achieved without coordination among the bidders, which 

makes it a scalable mechanism suitable in programmatic 

advertising with a large number of noncooperating bidders. 

Heisenberg bidding is a bid-randomization scheme to support 

enhanced control, estimation, and optimization in online ad-

vertising. It has some resemblance to Thompson sampling [20] 

but with a different origin and motivation.

Heisenberg bidding randomly perturbs a nominal bid price 

b according to a distribution defined by b and a bid uncertainty 

bu. It generates a final bid price used in the market clearing. 

The randomization can be implemented with other probability 

distributions. However, the gamma distribution has a distinct 

advantage, as discussed in this article. See “Useful Probabil-

ity Distributions” for details on the gamma distribution and “The 

Mathematics of Plant Smoothing” for some of the inference pos-

sible when bid randomization is based on a gamma distribution.

With an implementation based on the gamma random num-

ber generator, the perturbed bid is a realization of B, where

 , , , ,B
b bb

b b1 1 0Gamma if
u u

u2 2 2+ c m  (S4)

and ,B b=  otherwise. Heisenberg bidding based on the gam-

ma distribution (and in terms of the shape parameter a  and 

the inverse scale parameter )b  is defined by : /b1 u
2a =  and 

: / ( ).bb1 u
2b =  Consequently,

( ) ,

( ) ( ) .

B
b

bb b

B
b

bb b b

1

1

E

Var

u
u

u
u u

2
2

2
2 2 2 2

= =

= =

Note that bu is the unitless relative standard deviation of B, that 

is, ( ) / ( ),b B BStd Eu /  where ( ) ( ) .B BStd Var=

Figure S3 shows the same five gamma distributions that 

were shown in Figure S2 but parameterized by b and bu. The 

new parameters separately have a meaningful physical in-

terpretation. The nominal bid b is a measure of the center of 

the bid distribution, while the bid uncertainty bu captures the 

spread. A large value of bu translates to a large relative spread, 

and b 0u =  translates to no spread at all, in which case the final 

bid is identical to the nominal bid.
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FIGURE S3 Gamma probability density functions. The figure 
shows five illustrative gamma probability density functions, 
parameterized by the nominal bid b and bid uncertainty bu 
parameters.
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and u(t) contains a significant high-frequency component 
(for example, due to excitation with a small value of a3), 
then plant model (14) offers little predictive power, which 
makes the regression of a0 and a1 particularly difficult.

An alternative persistent-excitation method is to imple-
ment a pseudorandom binary sequence (PRBS) to excite ( )u t0  
[22]. This approach is a good choice if the plant is truly 
linear in the range of the PRBS excitation and the latency 
model described by a2 is accurate. In reality, the response 
curve may deviate from linearity, whereby the lineariza-
tion computed using the PRBS potentially differs signifi-
cantly from the linearization at ( )u t0 . Moreover, the real 
latency may differ substantially from the model. Binary 
excitation is, therefore, likely to require simultaneous 
identification of the plant gain and latency model, which 
makes an already challenging system-identification prob-
lem more challenging.

The plant is represented by state x1 and the controller by 
states x2, x3, and x4. Ultimately, the performance of the 

closed-loop system is judged based on performance signals 
e(t) and u(t). The desired behavior is for e(t) to stay close to 
zero and u(t) close to a constant. This translates to an even 
daily budget delivery and optimal value creation for the 
advertiser. The controller defined by (17)–(23) is summa-
rized in Algorithm 1.

In a real implementation, it is important to add integra-
tor windup protection to the I controller [23] and restrict 
the control signal between zero and some upper bound 
umax set by the advertiser or estimated programmatically. 
However, to reduce the clutter, Algorithm 1 does not incor-
porate these aspects of the control system. Estimating umax 
is a research project in itself. It may be a threshold value of 
u indicating where g(u) has approximately reached its 
maxima. Since function (·)g  is observed and approximately 
known only near the current operating point, it is not triv-
ial to estimate the threshold value.

The closed-loop dynamics of the interconnected plant 
and controller system remain to be analyzed. In the rest of 

A typical implementation of Heisenberg bidding perturba-

tion is illustrated as a block diagram in Figure S4. Inputs b and 

bu are usually produced by an ad optimization system involv-

ing feedback control and machine learning algorithms. These 

algorithms may require large amounts of input data and many 

computations. They are, therefore, typically implemented as a 

discrete-time system with updates every few minutes or 1 h. 

Producing a gamma random number based on b and bu, on 

the other hand, is very efficient and can be done (in runtime) 

for each bid calculation with, at most, a small impact on ad 

serving latency. If necessary, normalized perturbations can be 

precomputed to make the latency impact insignificant.

An important property of Heisenberg bidding is how it can 

turn an otherwise discontinuous system continuous without add-

ing dynamics: a bidder may participate in millions of auctions ev-

ery few minutes. Sometimes, the highest competing bid bi
*  for a 

large number of impression opportunities i is approximately pro-

portional to the campaign’s impression value estimate .vit  Given 

how the control signal, according to (10), is a multiplicative factor 

(and because of how the market clearing mechanism awards 

an impression), this leads to a situation where the number of 

awarded impressions (or the spend) as a function of a nonran-

domized control signal u has a staircase shape, possibly with 

large steps. As a result, for most values of a desired response, 

there exists no fixed-point solution, as illustrated in Figure 3(b).

Heisenberg bidding removes steps in the plant response 

curve in the expected sense by randomizing the control signal for 

each individual impression opportunity. It creates guarantees for 

the existence, in the expected sense, of a fixed-point solution of a 

dynamic system without necessarily introducing new dynamics. 

Furthermore, it makes it possible to gracefully detect if a cluster 

of highest competing bid prices is moving up or down, since this 

would be reflected in an increasing or decreasing win rate.

Heisenberg bidding can also be used to regulate the ef-

fective plant gain and support improved controllability and ro-

bustness of a feedback system [6], [14]. Moreover, it can be 

used as a powerful means of adaptive and low-cost explora-

tion, which is the process of exposing a wide range of users 

to an advertisement to learn how effective it is [4]. This makes 

it possible to simultaneously and safely test many ads without 

cumbersome and limiting segmentation and without relying on 

conventional restrictive A/B testing solutions.

Last, but not least, Heisenberg bidding enables a contin-

uous-system analysis of the dynamics. Indeed, analyzing the 

dynamics, stability, and robustness of an uncertain, time-vary-

ing, discontinuous system is extremely challenging. If results 

are derived at all for a discontinuous system, they often lack 

practical value. Turning the system continuous first not only 

makes it possible to leverage the large number of tools devel-

oped for continuous systems, but the analytical results are also 

typically more useful in practice.
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FIGURE S4 A block diagram of a typical implementation of 
Heisenberg bidding in an online advertising system.
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The Mathematics of Plant Smoothing

MOTIVATION AND SETUP

I t is intuitively obvious that Heisenberg bidding smoothens 

the response curve of a plant and improves the conditions 

for feedback control of an otherwise discontinuous process. 

However, it is useful to develop a mathematical foundation of 

Heisenberg bidding-based smoothing. This creates additional 

avenues of enhanced inference and control. The content dis-

cussed here is best appreciated if basic facts about relevant 

statistical distributions are well understood. Key facts are pro-

vided in “Useful Probability Distributions,” and a review of that 

is recommended before proceeding. Some of the results here, 

plus a few additional results, are available in [14].

For each impression opportunity, the actual used control 

signal is generated via Heisenberg bidding-based randomiza-

tion; that is, it is an independent sample from a probability den-

sity function defined by

, , , ,U
u uu

u u1 1 0Gamma if
u u

u2 2 2+ c m

and U = u otherwise. As indicated, the distribution is param-

eterized by nominal control signal u and uncertainty signal .uu  

Recall that uu  is the relative standard deviation of the used 

control signal for each individual bid.

The response curve describes how a campaign metric, 

such as spend or awarded number of impressions, depends 

on a nominal control signal u with or without smoothing. With-

out smoothing ( ),u 0u =  it is, for a second-price cost model, 

defined by a staircase function. Each step , ,j 1 2 f=  of the 

staircase is defined by a location U j  and a height ,Yj
a  which 

are known only probabilistically and, therefore, represented 

as random variables. Note, U j  and Yj
a  are random only in 

the Bayesian sense, and, strictly speaking, they are unknown 

(possibly time-varying) parameters. Given the auction-based 

allocation of impressions, the response staircase is, for the 

case without smoothing, defined by

, ,Y Y u 0ifI{ }j
a

u U u
j

j= =$/

in which case Y is random only in the Bayesian sense. In gen-

eral, the response is defined by

 , ,,Y Y Y U u 0E ifI{ }j
a

U U
j

j
a

j uj $= $e o/  (S5)

where, again, Y is random only in the Bayesian sense. Since 

U, by design, is an independent random variable, it follows that

 ,   .Y Y U u 0E ifI{ }j
a

j
U U j uj $= $^ h/  (S6)

However, ( ) ( ),PrU U U UE I{ }U U j j jj ; ;$=$  which is the probabil-

ity that an auction for a staircase case step j impression is won 

by outbidding all other bidders. In fact, it is the success rate of 

a Bernoulli experiment. The success rate is referred to as the 

win rate and is denoted

 : ,PrW U U Uj j j$= ^ h  (S7)

and, consequently,

 .Y Y W u 0ifj
a

j u
j

$=/  (S8)

Assume the belief of U j  is given by

, ,U
u

1 1Gammaj
j j j
2 2+
v v
c m

where u j  and jv  are the mean and relative standard devia-

tions of our belief about the location of the step. Furthermore, 

let the Bayesian expected value of Yj
a  (the mean of its belief 

function) be

( ) .Y yE j
a

j
a=

The distribution of Yj
a  and its variance are not needed to derive 

the results here. However, they are certainly useful to extend 

beyond what is covered here. See [14] for some results where, 

for example, the variance of Yj
a  matters.

BAYESIAN ESTIMATION

In the remainder, closed-form expressions of ( ), ( / ),W dW duE Ej j

( ),YE  and ( / )dY duE  are derived. The expected response ( )YE  

is a sensible point estimate of the response and can be com-

puted for different values of u and .uu  It can be leveraged for 

controller initialization. Similarly, the expected response sen-

sitivity ( / )dY duE  can be utilized by an error feedback control-

ler as a point estimate of the plant gain to reduce the risk of 

closed-loop instability.

The scaling property of the gamma distribution states that 

whenever ( , ),X Gamma+ a b  then ( , )X 1Gamma+b a  [21]. It 

follows that (S7) can rewritten as

,

Pr

Pr

W
u u
U

u u
U

U

u u
U

UU

j
u u

j
j

u

j
j

2 2

2

$

$

=

= l

e

e o

o

where ( / , ).uU 1 1Gamma u
2+l  Since the cumulative density func-

tion ( ) ( )Pr UF u uU j j#= ll l l  for any ,u jl  the win rate is

 .W F
u u
U

U1 Uj
u

j
j2= - l c m  (S9)

Define the win rate sensitivity as the derivative of W j  with 

respect to u. It is straightforward to show that

 .du
dW

f
u u
U

U
u u
U

U
j

u

j
j

u

j
2 2 2= l c m  (S10)
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To turn win rate sensitivity into a more useful format, consider 

the following theorem.

Theorem S1

If ( , ),X Gamma+ a b  then ( ) ( ) / ,f x x f XX xa b= }  where X Gamma+}

( , ).1a b+

Proof

Replace ( )f xX  with the expression defining the gamma prob-

ability density function

( ) ( )

( )
( )

( ) .

f x x x e x

x e
1

1

X
x

x

1

1

a
b

a b
a

a
b

C

C
C

C

=

=
+

+

a
a b

a
a b

- -

+
-= G

The expression in [·] is the probability density function of a 

( , )1Gamma a b+  random variable, and ( ) ( )1a a aC C+ =  [27]. 

Hence,

( ) ( ),f x f xxX Xb
a= }

where ( , ),X 1Gamma+ a b+}  which completes the proof. 

A direct application of Theorem S1 to (S10) yields

 ,du
dW

u u
f

u u
U

U1j

u
U

u

j
j2 2= u c m  (S11)

where / ,( ).U u1 1 1Gamma u
2+ +u

For a particular realization of ,U j  the win rate and win rate 

sensitivity are denoted w j  and / ,dw duj  respectively, and ob-

tained by replacing U j  by u j  in (S9) and (S11).

The response sensitivity is defined as the derivative of Y 

with respect to u. Since Yj
a  is independent of u, it is

 .du
dY Y du

dW
j
a j

j

=/  (S12)

In the context of feedback control, response sensitivity rep-

resents the plant gain at different values of the control signal 

value u. Knowledge of /dY du  and its statistical properties can 

be used to select a controller gain that yields a stable and ro-

bust closed-loop system.

The proofs of the following theorems regarding the Bayes-

ian expected values of , , / ,W Y dW duj j  and /dY du  provide a 

good illustration of how it is sometimes possible to com-

pute intimidating integrals by identifying kernels of stan-

dard random variables. Sometimes, this requires a variable 

transformation.

Theorem S2: Expected Win Rate

Assume a randomized bidding strategy ( / ,U u1Gamma u
2+

/ ( ))u u1 u
2  with , .u u 0u 2  If the highest competing bid price, 

,u j  is only known probabilistically as a realization of the 

 random  variable / , / ( )( )U u1 1Gammaj j j j
2 2+ v v  for known values 

of , ,u 0j j 2v  then the expected win rate is

 ,W F
u u u
u uE j Z

j j u

u
2 2

2

0
v

=
+

^ eh o  (S13)

where / , /( ).Z u1 1Beta j u0
2 2+ v

Proof

The expected win rate is

( ) ( ) ,W w u f u duE j j j U j j
0

j=
3^ h #

where w j  is a realization of (S9), and ( )f uU jj  is the probabil-

ity density function of ,U j  which is a / , / ( )( )u1 1Gamma j j j
2 2v v  

random variable. Substituting the expressions for w j  and 

( )f uU jj  yields

,W F
u u
u u

u e du1 1

1

E

/

/ /( )
j

u

j

j

j j
j

u u
jU 2

0
2

2

1

1 1

j

j j j j

2

2 2

v

v

C
= -

3

v

v v- -l^ c c
c

c
h mm

m

m
#  (S14)

where ( )F uUl l  is the cumulative density function of ,Ul  which is a 

( / , )u1 1Gamma u
2  random variable. Hence,

 .F
u u
u

u

u e du1
1/ /

U
u

j

u

u u u u u
2

2
0

1 1j u
u

2
2

C
= - -l l llc

c
m

m
#  (S15)

Substituting (S15) into (S14) and bringing all factors indepen-

dent of ul  and u j  outside the integration operators,

.

W

u

u

u e u e dudu

1 1 1

1

E

/

/ / /( )/ u

j

u j

j j

u
j

u u
j

u u u

2 2

2

1

1 1 1 1

00

j

u j j j j
j u

2

2 2 22

v

v

C C
= -

3

v

v v- - - -ll l

^
c

c

c
h

m

m

m

##

Next, convert the Cartesian coordinates ( , )u ui l  to polar coordi-

nates ( , )r i  according to

,

.

cos

sin

u r

u r
j i

i

=

=l

The infinitesimal area element is ,dudu rdrdj i=l  and the new 

integration bounds are r0 3# #  and /( ).arctan u u0 1 u
2# #i  

The expected win rate can, then, be expressed as

( ) ( ) .sin cos

W

u

u

r e r e rdrd

1 1 1

1

E

/

/

/ / /( )

arctan

sin cos

j

u j

j j u u

u r r u

2 2

2

1

0

1

1 1

0

1 1

j

u

u j j j

2

2

2 2 2

#

v

v

i i i

C C
= -

3

v

i v i v- - - -

^
c

c

c
^h

m

m

m
h#

#
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Move factors independent of r in front of the inner integral 

to obtain

 
( )

( ) .

sin

cos

W

u

u

r e drd

1 1 1

1

E

/

//

/ / / /( )

arctan

sin cos

j

u j

j j uu u

u r u

2 2

2

1

1 1

0

1

1 1 1 1 1

0

j

uu

j u j j j

2

22

2 2 2 2

v

v
i

i i

C C
= -

3

v

v v i i v

-

- + - - +

^
c

c

c
^

`

h
m

m

m
h

j

#

#

 

(S16)

Recognize the integrand of the inner integral as the kernel of 

a ( / / , / ( ))sin cosu u1 1Gamma u j j j
2 2 2v i i v+ +  distribution. Hence, 

the integral with respect to r over the semi-infinite interval 

[ , )0 3  must satisfy

.
sin cos

r e dr

u

u
1 1

/ / /( )
/ /

( )sin cosu r u

j j

u

u j1 1 1

0
2

1 1

2 2
u j j j

u j

2 2 2

2 2

i
v
i

v
C

=

+

+
3 v i i v

v

+ - - +

+

c

c

m

m
#  (S17)

Combine (S16) and (S17). The result is

( ) ( )
.

sin cos
sin cos

W

u

u u

u

d

1 1 1

1 1 1

E

/

/ /

/ /
/arctan

j

u j

u j j j

j j

u

u
u u

2 2

2 2 2
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1 1

1 1 1 1
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Use ( , ) ( ) ( ) / ( )B x y x y x yC C C= +  [27] and divide both the numer-

ator and denominator of the integrand by ( / ( ))cos u / /
j j

u2 1 1u j
2 2

i v v+  

to obtain

 
,

( )
.

tan

tan
cos

W
B

u

u

u

u
d

1 1 1

1

1

E
/

/ /

/

arctan
j

u j

j j u u

j j
u

j j
u

2 2

2

0

1

2 1 1

2 1 1

2

u

u j

u

2

2 2
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#
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v i
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i
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= -

+
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(S18)

Next, make the variable transformation

 .
tan

z
u 1

1
j j

0 2v i
=

+
 (S19)

The derivative of the new variable with respect to the old vari-

able is

( )
,

tan cosd
dz

u
u

1j j

j j0
2 2 2

2

i v i i

v
=-

+

which leads to the relationship

.
cos

d
u z

dz
j j

2 2
0
2

0

i
i

v
=-

The integration bounds convert as

z0 10&i = =

: ,arctan
uu

z
u uu

uu z1
u j j u

u
2 0 2 2

2

0&i
v

= =
+

= *c m

where it is noted that ,z 10 #
*  which means the previous lower 

bound is now an upper bound, and vice versa. Furthermore, 

one minus (S19) yields

.
tan

tan
z

u
u

1
1j j

j j
0 2

2

v i

v i
- =

+

Expression (S18) can now be written in terms of variable .z0  

The result is

,
( ) .W

B
u

z z dz1 1 1
1 1E / /

j

u j

z u

2 2

0
1 1

1
0

1 1j u
2

0 2

v

= + -
v - -

*

^
c

h
m
#

The integrand is recognized as the kernel of a / , /u1 1Beta j u
2 2v^ h 

distribution. Swap the integration limits and replace the sec-

ond term using the cumulative density function of the recog-

nized beta distribution. Finally, the expected win rate is simpli-

fied to be

,W F
u u u
u uE j Z

j j u

u
2 2

2

0
v

=
+

^ eh o

where ( / , / ),Z u1 1Beta j u0
2 2+ v  which completes the proof. 

Theorem S3: Expected Response

Assume a randomized bidding strategy ( / ,U u1Gamma u
2+

/ ( ))u u1 u
2  with ,u u 0u 2  and consider bidding in n segments, 

denoted , , .j n1 f=  Suppose the highest competing bid price 

u j  and the available incremental response , , ,y j n1j
a f=  are 

known only probabilistically as realizations of the random 

variables U j  and ,Yj
a  where / , / ( )( )U u1 1Gammaj j j j

2 2+ v v  and 

Y yE j
a

j
a=  for known values of , ,uj jv  and .y j

a  If U j  and Yj
a  are 

independent for all j, then the expected response is

 ,Y y F
u u u
u uE j

a

j

n

Z
j j u

u

1
2 2

2

0
v

=
+=

^ eh o/  (S20)

where / , /( ).Z u1 1Beta j u0
2 2+ v

Proof

The expected response is given by the expected value of (S8). 

Since Yj
a  and W j  are independent, the expected response 

satisfies

.Y Y WE E E
j

n

j
a

j
1

=
=

^ ^ ^h h h/

Replacing ( )YE j
a  with y j

a  and ( )WE j  with (S13) yields

,Y y F
u u u
u uE j

a

j

n

Z
j j u

u

1
2 2

2

0
v

=
+=

^ eh o/

where / , /( )Z u1 1Beta j u0
2 2+ v , which completes the proof. 
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Theorem S4: Expected Win Rate Sensitivity

Assume a randomized bidding strategy ( / ,U u1Gamma u
2+

/ ( ))u u1 u
2  with , .u u 0u 2  If the highest competing bid price, 

,u j  is only known probabilistically as a realization of the  

random variable / , / ( )( )U u1 1Gammaj j j j
2 2+ v v  for known values 

of , ,u 0j j 2v  then the expected win rate sensitivity is

 ,du
dW

u u u u
u

f
u u u
u uE j

u j u j u j

u j
Z

j j u

u
2 2 2 2 2 2

2 2

2 2

2

1
v v v

v

v
=

+ + + +
c ^ ^ em h h o  (S21)

where / , /( ).Z u1 1 1 1Beta j u1
2 2+ v + +

Proof

The expected win rate sensitivity is

( ) ( ) ,du
dW

du
dw

u f u duE j j
j U j j

0
j=

3c m #

where /dw duj  is a realization of (S11), and ( )f uU jj  is the proba-

bility density function of a / , / ( )( )u1 1Gamma j j j
2 2v v  random vari-

able. Substituting the expressions for /dw duj  and ( )f uU jj  yields

.

du
dW

u u
u

u u
u

e
u

u e du

1
1 1

1

1

1

E
/

/( )

/

/ /( )

j

u

u

u

j u

u u u

j

j j
j

u u
j

2
0

2

2

1

2

2

1

1 1

u

j u

j

j j j j

2

2

2

2 2

#

v

v

C

C

=
+

3

v

v v- - -

c
c

c

c

cm

m

m

m
m#

Collecting all factors independent of u j  and moving them out-

side the integral sign yields
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The integrand is recognized as the kernel of a Gamma   

( / / , / ( ) / ( ))u u u u1 1 1 1u j u j j
2 2 2 2v v+ +  probability distribution. Hence,  

the integral over ( , )0 3  must equal ( / / ) / [ / ( )u u u1 1 1u j u
2 2 2vC + +

/ ( )] .u1 / /
j j

u2 1 1u j
2 2

v v+  Replacement of the integral with this expres-

sion and straightforward rearrangement of the right-hand 

side yields
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However, / ( ) .u u u u u0 1u j j u
2 2 21 1v +  Hence, the expression for 

( / )dW duE j  contains the kernel of a / , /( )u1 1 1 1Beta j u
2 2v + +  dis-

tribution evaluated at / ( ).u u u u uu j j u
2 2 2v +  Replacing the kernel 

with an expression containing the corresponding beta prob-

ability density function yields

,
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where / , /( ).Z u1 1 1 1Beta j u1
2 2+ v + +  Use the known identities 

( ) ( )x x x1C C+ =  for x 02  and ( , ) ( ) ( ) / ( )B x y x y x yC C C= +  

[27] together with various cancelations to obtain
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This can be further simplified as
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where / , /( ),Z u1 1 1 1Beta j u1
2 2+ v + +  which completes the 

proof. 

Theorem S5: Expected Response Sensitivity (Plant Gain)

Assume a randomized bidding strategy ( / ,U u1Gamma u
2+

/ ( ))u u1 u
2  with ,u u 0u 2  and consider bidding in n segments, 

denoted , , .j n1 f=  Suppose the highest competing bid price 

u j  and the available incremental response , , ,y j n1j
a f=  are 

known only probabilistically as realizations of the random 

variables U j  and Yj
a  [where / , / ( )( )U u1 1Gammaj j j j

2 2+ v v  and 

]Y yE j
a

j
a=  for known values of , ,uj jv  and .y j

a  If U j  and Yj
a  are 

independent for all j, then the expected response sensitivity is

,du
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Proof

The expected response sensitivity is given by the expected 

value of (S12). Since Yj
a  and /dW duj  are independent, the ex-

pected response sensitivity satisfies

.du
dY Y du

dW
E E E

j

n

j
a j

1

=
=

c ^ cm h m/

Replacing ( )YE j
a  with y j

a  and ( / )dW duE j  with (S21) yields

,du
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where / , /( )Z u1 1 1 1Beta j u1
2 2+ v + + , which completes the 

proof. 

A deeper study of the statistical properties of the response 

curve is available in [14]. Specifically, closed-form expressions of the 

Bayesian variance of the win rate sensitivity and response sensi-

tivity are derived. The variance provides an important measure of 

precision of the expected value. It is naturally used along with the ex-

pected value. However, it is excluded here in the interest of space.
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Most bidders in online advertising do not have access to 

the landscape of competing bid prices. At best, a bidder knows 

whether an impression was awarded or not and the highest 

competing bid for each awarded impression. A bidder that is 

awarded only a tiny fraction of all available impression op-

portunities can, at best, estimate the response curve in the 

neighborhood of the current operating point. The number of 

data points is too small, and important information about the 

response curve is censored. In this scenario, Heisenberg bid-

ding still smoothens the response curve, which is all that is 

relied upon in the body of this article. A recursive least-squares 

estimator is proposed to estimate the plant gain based on feed-

back only from our own campaign delivery.

In some cases, however, additional information is avail-

able. For example, a demand-side platform (DSP) may man-

age thousands of campaigns simultaneously. These may be 

submitting bids at different price points for a diverse set of im-

pression opportunities across a large number of impression 

exchanges. Although these campaigns together may still win 

only a small fraction of all available impressions in competition 

with campaigns represented by other DSPs, the prospect of 

a useful response curve estimation is significantly better. The 

diverse bidding at different price points and for different audi-

ence segments opens up the possibility of producing response 

curve forecasts. Such forecasts are inherently uncertain and 

not necessarily accurate enough for campaign planning on 

their own. However, they provide useful guidance for controller 

initialization and control signal sensitivity  computation.

For example, the closed-form expression of the expected 

response in Theorem S3 can help an operator of the cam-

paign control system to initialize the control system. Depend-

ing on how risk averse the advertiser is, an initial control signal 

is selected above or below the control signal corresponding to 

an expected response that is equal to the desired response.

Furthermore, the closed-form expression of the expected 

response sensitivity in Theorem S5 can be fed to an adaptive 

control system to help maintain a desired loop gain. If a recur-

sive plant gain estimator based on campaign feedback data is 

available, then an enhanced plant gain estimate can be com-

puted by combining the recursive feedback-based estimate 

with the response curve-based estimate via Theorem S5.

Moreover, the closed-form expression of the expected re-

sponse sensitivity can also assist in the selection of an ad-

equate control signal uncertainty .uu  While bid randomization 

compromises true bid optimality, the absence—or insufficient 

use of—of bid randomization may lead to instability or the 

nonexistence of a fixed-point solution (and suboptimality). As 

a general principle, the control signal uncertainty should be 

small but large enough to make the effective plant gain, as a 

function of the nominal control u signal, well behaved and not 

wildly volatile as the nominal control is adjusted up or down.

EXAMPLE: EXPECTED RESPONSE

Assume a response curve estimate is available and given in 

expected sense by

. , . , . , . , . , ,

, , , , , .

u

y

0 2 0 3 0 9 2 4 2 5 3

10 2 18 4 4 7 10
:

:
a

1 6

1 6
3$

=

= 6
6

@
@

The jth elements of u :1 6  and y :
a
1 6  define u j  and ,y j

a  respec-

tively. Consider two cases of confidence in u j  as the location 

of the jth step. First, 0jv =  corresponds to the scenario of per-

fect knowledge of all ,u j  that is, U uj j=  for , , , .j 1 2 6f=  In the 

second case, assume our belief is described by a gamma dis-

tribution with mean u j  and relative standard deviation .0 1jv =  

for all j; that is, the unknown U j  is in the neighborhood of u j  

defined by a confidence interval having a 10% relative stan-

dard deviation.

Consider five different values of control signal uncertainty:

, . , . , . ,u 0 0 05 0 1 0 2u =  and 0.5. The expected response curve 

can be computed in closed form using Theorem S3. The 

simplicity of the result does not come across in the theorem. 

However, since the beta cumulative density function is readily 

available in mathematics libraries that are accessible in most 

programming languages, the implementation to compute the 

expected response ( )YE  is both simple and computationally 

efficient, as shown in the following pseudocode:

;y 0temp =

for :j 1 6=

( );z u u u u uj u j j u
2 2 2v= +

, , ;y y y z u1 1betacdfj
a

j j u
2 2

temp temp $ v= + ` j  

end

( ( ))Y u yE temp=

The result is drawn in Figure S5, where (a) shows the re-

sult for 0jv =  and (b) for . .0 1jv =  The black curves corre-

spond to ,u 0u =  that is, the scenario with no plant smoothing. 

This special case is obtained by substituting an infinitesimal 

value of uu  in the closed-form expression (S20). The five 

curves show the impact of different control signal uncertain-

ties , . , . , . ,u 0 0 05 0 1 0 2u =  and 0.5. The larger ,uu  the smoother 

the curve, as expected. The curves in Figure S5(b) suggest 

the response curves become smoother for larger .jv  However, 

that conclusion is misleading since u j  and y j
a  are not actual 

random variables but, rather, unknown parameters that are de-

scribed probabilistically using belief functions. The increased 

smoothness for larger jv  only reflects the greater uncertainty 

of where the response curve is flat or steep. 

EXAMPLE: EXPECTED RESPONSE SENSITIVITY

Assume the same response curve estimate as in the “Exam-

ple: Expected Response” section. Consider the four different 
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control signal uncertainty values given by . , . , . ,u 0 05 0 1 0 2u =  

and 0.5. The expected response curve sensitivity can be com-

puted in closed form using Theorem S5. The expression in 

the theorem is intimidating but simple to implement, again 

thanks to the availability of mathematics libraries with the 

relevant beta probability density functions (as shown in the 

following pseudocode):

;y 0temp =l

for :j 1 6=

;z u u u u uj u j j u
2 2 2v= +^ h

, , ;

y y y
u u u u

u

z u1 1 1 1betapdf

j
a

u j u j u j

u j

j j u

2 2 2 2 2 2

2 2

2 2

temp temp

$

v v v

v

v

= +
+ + +

+ +

l l

`
^ ^

j
h h  

end

( )
du

dY u
yE temp= lc m

The result is drawn in Figure S6, where (a) shows the re-

sult for 0jv =  and (b) for . .0 1jv =  The curves show the im-

pact on the response curve sensitivity from using control 

signal uncertainties . , . , . ,u 0 05 0 1 0 2u =  and 0.5. The larger 

,uu  the smoother the curve. For small values of ,uu  the 

sensitivity (plant gain) spikes near the underlying step in 

the response curve, which is anticipated. The curves in 

Figure S6(b) suggest the response curve sensitivities are 

more contained for larger .jv  However, that conclusion is 

misleading since u j  and y j
a  are not actual random vari-

ables but, rather, unknown parameters described probabi-

listically using belief functions. The increased smoothness 

for larger jv  only reflects the greater uncertainty of where 

the response sensitivity is small or large. 
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FIGURE S6 The expected response sensitivity E(dY/du) as 
a function of control signal u for different values of jv  and 

.uu  The results for (a) 0jv =  and (b) . .0 1jv =  The curves 
show the impact on the response sensitivity using control 
signal uncertainties . , . , . ,u 0 05 0 1 0 2u =  and 0.5. The larger ,uu  
the smoother the curve. For small values of ,uu  the sensitivity 
(plant gain) spikes near the underlying step in the response 
curve, which is an expected behavior.

4

3

2

1

0

E
Y

0 0.5 1 1.5 2 2.5 3 3.5
u

(a)

×104

σu = 0, uu = 0
σu = 0, uu = 0.05
σu = 0, uu = 0.1
σu = 0, uu = 0.2
σu = 0, uu = 0.5

4

3

2

1

0

E
Y

0 0.5 1 1.5 2 2.5 3 3.5
u

(b)

×104

σu = 0.1, uu = 0
σu = 0.1, uu = 0.05
σu = 0.1, uu = 0.1
σu = 0.1, uu = 0.2
σu = 0.1, uu = 0.5

FIGURE S5 The expected response EY as a function of control 
signal u for different values of jv  and .uu  The results for 
(a)  0jv =  and (b) . .0 1jv =  The curves show the impact on the 
response curve using control signal uncertainties ,u 0u =  0.05, 
0.1, 0.2, and 0.5. The larger ,uu  the smoother the curve. 
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this section, the stochastic difference equations governing 
the system behavior are rewritten in a more manageable 
form. In the following section, fixed-point solutions and 
limit cycles of the expected trajectory are derived, together 
with the stability conditions of the expected trajectory. 
Thereafter, conditions for the stability of the covariance of 
the trajectory are computed.

Substituting (16) and (18) into (19) and combining the 
result with (21) and (23) obtains e(t) and u(t) as functions of 
the states

 ( ) ( ) ( ),e t x t x t1 3=- +  (24)

 
( ) ( ( )) ( ) ( ( )) ( )

( ( )) ( ).
u t c x t x t x t x t

c x t x t

1 1
1

I

I

4 1 4 2

4 3

=- + + +

+ +
 

(25)

Next, substitute (25) into (15) and (24) into (20) and define

 
( ) : ( ) ( ( )),

( , ) : ( ) ( ) ( ) ( ) .
t a h t

x w x t w t x t w t

1 1

m m m

0 2

1 4 4 4

{

{

= - +

= + +
 

(26)

Note that ( )t0{  is deterministic and periodic, while ( , )x wm1 4{  
is time invariant, stochastic, and nonlinear in the uncorre-
lated random variables x4 and wm. This leads to the closed-
loop, state-update equations

 

( ) ( ( ) ( ( , ))) ( )
( ) ( ( , )) ( )

( ) ( ( , )) ( )
( ) ( ( )),

x t a a c t x w x t

a t x w x t

a c t x w x t

a t w t

1 1
1

1
1

I m

m

I m

m

1 2 1 0 1 4 1

1 0 1 4 2

1 0 1 4 3

0 0

{ {

{ {

{ {

{

+ = - +

+ +

+ +

+ +

 

(27)

 ( ) ( ) ( ) ( ),x t x t c x t c x t1 I I2 2 1 3+ = - +  (28)

 ( ) ( ) ( ) ( ),x t a x t t u t1 c3 2 3 0{+ = + r  (29)

 ( ) ( ) ( ) .x t a x t a w t1 1 u4 3 4 3
2+ = + -  (30)

The dynamical system is shown as a block diagram in 
Figure 5.

States x3 and x4 are causally independent of x1, x2, and 
wm and have closed-form solutions:

 ( ) ( ) ( ) ( ),x t a x a t i u t i0t i
c

i

t

3 2 3 2
1

0
1

{= + - -
=

- r/  (31)

 ( ) ( ) ( ) .x t a x a a w t i0 1t i
u

i

t

4 3 4 3
2

3
1

1
= + - -

=

-/  (32)

It suffices to analyze x1 and x2 while treating x3 and x4 as exog-
enous input signals. Define

 ( ) ( ) ( ) ,( )x t c x t x tI1 1 3= -u  (33)

 ( ) ( ) .x t x t a
u ac

2 2
1

0= -
-u r  (34)

Combining (33) and (34) with (27) and (28) yields the 
state-update equations for ( )x t1u  and ( )x t2u :

  Parameters: , , ( ), ;c h t aI u 2v  (in practice, parameter cI  is a 

function of )a1

  Input:  ( ), ( );u t y tcr  (in practice, ( )a t1t  is also an input used  

to compute ( ))c c aI I 1= t

 State: , ,x x x2 3 4  

 Initialization ( ):t 0=  

   ( )x x0 ,2 2 0=  

   ( )x x0 ,3 3 0=  

   ( )x 0 04 =  

 For each instant of time, , , ,t 1 2 f=  compute: 

   ( ) ( )u t x tc 3=  

   ( ) ( ) ( )e t u t y tc= -  

   ( ) ( ) ( )u t x t c e tI0 2= +  

   ( ) ( ) ( )( )u t u t x t10 4= +  

   ( ) ( , )w t 0WNu u
2+ v  

   ( ) ( ) ( )x t x t c e t1 I2 2+ = +  

   ( ) ( ) ( ) ( ) ( )( )x t a x t a h t u t1 1 1 c3 2 3 2+ = + - + r  

   ( ) ( ) ( )x t a x t a w t1 1 u4 3 4 3
2+ = + -

ALGORITHM 1 Control.

uc

h(t) h(t)

1 – a2
q – a2

1 – a2
q – a2

cIq
q – 1

uc

u0

u

1 – a3
q – a3

2wu
wm

e a0 + a1u

Plant

y′ y

Feedforward Controller Feedback Controller

–

FIGURE 5 A block diagram of the nonadaptive closed-loop system. The figure depicts the interconnected system in (27)–(30), and q re -
presents the forward-shift operator (for example, ( ) ( )qx t x t 1= + ). It consists of a time-periodic, linear, dynamic plant with multiplicative 
process noise; a pure error feedback controller with artificially generated random excitation perturbations; and a time-periodic dynamic 
feedforward controller.
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u

r

u u u

Combined with (24) and (25), the following output equa-
tions for u(t) and e(t) are obtained:

 ( ) ( ( )) ( ) ( ) ,u t x t x t x t a
u a1 c

4 1 2
1

0= + - + +
-u u rc m  (35)

  ( ) ( ).e t c x t1
I

1=- u  (36)

The state-update and output equations can be expressed in 
matrix form as

 ( ) ( , , ) ( ) ( , , ),x t A t x w x t B t x w1 m m4 1 4e+ = +u u  (37)

 ( ) ( ) ( ) ( ),z t C x x t D x4 2 4e= +u  (38)

where ( ) [ ( ), ( )] , ( ) [ ( ), ( )]x t x t x t z t u t e tT T
1 2= =u u u , and

( , , )
( ) ( ( , )),

,
( ) ( ( , ))

,

A t x w
a a c t x w a c t x w1

1
1

1

m

I m I m

4

2 1 0 1 4 1 0 1 4{ { { {
=

- +

-

+; E  
 

 (39)

 ,B
1
0=
; E  (40)

 ( )
( ),

/ ,
( ) .

,C x
x t
c

x t1
1

1
0I

4
4 4

=
- -

-

+; E  (41)

 ,D
1
0=
; E  (42)

 ( , , ) ( ) ( ( , ) ( ) ),t x w c t x w u a a wm I m c m1 4 0 1 4 0 0e { {= - +r  (43)

 ( ) ( ).x a
u a x1c

2 4
1

0
4e =

-
+

r  (44)

The state-transition matrix A is a T-periodic random 
matrix that depends on the exogenous random input sig-
nals x4 and wm via 1{  (but not on the state xu ). Matrix C is a 
random matrix that depends only on the exogenous random 
input signal x4. Vectors B and D are constant, while 1e  and 

2e  are scalar input signals constructed from x4 and wm.
Difference equations (37) and (38) are more appealing 

than (27)–(30). However, caution is needed to avoid draw-
ing incorrect conclusions. Not only are A and C stochastic 
matrices, A is also periodic, which prohibits simply apply-
ing what is known from the theory of linear time-invariant 
systems. To appreciate the complexity of linear periodic 
systems, see “Linear Periodic Systems” for a quick review 
of some results.

To prevent x4 from significantly impacting the dynamics 
of ,xu  the dynamics of x4 are designed to be much faster 
than the dynamics of the closed-loop error feedback system. 

Simultaneously, the dynamics of x4 must be sufficiently slow 
to allow plant identification when the assumed plant latency 
is only approximately correct. The time constant of the plant 
latency is usually a few minutes, while the desired time con-
stant of the closed-loop error feedback system is a few hours. 
By selecting a persistent-excitation time constant that is simi-
lar to the plant latency time constant (and much smaller than 
the closed-loop system time constant), the following assump-
tion can be made.

Assumption 1
States ( )x t4  and ( )x tu  are statistically independent.

Strictly speaking, Assumption 1 holds true only if ( )x t4  
is WN, that is, if a3 is zero. According to (37), ( )x tu  always 
depends on ( )x t 14 - . Thus, if ( )x t 14 -  and ( )x t4  are statisti-
cally dependent (a3 is nonzero), then ( )x t4  and ( )x tu  are also 
statistically dependent. However, if a3 is chosen sufficiently 
close to zero, then the statistical dependency is insignifi-
cant, allowing for the analysis as if Assumption 1 is true.

Although (37) and (38) encode everything there is to 
know about the closed-loop system, they do not directly 
reveal what is the expected behavior or the plausible 
variability around the expected behavior as a result of 
stochastic inputs. The dynamics in the expected sense 
are analyzed next. Thereafter, the variability is ana-
lyzed in terms of the second-order statistical moment or 
the variance.

EXPECTED TRAJECTORY AND STABILITY
A good starting point to describe the solution of the sto-
chastic difference equations (37) and (38) is to compute the 
expected solution and determine the conditions under 
which this solution is stable. To derive the expected solu-
tion of (37) and (38) and stability conditions, the following 
results are used.

Lemma 2
At the steady state, it is always true that

( ) ,
(
( ) ( )/ .

) ,
u a a

0
0

E
E
E c

1

2 0 1

1

{

e

e

=

= -

=

r

Proof
1) Use the law of total expectation [21] to deduce that 

( ( , )) ( ( ( , ) | ))x w x w xE E Em m1 4 1 4 4{ {= . Fur thermore, 
( ( , )| ) ( | ) ( )x w x x w x w x x wE E Em m m m1 4 4 4 4 4 4{ = + + = +  

( )x w xE m4 4+ =  since ( )w 0E m =  by definition. Hence, 
( ( , )) ( )x w xE Em1 4 4{ = , which is easily shown to equal 

zero at the steady state, since x4 is a linear combination 
of mean-zero random variables. See also “The Laws 
of Total Expectation and Variance.”

2) Use the linearity property of the expectation operator to 
establish that (E ) (( ) ( )c u a EI c1 0 0 1e { {= - +r E( )) .a wm0  
Since E( ) E( ) ,w 0m 1{= =  it follows that E( ) .01e =
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3) Finally, the expected value of 2e  is trivially obtain  ed 
E( E ,) ( ) ( )/ ( )/u a x a u a a1c c2 0 4 1 0 1e = - + = -r r^ h  which 
completes the proof. Y

Lemma 2 is all that is needed to prove the following key 
result.

Theorem 2
If setpoint signal ( )u t 0c $r  is constant, then E([ , , , ] )x x x x T

1 2 3 4  
has a limit cycle [ , , , ] ,x x x x T

1 2 3 4
* * * *  where

( )
( )
( )
( )

( )
( )/

( )
,

x t
x t
x t
x t

u a t i
u a a

u a t i
0

c
i

i

c

c
i

i

1

2

3

4

2
1

1 0

0 1

2
1

1 0

{

{
=

-

-

-

*

*

*

*

3

3

-

=

-

=

r

r

r

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
W
W

/

/

while the performance signal E( ) : E([ , ] )z u e T=  has a fixed-
point solution ,z*  where

Linear Periodic Systems

L inear periodic systems appear innocent on the surface, and 

it is tempting to draw premature conclusions about their 

stability. However, periodic systems have remarkably compli-

cated dynamics. It is important to appreciate the complexity 

and handle any periodic system carefully.

Extensive literature on linear systems is available (for ex-

ample, [28]). However, with few exceptions, the coverage of 

the special case of linear periodic systems is brief. The reader 

is easily led to believe that periodic systems are not particu-

larly important and that linear time-invariant systems are good 

enough. On the contrary, many important physical phenom-

ena are cyclical by nature and must be modeled as time peri-

odic to capture dominant dynamics. Fortunately, there exists 

plenty of adequate literature. For example, [29] focuses on 

periodic systems and provides a relatively up-to-date treat-

ment of these intriguing systems. It is a good source for further 

study on this subject.

Basic facts about periodic systems are given here, and it 

is demonstrated how challenging linear periodic systems can 

be. The results are presented in the context of continuous-

time systems, but the relevant takeaways carry over to dis-

crete-time systems.

Consider the linear homogeneous system of first-order dif-

ferential equations

 ( ) ,dt
dx A t x=  (S22)

where , ( )x A t RRn n n! ! #  is a continuous function of ,t R!  and

 ( ) ( )A t A t T= +  (S23)

for some period .T 02

Definition S1

A set of n linearly independent solutions of (S22), { , , },n1 fz z  is 

called a fundamental set of solutions of (S22), and the n × n matrix

, , n

n n

n

n

nn

1

11

21

1

12

22

2

1

2
f

h h

g

g

g

h
z z

z

z

z

z

z

z

z

z

z

U = =

R

T

S
S
S
S
S

6

V

X

W
W
W
W
W

@

is called a fundamental matrix of (S22). 

Theorem S6

Assume that ( ) ( )A t A t T= +  and ( )A t Rn n! #  is a continuous 

function of .t R!  If ( )tU  is a fundamental matrix for (S22), then 

so is ( ).t TU +  Furthermore, for every ,U  there exists a non-

singular matrix P that is also periodic with a period T and a 

constant n × n matrix R, such that

 ( ) ( ) .t P t etRU =  (S24)

Proof

See, for example, [28] or any other comprehensive book on 

linear systems. 

The first example from [28] demonstrates that scalar linear 

systems already have complicated dynamics as soon as A(t) 

is periodic rather than constant. 

EXAMPLE: SCALAR SYSTEM

Consider the scalar system

 ( ) .sinx t x2=- +o  (S25)

Then, ( ) ( ),sinA t t 2=- +  and A(t) is periodic with .T 2r=  As 

can be verified by substitution into the relation ( ) ( ) ( ),t A t tU U=o  

a fundamental matrix for (S25) is given by

( ) .t ecos t t1 2U = - -

The Laws of Total Expectation and Variance

These useful and versatile results from mathematical sta-

tistics are sometimes known as the law of iterated ex-

pectation and the conditional variance identity.

The law of total expectation states that if X1 and X2 are 

any two random variables, then

 ,X X XE E E1 1 2= ^ ^ hh  (S28)

provided that the expectations exist.

The law of total variance states that for any two random 

variables X1 and X2,

 ,X X X X XVar E Var Var E1 1 2 1 2= +^ ^ ^ ^hh hh  (S29)

provided that the expectations exist. The identities are well 

known in the literature, and the proofs are both straightfor-

ward and readily available in textbooks and online [21].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 27,2021 at 14:26:48 UTC from IEEE Xplore.  Restrictions apply. 



OCTOBER 2020 « IEEE CONTROL SYSTEMS 63

: .z
u
e 0

a
u ac

1

0

= =
*

*
*

-r

; ;E E

The limit cycle and fixed-point solution are globally 
asymptotically stable if and only if the eigenvalues of 

( ) : ( , , ) ( , , ) ( , , )A A T A T A1 0 0 1 0 0 1 0 0g= -r  are strictly 
inside the unit circle.

Proof
First, compute the expected values of x4, x3, and [ , ] ,x x x T

1 2=u u u  
in that order. Since E( ( ))w t 0u =  for all t, and ,a0 13 1#  
it follows from (32) that

E( ( )) ( ),x t a x 0t
4 3 4=

which converges to zero. Hence, ( ( ))x tE 4  has a globally 
asymptotically stable, fixed-point solution .x 04 =

*

The trajectory of ( )x t3  is deterministic, with a closed-form 
solution given by (31). Recall that ( )u tcr  is constant and ( )t0{  is 

bounded, while a0 12 1# . As long as the infinite sums exist, 
the finite sum in the solution for ( )x t3  can be written as the 
difference between ( )x t3

*  and an infinite tail sum as

( ) ( ) ( ) ( ) .x t a x x t u a t i0t
c

i

i t
3 2 3 3 2

1

1
0{= + - -*

3
-

= +

r /

The first term, ( ),a x 0t
2 3  converges to zero as t goes to infin-

ity. Furthermore, ( ) ,x t 03 $*  and

( ) ( )

( )

( )

.

max

max

x t u a t i

u a

a
u

1

c
i

i

c
i

i

c

3 2
1

1
0

0 2
1

1

2

0

31

/

#

{

{ x

{ x

-

=
-

*
3

3

x

x

-

=

-

=

r

r

r

^

^

h

h

/

/

To determine P(t) and R, let t 0=  and t 2r=  in (S24). Note 

that P(t) satisfies ( ) ( ),P P2 0r =  and ( ) ( ).P0 0U =  We obtain 

( ) ( ) ,e e e2 0 R R4 2 2rU U= = =r r r-  or

.R 2=-

Matrix P(t) is now obtained from (S24) as ( ) ( ) .P t t e tRU= -  The 

substitution with derived expressions of ( )tU  and R yields

( )

,

P t e e

e

cos

cos

t t t

t

1 2 2

1

=

=

- -

-

which is clearly periodic, with period .T 2r=  System (S25) is 

next transformed by P(t) via ( )y P t x1= -  into the system

 

[ ( ) ]

( ) ( )

.

sin siny e t e te y

e e y

y

Ry

2

2

2

cos cos cos

cos cos

t t t

t t

1 1 1

1 1

= - + +

=-

=-

=

- - -

- -

o

 

(S26)

Since ,R 01  it is concluded that the origin of (S26) [and, there-

fore, also of (S25)] is asymptotically stable. 

The following example from [30] illustrates that a linear 

periodic system may be unstable even if the eigenvalues of 

A(t) are always in the open left half-plane for a continuous-time 

system (inside the unit circle for a discrete-time system).

EXAMPLE: MATHIEU EQUATION

Consider the second-order differential equation

 
( )

.dt
dx

a t a
x

0 1

( )A t

1 0
=
- -
; E
1 2 3444 444

 (S27)

When ( )a t0  and ( )a t1  are constants, a necessary and suffi-

cient condition for the exponential stability of [ , ]x 0 0 T=  is 

, .a a 00 1 2  However, consider instead

( )

( ) ,cos

a t a

a t t

0

0
0 0

1

2

2a b ~

=

= -

which implies that (S27) represents the familiar damped 

Mathieu equation. The stability of (S27) depends on the val-

ues of the involved parameters. For . , . ,a 0 1 10 10 a= =  ,10b =  

and . ,3 14159~ r= =  the eigenvalues ,1 2m  of the state matrix 

A(t) are

.
. ( )

,
cos

i
t

0 05 2
0 39 40 1

,1 2 !m
r

=-
+ -

which, clearly, are in the left half-plane for all t. However, 

the stability of (S27) is not determined by ,1 2m  but, rather, 

by the properties of transition matrix ( , ).t t0U  By recogniz-

ing that A(t) is periodic with period ,T 2=  we may numeri-

cally integrate

( , )
( ) ( , ),dt

d t
A t t

0
0

U
U=

where ( , )0 0U  is the identity matrix. We obtain

( , )
.
.

.

.
,T 0

1 0988
2 0683

0 1784
1 0809

U = ; E,

whose eigenvalues have absolute values . , . .1 6973 0 4824

Since ( ) ( , ) ( ), ,x kT T x k0 0 Nk !U=  and ( , )T 0U  has eigenval-

ues outside the unit circle, it follows that there always exists an 

initial value x(0) such that x(t) diverges to 3-  or 3  as .k " 3  

Hence, the zero equilibrium of (S27) is unstable. 

These examples illustrate that the stability properties of lin-

ear time-periodic systems are quite complicated and not always 

compatible with our intuition from linear time-invariant systems. 

Furthermore, the analysis of these properties for a given state 

matrix A(t) is a formidable task.
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Hence, ( )x t3
*  is bounded and exists. It is also trivial to show 

that ( ) ( ).x t T x t3 3+ = **  Finally, the tail sum satisfies

( ) ( ) ,maxu a t i u ac
i

i t
c

i

i t
2

1

1
0 0 2

1

1
1{ { x-

3 3

x

-

= +

-

= +

r r ^ h/ /

which converges to zero as t " 3 . Therefore, ( ) ( ),x t x t3 3" *  
which is a bounded T-periodic function. In other words, 
E( ( ))x t3  has a globally asymptotically stable limit cycle 
defined by .x3

*

Finally, consider [ , ] .x x x T
1 2=u u u  The expected value of 

( )x t 1+u  can be rewritten using the law of total expectation 
as E( ( )) E(E( ( ) | ( )))x t x t x t1 1+ = +u u u . Replace ( )x t 1+u  with 
the right-hand side of (37) and recognize that E( ( , , )A t x wm4

( ) E( , , )| ( )) ( ( , , )| ( )) ( ) E(x t B t x w x t A t x w x t x t Bm m1 4 4 1e e+ = +u u u u

( , ) | ( )).x w x tm4 u  Assumption 1 implies that

E( ( , , )| ( )) E( ( , , )),
E( E( , )| ( )) ( ( , )) .
A t x w x t A t x w

x w x t x w
m m

m m

4 4

1 4 1 4e e

=

=

u

u

Since ( ) ,0E 1{ =  it is, furthermore, easily shown that 
E( ( , , )) ( , , )A t x w A t 0 0m4 =  and E( ( , )) .x w 0m1 4e =  Hence,

E( ( )) ( , , )E( ( )),x t A t x t1 0 0+ =u u

which has the origin as a fixed-point solution. The solution 
is not automatically unique since ( , , )A t 0 0  potentially does 
not have full rank and stability is not yet proven.

Since ( , , )A t 0 0  is T periodic, invoke Floquet theory in dis-
crete time, which states that the system is asymptotically 
stable if and only if the eigenvalues of ( ) : ( , , )A t A t T 1 0 0= + -r

( , , ) ( , , )A t T A t2 0 0 0 0g+ -  are strictly inside the unit 
circle. Alternately (due to Floquet), ( )A tr  and ( )A 1r  have 

the same eigenvalues and are mapped to each other via a 
pure rotation.

Invert the mapping in (33) and (34) to obtain

 ( ) ( ) ( ),x t c x t x t1
I

1 1 3= +u  (45)

 ( ) ( ) .x t x t a
u ac

2 2
1

0= +
-u r  (46)

Since [ , ]0 0 T  is a fixed-point solution of E( ( )),x tu  it follows 
that x3

*  is a limit cycle of E( ( ))x t1  and ( )/u a ac 0 1-r  a fixed-
point solution of E( ( )) .x t2

The limit cycle of E([ ( ), ( )] )u t e t T  is derived using the law 
of total expectation, which implies E( ( )) E(E( ( )| ( ))).z t z t x t= u  
Replace z(t) with the right-hand side of (38) and recognize that 
E( ( ) ( ) E E( )| ( )) ( ( )| ) ( ) ( ( )| ).C x x t D x x t C x x x t D x x4 2 4 4 2 4e e+ = +u u u u u  
Based on Assumption 1, it follows that E( ( )| ) E( ( ))C x x C x4 4=u  
a nd E( ( )| ) E( ( ))x x x2 4 2 4e e=u .  Fur t hermore,  note that 
E( ( )) ( )C x C 04 =  and E( ( )) ( ).x 02 4 2e e=  Hence,

 E( ( )) ( )E( ( )) ( ).z t C x t D0 02e= +u  (47)

However, [ , ]D 1 0 T=  and .( ) ( )/u a a0 c2 0 1e = -r  Since the 
origin is a fixed point of E( ( )),x tu  it follows that :u =*  
( )/u a ac 0 1-r  and zero are fixed-point solutions of ( ( ))u tE  
and ( ( )),e tE  respectively. The derived limit cycle for ( )x t1  
and fixed-point solutions for ( ),x t2  u(t), and e(t) are glob-
ally asymptotically stable if and only if the eigenvalues of 

( )A 1r  are strictly inside the unit circle. This completes 
the proof. Y

It is, in general, not possible to derive a closed-form 
expression for the eigenvalues of ( )A 1r  as a function of 
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FIGURE 6 The stability regime of the expected trajectory for sinusoidal plant seasonality. The charts indicate the stability (yellow) and 
instability (blue) of the expected limit cycle for different combinations of a2, ,a cI1  and h1 when ( ) ( / )sinh t h t2 241 r D=  and /5 60D =  h.  
(From [12].) 
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parameters a2, a1, cI, and h(t). However, it is straightforward 
for any set of parameters (and with the help of a computer) 
to evaluate the product ( , , ) ( , , ) ( , , )A T A T A0 0 1 0 0 1 0 0g-  
and then compute the eigenvalues of this matrix. It is an 
insightful exercise to do this for a few examples. Note for 

( , , )A t 0 0  that parameters a1 and cI always appear together 
as a product. This reduces the degrees of freedom as the 
dynamics are analyzed. It is sufficient to consider combi-
nations of the triplet a2, ,a cI1  and h(t) to gain a complete 
understanding of the stability of any configuration.

Example: The Stability Region of the Expected 
Trajectory for Sinusoidal Seasonality
Consider a sinusoidal plant seasonality

( ) ,sinh t h t
24

2
1

r D= c m

where /5 60D =  h for six different values of the seasonality 
amplitude

, . , . , . , . , and . .h 0 0 5 0 7 0 9 0 975 0 991 =

For each value of h1, compute the eigenvalues of ( )A 1r  for 
40, 000 different combinations of a2 and ,a cI1  and determine 
the stability of each combination. The result is shown using 
heat maps in Figure 6. Blue indicates instability, and yellow 
indicates stability. For values of h1 that are different from 
zero, the heat maps have three regions. In the blue- 
connected region, all combinations of a2 and a cI1  corre-
spond to instability, while in the fully yellow region, all 

combinations correspond to stability. Finally, in the third 
region (blue and yellow mixed), some configurations are 
stable, and some are unstable. In this region, tiny altera-
tions of a2 or a cI1  may turn a stable system unstable or an 
unstable system stable. The stable configurations in this 
region are structurally nonrobust. In conclusion, the design 
goal is to operate in the fully yellow region and on a suffi-
ciently large distance from any unstable configuration to 
ensure robustness. 3

Example: The Stability Region of the Expected 
Trajectory for Square Wave Seasonality
Consider a square wave plant seasonality

( )
,

,
if ( , ) / ,
otherwise

mod
h t

h
h

t T T0 2<1

1

#
=
-
'

for six different values of the amplitude

, . , . , . , . , and . .h 0 0 5 0 7 0 9 0 975 0 991 =

For each value of h1, compute the eigenvalues of ( )A 1r  for 
40, 000 different combinations of a2 and ,a cI1  and deter-
mine the stability of each combination. The result is shown 
using heat maps in Figure 7. Blue indicates instability, and 
yellow indicates stability. The conclusions are similar to 
those drawn in the previous example, with some qualita-
tive differences in terms of how the regions change as h1 
goes from zero to one. Again, the objective is to operate in 
the fully yellow region sufficiently far from any unsta-
ble configuration. 3
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FIGURE 7 The stability regime of the expected trajectory for square wave plant seasonality. The charts indicate the stability (yellow) and 
instability (blue) of the expected limit cycle for different combinations of a2, a cI1 , and h1 when ( )h t h1=  if ( , ) /mod t T T0 21#  and 

( )h t h1=-  otherwise. 
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It is a daunting task to derive a closed-form expression 
of the expected trajectory or of the eigenvalues of ( )A 1r  in 
general, which is the motivation of establishing Theorem 2. 
However, in the special case ,a 02 =  the situation is less 
challenging. Since a2, typically, is small in a real implemen-
tation, this scenario has practical value.

Theorem 3
If a 02 = , then the limit cycle and fixed-point solution in 
Theorem 2 are globally asymptotically stable if and only if 

( ( )) .a c i1 1i
T

I1 1 0 1{P -=

Proof
With the same reasoning as in the proof of Theorem 2, we 
establish that E( ( )) ( , , )E( ( )).x t A t x t1 0 0+ =u u  According to 
Floquet, E( ( ))x t 0=u  is globally asymptotically stable if and 
only if the eigenvalues of ( )A 1r  are strictly inside the unit 
circle. Since a 02 = , it is known from (39) that

( , , )
( ),

,
( )

.A t
a c t a c t

0 0 1 1
I I1 0 1 0{ {

=
-

-
; E

It is easy to confirm by matrix multiplication and fac-
torization that, for any integer ,x  it is always true that 

( , , ) ( , , ) ( ( )) ( , , ).A A a c A1 0 0 0 0 1 1 0 0I1 0x x { x x+ = - +  Re peat-
 ing this for , , , T1 2 1fx = -  yields

( ): ( ( )) ( , , ) .A a c i A T1 1 0 0
i

T

I
1

1

1 0{= -
=

-
r e o%

The eigenvalues of ( )A 1r  are obtained as the solutions to 
( ( )) .det I A 1 0m - =r  It is straightforward to obtain

( ( )) ( ( )) .det I A a c i1 1
i

T

I
1

1 0m m m {- = - -
=

r e o%

The solutions are 01m =  (which is always inside the unit 
circle) and ( ))( a c i1i

T
I2 1 1 0m {P= -=  [which is inside the unit 

circle if and only if ( ( ))a c i1 1i
T

I1 1 0 1{P -= ], which proves 
the condition for asymptotic stability of E( ( )) .x t 0=u  The 
same condition defines stability for E( )x  and E( ),z  as out-
lined in the proof of Theorem 2.  Y

Corollary 1
A sufficient condition for the global asymptotic stability in 
Theorem 3 is

 ( ) .maxa c h i0 1
2

I
i

11 1
+

 (48)

Proof
Assume (48) is true. Since ( )h t 12-  for all t, the inequali-
ties in the corollary can be written as

 ( ) , for all .a c h t t0 1
2

I11 1
+

 (49)

Furthermore, a 02 =  implies that ( ) : ( ) ( ( ))t a h t1 10 2{ = - + =

( ).h t1 +  Substitute ( )h t1 +  with ( )t0{  in (49) to obtain

 ( ) , for all .a c t t0 2
I1

0
1 1

{
 (50)

Multiply the second inequality of (50) by ( )t0{  and subtract 
one to obtain

 ( ) .a c t 1 1I1 0 1{ -  (51)

Next, multiply the first inequality of (50) by ( )t0{-  (which 
is less than zero) and add one to obtain

 ( ).a c t1 1 I1 02 {-  (52)

Combine (51) and (52) into

 ( ) .a c t1 1I1 0 1{-  (53)

Since (53) is true for all t, it follows that

( ) .a c i1 1I
i

T

1 0
1

1{-
=

%

Finally, ( ) ( ( )) .a c i a c i1 1i
T

I i
T

I1 1 0 1 1 0{ {P P- = -= =  Hence, 
the condition for global asymptotic stability in Theorem 3 
is satisfied, which completes the proof.  Y

COVARIANCE TRAJECTORY AND STABILITY
It is not wise to only compute the expected solution to a 
stochastic system. A well-behaved expected trajectory is of 
little use if, for example, the variance diverges. This section 
derives the conditions for stability of the covariance. To 
support that endeavor, we use Lemma 3.

Lemma 3
At the steady state, it is always true that

( ) ,
( ) ,
(

( ) .

) ( ( )) (( ) ( ) ),

x

c t u a a

a
u a

Cov
Cov
Cov

Cov

u

u m m u

I c u m m u m

c
u

4
2

1
2 2 2 2

2
1

0
2

2

1 0
2

0
2 2 2 2 2

0
2 2

v

{ v v v v

e v

e { v v v v v

=

= + +

=
-

= - + + +

r

r

c m

Proof
1) State variable ( )x t4  is stochastic, but it is causally 

independent of other states. It evolves according to 
(22), and its covariance is

( ( )) ( ) ( ) .x t a x t a w t1 1Cov Cov u4 3 4 3
2+ = + -^ h

 Moreover, ( ( )) ,w tCov u u
2v=  and ( ( ), ( )) .x t w t 0Cov u4 =  

It is trivial to rewrite this as

( ( )) ( ( )) ( ) .x t a x t a1 1Cov Cov u4 3
2

4 3
2 2v+ = + -

 By design, ;a0 131#  hence, this is a stable difference 
equation. Consequently, ( ( ))x tCov 4  converges to its 
steady state, which is defined by ( ( ))x t 1Cov 4 + = 

( ( )).x tCov 4  Therefore, ( ( ))x tCov 4  converges to .u
2v

2) The law of total covariance [21] dictates that
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( ( , )) ( ( ( , )| ))

( ( ( , )| )) .C

x w x w x

x w x

Cov Cov E
E ov

m m

m

1 4 1 4 4

1 4 4

{ {

{

=

+
 

(54)

 See also “The Laws of Total Expectation and Variance.” 
Meanwhile, ( , )x w x w x wm m m1 4 4 4{ = + +  according to 
(26), and, consequently,

 ( ( , )| ) ,x w x xE m1 4 4 4{ =  (55)

 ( ( , )| ) ( ) .x w x x1Cov m m1 4 4 4
2 2{ v= +  (56)

 Substitute (55) and (56) into (54); then, leverage ( )x 0E 4 =  
and the first result of this lemma ( ) ( )x xE Cov u4

2
4

2v= =  
to obtain

( ( , )) ( ) (( ) )
( )

.

x w x x

x x

1
1 2

Cov Cov E
E

m m

u m

u m m u

1 4 4 4
2 2

2 2
4 4

2

2 2 2 2

{ v

v v

v v v v

= + +

= + + +

= + +

3) Based on Lemma 2 (which states that ( ) ),0E 1e =  it fol-
lows that ( ) ( ),Cov E1 1

2e e=  which, combined with the 
definition of 1e  in (43), yields

(
( ) (( ) ( ) ( )

( ) ( )) .

) ( ) (( ) )C c u a a w

c u a a w

a u a w

ov
E E

E

EI c m

I c m

c m

0
2

0
2

1
2

0
2 2

0 0 1

1 0
2

0 1 0
2e

{ {

{

{ {

= - +

+ -

= - +

r

r

r

 However, ( ) ,wE m m
2 2v=  and, with help from the law of 

total expectation, ( ) ( ( | )) .w w 0E E Em m1 1 1{ { {= =  Fur-
thermore, it is known from Lemma 2 that ( ) ,0E 1{ =  
and, from the second result of this lemma, ( )E 1

2{ = 
( ) .Cov u m m u1

2 2 2 2{ v v v v= + +  Therefore,

( ) ( ) (( ) ( ) ) .c u a aCov I c u m m u m1 0
2

0
2 2 2 2 2

0
2 2e { v v v v v= - + + +r

4) Given the definition of 2e  in (44), it follows that the 
autocovariance of 2e  is

( ) ( ) .a
u a x1Cov Cov c

2
1

0
4e =

-
+

rc m

 However, ( ) ,x 0E 4 =  and ( ) ;xCov u4
2v=  hence, trivially,

( ) ,a
u aCov c

u2
1

0
2

2e v=
-rc m

 which completes the proof of the lemma. ■

The convergence speed toward the steady-state values 
in Lemma 3 is driven by the convergence speed of 

( ( )) .x tCov 4  However, the dynamics of the persistent-exci-
tation controller are fast by design (a3 is small). Hence, 

( ( ))x tCov 4  and covariances determined by ( ( ))x tCov 4  
approach the steady-state values rapidly. The following 
key result about the covariance of state and output can 
now be derived by utilizing Lemma 3.

Theorem 4
Globally asymptotically stable and unique limit cycles of 

( ( ))x tCov  and ( ( ))z tCov  exist if and only if the eigenvalues of

A A AA ( ) : ( ) ( ) ( )T T1 1 1f= -
-

are strictly inside the unit circle, where

 A ( ) ( ) ( ) ( ) ( ) ( ),t A t A t A t A t Cov0 0 1 1 17 7 {= +  (57)

where ,  denotes the Kronecker product; A ( )t  is con-
structed from

 ( )
( ),

,
( )

,A t
a a c t a c t

1 1
I I

0
2 1 0 1 0{ {

=
-

-
; E  (58)

 ( )
,

( ),A t a c t
1
0

1
0 I1 01 {=

-; E  (59)

and ( ) .Cov u m m u1
2 2 2 2{ v v v v= + +

Proof
The autocovariance of ( )x t4  is stable, and its steady-state 
value equals u

2v  (Lemma 3). Meanwhile, ( ),x t4  according to 
Assumption 1, is statistically independent of other states, 
which implies they are also uncorrelated. Moreover, ( )x t3  is 
deterministic and, therefore, also statistically uncorrelated 
with all other states. It follows that the stability of 

( ( ))x tCov  is dictated by the stability of ([ ( ), ( )] )x t x tCov T
1 2  

or ( ( ))x tCov u  due to the relationship in (33) and (34).
Specifically, ( ( ))x tCov  is globally asymptotically stable 

and with a unique limit cycle if and only if ( ( ))x tCov u  is 
globally asymptotically stable with a unique limit cycle. 
The dynamics of ( )x tu  are governed by (37). Hence, the cova-
riance of ( )x tu  satisfies the difference equation

 ( ( )) ( ( , , ) ( ) ( , , )) .x t A t x w x t B t x w1Cov Cov m m4 1 4e+ = +u u  (60)

However, ( ( )) ,x t 0E =u  and it is easy to show that, when 
expanding the right-hand side of (60),

( ( )) ( ( , , ) ( ) ( ) ( , , )
( , , ) ( , , ) ),

x t A t x w x t x t A t x w

B t x w t x w B

1Cov E m
T

m
T

m m
T T

4 4

1 4 1 4e e

+ =

+

u u u

where Assumption 1 and the law of total expectation have 
been used to establish the cross term ( ( , , ) ( )A t x w x tE m4 u  

( , , ) ) ,t x w B 0m
T

1 4e =  which can be further used to rewrite 
the difference equation as

( ( )) ( ( , , ) ( ( )) ( , , ) )
( ),

x t A t x w x t A t x w

BB

1Cov E Cov
Cov

m m
T

T

4 4

1e

+ =

+

u u

where ( ),Cov 1e  at the steady state, is a constant and given 
in Lemma 3.

Next, decompose ( , , )A t x wm4  into a deterministic and a 
stochastic component as
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( , , ) ( ) ( ) ,A t x w A t A tm4 0 1 1{= +

where ( , )x wm1 1 4{ {=  is scalar and stochastic and where 
( )A t0  and ( )A t1  [defined in (58) and (59)] are deterministic 

and T-periodic matrices. Since 1{  is a scalar,

( ( )) ( ) ( ( )) ( ) ( ) ( ( ))
( ) ( ) ( ),

x t A t x t A t A t x t

A t BB

1Cov Cov Cov
Cov Cov

T

T T

0 0 1

1 1 1# { e

+ = +

+

u u u

which is a deterministic and periodic matrix difference 
equation without a trivial closed-form solution.

To proceed, vectorize the matrix difference equations 
describing the dynamics of ( ( )).x tCov u  If X is any matrix, 
then ( )XVec  denotes the vectorization of X formed by 
stacking the columns of X into a single column vector. It is 
well known from the theory of matrices [24] that, whenever 
the matrix dimensions of V, Y, and W match, then

( ) ( ) ( ),W V Y VYWVec VecT 7 =

where (in the case of a 2 # 2 matrix V), the Kronecker prod-
uct ,  is defined by

.V W
V W
V W

V W
V W

11

21

12

22
7 = ; E

Using Kronecker product notation, the dynamics of the 
covariance are

( ( ( ))) ( ( ) ( ) ( ) ( ) ( ))
( ( ( ))) ( ) ( ),

x t A t A t A t A t

x t BB

1Vec Cov Cov
Vec Cov Vec CovT

0 0 1 1 1

1

7 7

#

{

e

+ = +

+

u

u

or, simply,

A( ( ( ))) ( ) ( ( ( ))) ( ) ( ).x t t x t BB1Vec Cov Vec Cov Vec CovT
1e+ = +u u

The dynamics are of the form A B( ) ( ) ( ) ( ),t t t t1X X+ = +  
where A( )t  and B( )t  are bounded T-periodic matrices, 
which is a standard linear periodic difference equation.

Since A( )t  and B( )t  are T-periodic, invoke Floquet theory 
in discrete time, which states that the system is asymptotically 
stable with a unique limit cycle if and only if the eigenval-
ues of A A AA( ) : ( ) ( ) ( )T T1 1 1f= -

-
 are strictly inside the 

unit circle.
The covariance of the performance signal [ ( ), ( )]u t e t T  is, 

in a similar manner, easily shown to satisfy

( )
( ) ( ) ( ( )) ( ) ( ( )),

u t
e t C x x t C x DD tCov E Cov CovT T

4 4 2e= +uc ^m h; E

where ( ( )),tCov 2e  at the steady state, is a constant and given 
by Lemma 3.

Decompose ( )C x4  in a deterministic and stochastic com-
ponent as

( ) ,C x C C x4 0 1 4= +

where

 
,

/ , ,C c
1

1
1
0I

0 =
-

-
; E  (61)

 
,

, .C
1

0
1
01 =

-; E  (62)

Since x4 is a scalar,

( )
( ) ( ( )) ( ( )) ( ( ))

( ( )),

u t
e t C x t C C x t C x t

DD t

Cov Cov Cov Cov

Cov

T T

T

0 0 1 1 4

2e

= +

+

u uc m; E

where the steady-state values of ( ( ))x tCov 4  and ( ( ))tCov 2e  
are constant. Therefore, ([ ( ), ( )] )u t e tCov T  is globally asymp-
totically stable and with a unique limit cycle if and only if 

( ( ))x tCov u  is globally asymptotically stable and with a 
unique limit cycle. This completes the proof. ■

Similar to what holds for the expected trajectory and 
( ),A 1
-

 it is, in general, not possible to derive a simple formula 
for the eigenvalues of A( )1

-
 as a function of parameters a2, a1, 

cI, h(t), ,uv  and .mv  However, it is straightforward for any 
specific set of parameters (and with the help of a computer) 
to evaluate the product A A A( ) ( ) ( ),T T 1 1f-  and then 
compute the eigenvalues of this matrix. It is an insightful 
exercise to complete this task in practice on the computer. 
Note, for A( ),t  that parameters a1  and cI always appear 
together as a product, and the impact of uv  and mv  is dic-
tated by the value of ( ) .Cov 1{  This reduces the degrees of 
freedom during the analysis of the dynamics. It is still neces-
sary to consider combinations of the quadruple a2, ,a cI1  h(t), 
and ( )Cov 1{  to gain a complete understanding of the stabil-
ity of any configuration.

Example: The Stability Region of the Covariance 
Trajectory for Sinusoidal Seasonality
Consider a sinusoidal plant seasonality

( ) . ,sinh t t0 7 24
2 Tr= ` j

where /5 60 h,D =  and consider four values of the covari-
ance of 1{

( ) , . , . , . .0 0 03 0 1 0 2Cov and1{ =

For each value of ( ),Cov 1{  compute the eigenvalues of A( )1
-

 
for 40,000 different combinations of a2 and a cI1  and deter-
mine the stability of each combination. The result is shown 
using heat maps in Figure 8. Blue indicates instability, and 
yellow indicates stability. 

The heat maps have two regions. In the blue region, 
all combinations of a2 and a cI1  lead to instability while, 
in the yellow region, all combinations correspond to sta-
bility. It is desirable to operate in the yellow region and 
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at a sufficiently large distance from any unstable con-
figuration.

Note how the size of the blue unstable region grows 
as ( )Cov 1{  increases. This matches our intuition that a 
higher level of stochastic process noise ( )w tm  or per-
sistent-excitation noise ( )w tu  increases the chance of 
instability. 9

A closed-form expression of the covariance of the trajec-
tory (and an analytical expression of the stability criteria 
for the general case) is outside the scope of this article. 
However, for the special case ,a 02 =  Theorem 4 can be 
refined as follows. Since a2 is small in a typical real imple-
mentation, this scenario has practical value.

Theorem 5
If ,a 02 =  then the limit cycles of ( ( ))x tCov  and ( ( ))z tCov  
are globally asymptotically stable if and only if 

T ( ( )) ( ( )) ( ) .( )a c i a c i1 1Covi I I1 1 0
2

1 0
2

1 1{ { {- +
=%

Proof
As shown in the proof of Theorem 4, ( ( ))x tCov u  satisfies

A( ( ( ))) ( ) ( ( ( ))) ( ) ( ).x t t x t BB1Vec Cov Vec Cov Vec CovT
1e+ = +u u  

According to Floquet, ( ( ))x tCov u  has a globally asymptoti-
cally stable limit point if and only if the eigenvalues of 

A A AA( ) : ( ) ( ) ( )T T1 1 1f= -
-

 are strictly inside the unit 
circle. It follows from (57) that the product of two consecu-
tive matrices A( )t  is

A A

· ( ( ) ( )
( ) ( ) ( ( ))).

( ) ( ) ( ( ) ( ) ( )
( ) ( ( )))

A A A

A t A A

A A t

1 1 1 1
1 1

Cov
Cov 0 0

1 1 1

0 0 1

1 1 7

7

7

7 x x

x x {

x x x x x

x {

+

+ = + + + +

+ +

Consider next the steady state, where ( )Cov 1{  is time invari-
ant and constant. Expand the right-hand side to obtain

A A

( ( ) ( )) ( ( ) ( ) ( ))
( ( ) ( ) ( )) ( ( ) ( ))
( ( ) ( )) ( ( ) ( )) ( ( )) .

( ) ( ) ( ( ) ( )) ( ( ) ( ))A A A A

A A A A

A A A A

A A A A

1 1
1 1
1 1

1 1 1
Cov

Cov
Cov

0 0 1 1 1

1 1 1 0 0

1 1 1 1 1
2

0 0 0 0

7 7

7 7

7 7

7 7

x x x x {

x x { x x

x x x x {

x x x x x x

+ + +

+ + +

+ + +

+ = + +

It is well known that, for any matrices X, Y, V, W with 
matching dimensions, ( ) ( ) ( ) ( )X Y V W XV YW7 7 7=  [24]. 
Use this relationship to express A A( ) ( )1x x+  as
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FIGURE 8 The stability region of the covariance trajectory for sinusoidal seasonality. The charts indicate the stability (yellow) and instabil-
ity (blue) of the covariance limit cycle for different combinations of a2, ,a cI1  and ( )Cov 1{  when ( ) . ( / )sinh t t0 7 2 24r D=  and /5 60D =  h. 
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A

( ( ) ( )) ( ( ) ( )) ( )
( ( ) ( )) ( ( ) ( )) ( )
( ( ) ( )) ( ( ) ( ))( ( )) .

( ) ( ) ( ( ) ( )) ( ( ) ( ))A A A A A

A A A A

A A A A

A A A A

1 1
1 1
1 1

1 1 1
Cov
Cov
Cov

0 1 0 1 1

1 0 1 0 1

1 1 1 1 1
2

0 0 0 0

7

7

7

7

x x x x {

x x x x {

x x x x {

x x x x x x

+ + +

+ + +

+ + +

+ = + +

Consider the fact that .a 02 =  Evaluate the conventional matrix 
products ( ) ( ),A A10 0x x+  ( ) ( ),A A10 1x x+  ( ) ( )A A11 0x x+  and 

( ) ( ) .A A11 1x x+  It is straightforward to show that

( ) ( ) ( ) ( ( )),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ( )),

( ) ( ) ( ) ( ) .

A A A a c

A A A a c

A A A a c

A A A c

1 1 1

1 1

1 1 1

1 1

I

I

I

I

0 0 0 1 0

0 1 0 1 0

1 0 1 1 0

1 1 1 0

x x x { x

x x x { x

x x x { x

x x x { x

+ = + -

+ =- +

+ = + -

+ =- +

Substitute these four matrix products in the expression for 
A A( ) ( )1x x+  to obtain

A A

( ( ) ( ))( ( )) ( )
( ( ) ( ))( ( )) ( )
( ( ) ( ))( ( )) ( ( )) .

( ) ( ) ( ( ) ( ))( ( ))A A a c

A A a c

A A a c

A A a c

1 1
1 1 1
1 1

1 1 1 1
Cov

Cov
Cov

I

I

I

I

0 0 1 0
2

1

1 1 1 0
2

1

1 1 1 0
2

1
2

0 0 1 0
2

7

7

7

7

x x { x {

x x { x {

x x { x {

x x x x { x

+ + +

+ + + -

+ + +

+ = + + -

This expression can immediately be simplified as

A A

(( ( ))
( ( )) ( )).

( ) ( ) ( ( ) ( ) ( )
( ) ( ))

A A A

A a c

a c

1
1 1 1 1

1 ·
Cov

Cov I

I

1 0
2

1 0
2

1

0 0 1

1 1

7

7 { x

{ x {

x x x x x

x { -

+

+ = + + + +

+

By inspection, A( )1x +  is recognized inside this expres-
sion; hence,

A A A( ) ( ) ( ) (( ( ))
( ( )) ( )).

a c

a c

1 1 1
Cov

I

I

1 0
2

1 0
2

1

x x x { x

{ x {

+ = + -

+

Repeating this for , , , T1 2 1fx = -  yields

A A( ) ( ) (( ( )) ( ( )) ( )).T a c i a c i1 1 Cov
i

T

I I
1

1

1 0
2

1 0
2

1{ { {= - +
=

-- %

Next, compute the eigenvalues of A( )T  by going through 
the painful (but straightforward) mechanical labor of solv-
ing A( ( ))det I T 0m - =u . The determinant is

A( ( )) ( ( ( )) ( ( )) ( )).det I T a c T a c T1 CovI I
3

1 0
2

1 0
2

1m m m { { {- = - - -u u u

The four eigenvalues of A( )T  are

,
( ( )) ( ( )) ( ).a c T a c T

0
1 Cov

, ,

I I

1 2 3

4 1 0
2

1 0
2

1

m

m { { {

=

= - +

u

u

Since A( )1
-

 equals A( )T  times a scalar, eigenvalue jm  of 
A( )1
-

 equals eigenvalue jmu  of A( )T  times the same scalar, 
such that

(( ( )) ( ( )) ( )).a c i a c i1 Covj j
i

T

I I
1

1

1 0
2

1 0
2

1m m { { {= - +
=

-
u %  

The four eigenvalues of A( ),T
-

 therefore, are

,

( ( )) ( ( )) ( ) .a c i a c i

0

1 Cov

, ,

I I
i

T

1 2 3

4 1 0
2

1 0
2

1
1

m

m { { {

=

= - +
=

^ h%

The eigenvalues at the origin are always inside the unit 
circle and, therefore, stable. Hence, the system is asymp-
totically stable if and only if 4m  is inside the circle. Since the 
system is linear and periodic, stability implies a unique 
limit cycle. Specifically, ( ( ))x tCov  and ( ( ))z tCov  have glob-
ally asymptotically stable unique limit cycles if and only if 

( ( )) ( ( )) ( ) ,a c i a c i1 1CovT
I Ii 1 0

2
1 0

2
11
1{ { {- +

=
^ h%  which com-

pletes the proof. ■

Corollary 2
A sufficient condition for the global asymptotic stability in 
Theorem 5 is

 ( ( )) ( ( )) ,maxa c h i0 1 1
2

Std i
I1

1
1 1

{+ +
 (63)

and ( ) ,1Std 1 1{  where ( )Std 1{  is the steady-state standard 
deviation of .1{

Proof
Assume (63) is true. Since ( )h t 12-  for all t, it follows that

 ( ( )) ( ( )) , .a c h t0 1 1
2

Std for all tI1
1

1 1
{+ +

 (64)

Furthermore, a 02 =  implies that ( ) : ( ) ( ( ))t a h t1 10 2{ = - + =  
( ).h t1+  Substitute ( )h t1+  with ( )t0{  in (64) to obtain

 ( ( )) ( ) , .a c t t0 1
2

Std for allI1
1 0

1 1
{ {+

 (65)

Multiply the right-hand inequality of (65) by ( ( )) ( )t1 Std 1 0{ {+  
and subtract one to obtain

 ( ) ( ) ( ) .a c t a c t1 1StdI I1 0 1 0 1 1{ { {- +  (66)

Next, multiply the left-hand inequality of (65) by ( 1- + 
( )) ( )tStd 1 0{ {  (which is smaller than zero, since ( ) )1Std 1 1{  

and add one to obtain

 ( ) ( ) ( ).a c t a c t1 1 StdI I1 0 1 0 12 { { {- +  (67)

Combine (66) and (67) into

 | ( )| ( ) ( ) .a c t a c t1 1StdI I1 0 1 0 1 1{ { {- +  (68)

It follows from the triangle inequality that
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 ( ( )) ( ( )) ( ) .a c t a c t1 1CovI I1 0
2

1 0
2

1 1{ { {- +  (69)

Since (69) is true for all t, it follows that

( ( )) ( ( )) ( ) ,a c i a c i1 1CovI I
i

T

1 0
2

1 0
2

1
1

1{ { {- +
=

^ h%

which is the condition for global asymptotic stability in 
Theorem 5 and, therefore, completes the proof. ■

PLANT IDENTIFICATION
The stability of the closed-loop system depends on ,a cI1  
a2, and h(t), where cI is a design parameter, and a2 and h(t) 
are approximately known a priori. Plant gain a1, which 
must be estimated online, remains to be determined. 
Plant model (14) may be rewritten as
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and ( ) WN( , ).w t 0m m
2+ v  Conditioned on the control signal 

sequence u(t), variable ( )y tu  is a sequence of uncorrelat-
 ed random variables with E( ( )| ( )) ( )y t u t a a u t1 10 1- = + -u  
and Var( ( )| ( )) ( ( )) .y t u t a a u t1 1 m0 1

2 2v- = + -u  If estimates 
of a0 and a1 are available and denoted a0t  and ,a1t  respectively, 
then a prediction of ( )y tu  is given by ( ) ( ).y t a a u t 10 1= + -ut t t  
Furthermore, ( ) WN( ,( ( )) ).w t a a u t0m m0 1

2 2+ v+u

Assume u(t) operates in a small neighborhood of some 
operating point. Then, ( )w tmu  has approximately constant 
variance, and : [ , ]a a T

0 1i =  can be estimated by minimiz-
ing the discounted sum of the squares of the residuals, 

( ) ( )y t y t-u ut , based on measurements ( ), ( ), , , .u i y i i t1 f=

Let
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which can be solved using the standard recursive least squares 
estimator, where the exponential memory loss allows for 
time-varying plant parameters [25], [26]. The recursive imple-
mentation with : [ , ]a a T

0 1i =  is outlined in Algorithm 2. It 
follows that ( ) : ( ) ( ) ( )y t a t a t u t i0 1= + -ut t t  is an unbiased, 
m -weighted, minimum-variance prediction of ( ).y tu

To better appreciate the need for persistent excitation, it 
is insightful to consider the closed-form solution of (70), 
which is
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If u "  constant, then the inverted 2 × 2 matrix converges to 
a rank-deficient matrix that cannot be inverted. As a result, 
the identifiability of a0 and a1 is lost. Since estimating the 
slope of a response curve g(u) based on samples of g(u) 
requires data points associated with multiple u values, the 
result is easy to understand. Of practical importance is that 
the competitive landscape and impression supply, which 
dictate the response curve, are time varying. To detect and 
identify a time-varying linearization, it is necessary to 
excite the system on an ongoing basis.

Algorithm 2 may be enhanced by adding, for exam-
ple, estimator windup protection or by implementing a 
bank of estimators where the covariance matrix P for 
each estimator is reset at different time points [25]. How-
ever, with sufficient excitation, these improvements are 
not critical.

The interconnected system consisting of the plant and 
adaptive controller is shown in Figure 9. Recall the control 
objective, which is to achieve a small e(t) and a constant u(t).

SIMULATION RESULTS
The challenges of the control problem and how they are 
addressed by the proposed solution are now illustrated 
with the help of a simulated example. In this example, the 
control system is implemented with discrete time updates 
every /5 60D =  h.

Plant dynamics and process noise are defined by
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 Parameters: , , ( ), ,a h t P2 0 0m it  

 Input: ( ), ( )u t y t  

 State: , Pit  

 Initialization ( ):t 0=

   ( )0 0i i=t  

   ( )P P0 0=  

 For each instant of time, , , ,t 1 2 f=  compute: 

   ( ) ( ) ( ) / ( ) ( ( ))( ) ( )y t y t a y t a h t1 1 1 12 2= - - - + -u  
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ALGORITHM 2 Plant identification.
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The latency parameter .a 0 852 =  corresponds to a plant 
time constant of TP = 0.5 h.

Figure 10(a) shows the response curve for uncertainty 
signals , .u 0 0 05u =  and 0.1. The black staircase function 
represents the original response curve with no plant 
smoothing. Figure 10(b), on the other hand, shows the 
implied effective response sensitivity (plant gain) for 

.u 0 05u =  and 0.1. The slope dg/du in the case of uu = 0 is not 
drawn; however, it equals zero everywhere except for at the 
discrete control signal values , . , , , ,u 1 2 5 3 4 5=  and 8, 
where the slope is undefined (it is infinite). Pay attention to 
how the smoothness of both g and dg/du increase with 
increasing value of the bid uncertainty.

The campaign is set to run for 300 h, and the advertiser 
has specified a desired delivery rate represented by a set-
point signal ucr  defined by

if ,
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Given this setpoint signal and comparing it with g(u) (see 
Figure 10), the optimal control signal to an oracle is known 
to be approximately u = 4 whenever t 100#D  or t200 1 D , 
and u = 3 whenever t100 2001 #D . The precise value, and 
whether an equilibrium exists, depends on the value of the 
uncertainty bid. Moreover, the response curve is unknown 
to the control system and cannot be used to determine the 
control signal.

Latency parameter a2 and seasonality function h(t) are 
assumed known to the control system. In practice, they can 
often be estimated ahead of time at a reasonably high accu-
racy. Indeed, h(t) can be estimated favorably based on the 
delivery of historical ad campaigns and Internet traffic pat-
terns, while a2 can be estimated based on the latency profil-
ing of ad servers and data flows.

The control system relies exclusively on observations 
y(t) to identify the plant and to power the error feedback 
controller. Let the desired loop gain be .a c 0 1I1 = , which is 
well within the stable regime for the expected trajectory and 
its covariance, as indicated in the “Example: The Stability 
Region of the Expected Trajectory for Sinusoidal Seasonal-
ity” and “Example: The Stability Region of the Covariance 
Trajectory for Sinusoidal Seasonality” sections for any rea-
sonable value of .uv  Recall that ( ) ,Cov u m m u1

2 2 2 2{ v v v v= + +  
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FIGURE 9 A block diagram of an adaptive closed-loop system. The figure depicts the interconnected system in (27)–(30), and q repre-
sents the forward-shift operator [for example, ( ) ( )qx t x t 1= + ]. It consists of a time-periodic, linear dynamic plant with multiplicative 
process noise; a pure integral (I)-error feedback controller with artificially generated random excitation perturbations; a time-periodic 
dynamic feedforward controller; a system-identification module (such as a recursive least squares algorithm); and a gain design system 
that computes the integral gain.
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FIGURE 10 A response curve and plant smoothing. (a) The response 
curve for uncertainty signal , .u 0 0 05u = , and 0.1. The black stair-
case function (uu = 0) represents the original response curve with 
no plant smoothing. (b) The implied effective response sensitivity 
(also known as plant gain) for .u 0 05u =  and 0.1.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 27,2021 at 14:26:48 UTC from IEEE Xplore.  Restrictions apply. 



OCTOBER 2020 « IEEE CONTROL SYSTEMS 73

which impacts the stability regime of the state trajectory 
covariance. The selected loop gain is also well within the 
bounds prescribed by Corollaries 1 and 2 for the special case 
of ,a 02 =  which, arguably, is a more conservative case.

Moreover, a1 is known only as an estimate computed by 
Algorithm 2, and the error feedback controller in Algo-
rithm 1 is configured with cI. Hence, the controller gain is 
implemented as ( ) . / ( ),c t a t0 1I 1= t  where ( )a t1t  is the most 
up-to-date estimate of the plant gain.

Integral Control With and Without Plant Smoothing
Consider, first, pure I control with and without Heisen-
berg bidding-based plant smoothing and without excita-
tion  control. Two values of the uncertainty bid are 

compared: uu = 0 (which is the no-plant-smoothing sce-
nario) and .u 0 05u =  (which is plant smoothing with a 
bid randomization having 5% relative standard devia-
tion). The absence of excitation control is configured by 
setting the standard deviation uv  of the persistent exci-
tation to zero.

One simulation of the closed-loop system for each of the 
two configurations is shown in Figure 11. Four quantities 
are drawn as time series. In Figure 11, (a) displays the con-
trol signal u, (b) the spend rate y, (c) the control error e, and 
(d) the plant gain (true and estimated plant gain). The blue 
and magenta curves correspond to uu = 0 and . ,u 0 05u =  
respectively. The green curve in the spend rate plot shows 

( ),u tc  which is the output of the feedforward controller 
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FIGURE 11 Closed-loop performance using pure integral control with and without plant smoothing (without excitation control). The blue 
and magenta curves correspond to bid uncertainty uu = 0 and .u 0 05u = , respectively. (a) The control signal u. (b) The spend rate y and 
feedforward-adjusted setpoint signal uc (green). (c) The control error e. (d) The plant gain estimate a1t  and true plant gain a1 (green) 
associated with the magenta controller. The plant gain estimation is poor for both controller configurations but impossible without plant 
smoothing. Alternately, pure integral control prevents a highly volatile control signal despite the challenging conditions for feedback 
control. Overall, none of the controller configurations are adequate. 
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and, also, the expected spend pattern corresponding to an 
optimal and constant control signal. In Figure 11(d), the 
green curve represents the true effective plant gain in the 
case . .u 0 05u =

Note how none of the plant gain estimates in Figure 11(d) 
converge. The estimate corresponding to uu = 0 (blue) 
quickly diverges out of sight and never returns, while the 
estimate corresponding to .u 0 05u =  (magenta) is highly 
volatile although appears to be unbiased. This demonstrates 
the impact of poor excitation and a challenging response 
curve. The system without plant smoothing is particularly 
challenging, since the response curve from the controller’s 
perspective is, then, a discontinuous staircase function. The 
system with plant smoothing is struggling. However, it at 
least manages to keep the plant gain estimate bounded. In 
this case, the true plant gain is always defined (as shown in 
the green curve). However, without persistent excitation, 
the plant identification is unreliable.

For the control signals in Figure 11(a), it is first noted that 
none of them diverge. The credit partially goes to the use of 
pure I control, which computes the feedback control signal 
u(t) as a value proportional to the sum of all feedback errors 
e(t) from the beginning of the campaign. The responsive-
ness, or lack thereof, is understood by remembering that 
the controller gain is computed as ( ) . / ( ).c t a t0 1I 1= t  Hence, 
if ( )a t1t  is abnormally large, then the controller gain becomes 
tiny, and the control system slows. 

Initially, the plant gain estimates for both uu = 0 and 
.u 0 05u =  are small, which explains the volatile control 

signal for both controllers in the first 10 h of the campaign. 
After the setpoint signal is changed at times t 100=  and  
t = 200, it is noted that the control signal corresponding to 
uu = 0 (blue) visibly does not respond at all. As shown in the 
figure, its plant gain estimate, by then, has diverged to an 
extremely large value, making the controller gain approxi-
mately zero. The plant gain estimate for the case .u 0 05u =  
(magenta) is too large but not as large as for the case uu = 0. 
Consequently, the control signal is more responsive but 
still sluggish.

The spend rate time series in Figure 11(b) demonstrates 
the dramatic effect of using plant smoothing. Without bid 
randomization (uu = 0), the closed-loop system enters an 
operating mode where the spend oscillates around the 
desired spend pattern (see the blue and green curves). In 
fact, there exists no equilibrium in this case, since the 
desired spend is between two steps in the staircase response 
curve. For any fixed control signal value, the spend rate is 
either too large or too small, which forces the control signal 
to oscillate with a small (and almost invisible), high-fre-
quency amplitude. Since no proportional or derivative 
action is used in the feedback controller, the control signal 
does not exhibit large oscillations. This demonstrates an 
advantage of using pure I control. 

Moreover, the practical implication of the observed 
behavior is worse than illustrated in this basic simulation 

because it may trigger a ripple effect among other bidders in 
the network. Indeed, the market consists of many bidders. If 
several bidders experience a highly volatile impression allo-
cation (or spend rate), then this triggers volatile bid prices 
(which are observed as volatile highest competing bid prices 
by other bidders). This leads to an even higher volatility in 
the impression allocation and spend rate, which, then, leads 
to a further increased volatility in bid prices and competing 
bid prices. Overall, in a network of noncooperating bidders, 
it poses a serious risk of instability.

The spend rate with bid randomization ( . )u 0 05u =  is 
shown by the magenta curve. It is well behaved throughout 
most of the scenario. Only in the time interval between 
times t 1 00=  and t 140=  is the spend rate significantly 
different from the desired rate. This shows that bid ran-
domization improves the closed-loop behavior dramati-
cally but not enough. In a real setting, both the setpoint 
signal and the response curve are likely to change over 
time. They also may change not only at distinct rare time 
points but also steadily over time. The response curve 
may change in a step-like fashion when competing bid-
ders enter or exit the market or smoothly as a result of 
gradually evolving competing bids. This behavior calls 
for a plant gain estimation that is robust, fast, and ongo-
ing. It also emphasizes that persistent excitation of the 
system is important.

Integral Control With and Without Excitation Control
Control with Heisenberg bidding-based plant smoothing 
is configured with an uncertainty bid . .u 0 05u =  Two con-
figurations of persistent excitation are evaluated: one with-
out excitation 0uv =^ h and one with excitation, defined by 

.0 02uv =  and . .a 0 193 =  The latter configuration corre-
sponds to a control signal excitation with a standard devia-
tion of 2% and a persistent-excitation time constant of  
TPE = 0.05 h. Note, if the plant latency (modeled by a2) is 
known accurately, then a smaller value of a3 (and TPE) can 
be used. With a perfect latency model, it is reasonable to 
use a 03 =  for maximum excitation. Recognize that the ran-
domization related to Heisenberg bidding (plant smoothing) 
is applied per individual bid, while the randomization 
related to persistent excitation is applied once per sam-
pling period.

Figure 12 shows an example of closed-loop behavior 
using the two configurations of the persistent-excitation 
controller. As in Figure 11, Figure 12 displays (a) the control 
signal u, (b) the spend rate y, (c) the control error e, and (d) 
the plant gain (true and estimated plant gain). This time, 
the magenta curves correspond to ,0uv =  while black 
curves correspond to .0 02uv =  and . .a 0 193 =  The green 
curve in the spend rate plot shows ( ),u tc  which is the output 
of the feedforward controller and, also, the expected spend 
pattern corresponding to an optimal control signal. In 
Figure 12(d), the green curve represents the true efficient 
plant gain in the case of . , . ,u 0 05 0 02u uv= =  and . .a 0 193 =   
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The magenta curves in this figure ( .u 0 05u =  and 0uv = ) 
are equivalent to the magenta curves in Figure 11 and used 
as a benchmark of the black curves involving excitation.

Note in Figure 12(d) the dramatic improvement of the plant 
gain estimation when control signal excitation is used. The 
plant gain estimate converges to a value close to the true plant 
gain within fewer than 24 h. After the setpoint adjustments at 
hours 100 and 200 when the operating point along the response 
curve is altered, the plant identification responds convincingly 
and adequately updates the plant gain estimate.

The improved plant gain estimation is achieved at the 
cost of a low-amplitude, approximately WN pattern in 
the control signal, as shown in Figure 12(a). Thanks to 
the much improved plant gain estimate, the spend rate in 
the middle subplot is also improved. Specifically, the 
response to the setpoint adjustments at 100 h and 200 h is 
dramatically enhanced. The improved control is also 
illustrated in Figure 12(c), where error e for the black 
curve is more responsive after the setpoint change at 
time 100 h.

The rapidly evolving advertising industry, which includes some of the world’s 

largest and most valuable companies, has many open control problems.
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FIGURE 12 Closed-loop performance using pure integral control and plant smoothing, with and without excitation control. The magenta curves 
correspond to no excitation control ( 0uv = ), and the black curves correspond to excitation control defined by .0 02uv =  and .a 0 193 = .  
(a) The control signal u. (b) The spend rate y and feedforward-adjusted setpoint signal uc (green). (c) The control error e. (d) The plant gain 
estimate a1t  and true plant gain a1 (green) associated with the black controller. The plant gain estimation is adequately responsive and robust 
only with excitation control. With excitation control, the control signal stays in close proximity to its optimal value, and the spend rate operates 
near its optimal limit cycle. Overall, the pure integral controller with plant smoothing with persistent-excitation control is doing well.
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This example has, hopefully, convinced the reader 
about the complementary benefits of Heisenberg bidding-
based plant smoothing, persistent-excitation control, and 
pure I-error feedback control. Heisenberg bidding is the 
first line of defense against the challenges encountered 
when using feedback control in online advertising. It 
turns a discontinuous response curve continuous and 
guarantees the existence of a fixed-point solution of the 
closed-loop system. It is also a first step toward making 
plant gain estimation possible. Without bid randomiza-
tion, the plant gain (strictly speaking) equals zero every-
where except for in a set of measure zero, where the plant 
gain is undefined.

Persistent-excitation control is the second line of 
defense and ensures the response curve is continuously 
explored in a small neighborhood of the operating 
point. This (in contrast to many standard techniques 
in adaptive est imation, such as condit ional updates 
and covariance resets [25]) ensures the control system 
is never operating blindfolded but always probing 
the plant for changes.

Finally, pure I control is the third line of defense and 
reduces the sensitivity to challenging process noise and 
further improves the robustness to a challenging response 
curve. Note that an I controller is a low-pass filter and, 
therefore, blocks high-frequency noise. It reduces the sensi-
tivity to steps in the response curve.

A benefit of Heisenberg bidding-based plant smooth-
ing and persistent-excitation control not illustrated in the 
previous example is how they improve the response to a 
gradually evolving competitive landscape. Indeed, both 
of these mechanisms (in slightly different ways) help 
detect if a step in the response curve is gradually approach-
ing from above or below. Without plant smoothing first 
and foremost (but, to some extent, also without persistent 
excitation of the control signal), an approaching step in 
the response curve may trigger massive spikes in the 
spend rate.

FINAL REMARKS ON CONTROLLER 
IMPLEMENTATION
As noted before, the response curve function g(u) is gener-
ally unknown, and the controller has access only to the 
control signal u(t) and noisy spend measurements y(t). Since 
the control objective involves driving u(t) toward a constant 
and g(u) is highly nonlinear, it is not possible, based on the 

described measurements, to estimate the global shape of 
the response curve. In some cases, however, an estimate of 
the global response curve is available. It may describe g(u) 
with a varying degree of certainty at different values of u, 
and it may be most accurate in the neighborhood of where 
the controller has operated.

If a response curve estimate is available and expressed 
as a function ( )g u Y I{ }j j

a
u UjR= $  for steps indexed , ,j 1 2 f=  

[where ,U Yj j
a  are known in the Bayesian sense as 

Gamma / , /( )U u1 1j j j j
2 2v v= ^ h  and EY yj

a
j
a= ],  then the 

results in “The Mathematics of Plant Smoothing” can be 
leveraged. For example 1) Theorem S3 can be used to 
select an initial control signal u(0) before feedback data are 
available, 2) Theorem S5 can be leveraged to select a suit-
able uncertainty bid uu (for example, as the smallest value 
for which dg/du does not change dramatically for small 
adjustments of u), or 3) Theorem S5 can be used to produce 
a plant gain estimate (which may be used alone or in com-
bination with a plant gain estimate produced by a recursive 
plant gain estimator, as proposed in this article).

DISCUSSION
This article introduced optimization, modeling, and control 
in online advertising with members of the control commu-
nity as the target audience. The introduction started with a 
setup and the process of impression allocation. It continued 
with an in-depth treatment of a specific advertising optimi-
zation problem to highlight the challenges and opportuni-
ties of feedback control. The goal was to uncover why and 
how feedback is used and bring attention (and, hopefully, 
an interest) to this application of control engineering.

The rapidly evolving advertising industry, which includes 
some of the world’s largest and most valuable companies, 
has many open control problems. The problems range from 
higher-performant and more robust estimation and control 
algorithms for partially solved problems to control algo-
rithms for novel multiobjective optimization problems. 
As the online advertising industry advances and advertis-
ers become more savvy, the business requirements become 
more elaborate and stricter. This leads to a growing list of 
interesting and challenging control problems.

A natural immediate extension of the results in this arti-
cle is to develop online learning algorithms for the season-
ality and latency models h(t) and a2, respectively. These 
plant properties were assumed known in this article. How-
ever, in reality, they are only approximately known. Poor 

Discontinuities and other nonlinearities, periodicities, stochastic and 

deterministic noise, and coupling effects are the norm for control problems 

related to online advertising.
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estimates hurt the closed-loop performance and robust-
ness. Other relevant extensions are robustness margins to 
uncertain plant parameters or a sound algorithm to select 
uu, the control signal uncertainty.

Other problems in the proximity of what was solved 
in this article relate to the optimal bidding and control 
for campaigns when the ad inventory is sold based on a 
first-price-cost model. Optimal bidding on first-price 
inventory is challenging. However, it is a timely prob-
lem to work on, since the industry trend is toward this 
cost model.

Discontinuities and other nonlinearities, periodicities, 
stochastic and deterministic noise, and coupling effects are 
the norm for control problems related to online advertising. 
Hopefully, this article has convinced the reader that these 
challenges can be managed systematically and analytically. 
The key is to use a sound blend of mathematics and physi-
cal reasoning from first principles. It also helps to think 
outside the box. If the plant is too challenging to control as 
is, consider how to modify the plant to make the control 
problem less difficult.
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