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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Lampros C. Stavrogiannis

Online advertising constitutes one of the main sources of revenue for the majority of busi-

nesses on the web. Online advertising inventory was traditionally traded via bilateral

contracts between publishers and advertisers, vastly through a number of intermediaries.

However, what caused an explosion in the volume and, consequently, the revenue of on-

line ads was the incorporation of auctions as the major mechanism for trading sponsored

search ads in all major search engines. This reduced transaction costs and allowed for

the advertisement of small websites which constitute the majority of Internet traffic.

Auction-based markets were harder to establish in the display advertising industry due

to the higher volume of inventory and the pre-existence of traditional intermediaries,

often leading to inefficiencies and lack of transparency. Nevertheless, this has recently

changed with the introduction of the ad exchanges, centralized marketplaces for the al-

location of display advertising inventory that support auctions and real-time bidding.

The appearance of ad exchanges has also altered the market structure of both demand-

side and supply-side intermediaries which increasingly adopt auctions to perform their

business operations. Hence, each time a user enters a publisher’s website, the contracted

ad exchange runs an auction among a number of demand-side intermediaries, each of

which represents their interested advertisers and typically submits a bid by running a

local auction among these advertisers.

Against this background, within this thesis, we look both at the auction design problem

of the ad exchange and the demand-side intermediaries as well as at the strategies to be

adopted by advertisers. Specifically, we study the revenue and efficiency effects of the

introduction and competition of the demand-side intermediaries in a single-item auction

setting with independent private valuations. The introduction of these intermediaries

constitutes a major issue for ad exchanges since they hide some of the demand from the

ad exchange and hence can make a profit by pocketing the difference between what they

receive from their advertisers and what they pay at the exchange.
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Ad exchanges were created to offer transparency to both sides of the market, so it

is important to study the share of the revenue that intermediaries receive to justify

their services offered given the competition they face by other such intermediaries. The

existence of mediators is a well-known problem in other settings. For this reason, our

formulation is general enough to encompass other areas where two levels of auctions

arise, such as procurement auctions with subcontracting and auctions with colluding

bidders.

In more detail, we study the effects of the demand-side intermediaries’ choice of auction

for three widely-used mechanisms, two variations of the second-price sealed-bid (known

as Vickrey) auction, termed PRE and POST, and first-price sealed-bid (FPSB) auctions.

We first look at a scenario with a finite number of intermediaries, each implementing the

same mechanism, where we compare the profits attained for all stakeholders. We find

that there cannot be a complete profit ranking of the three auctions: FPSB auctions yield

higher expected profit for a small number of competing intermediaries, otherwise PRE

auctions are better for the intermediaries. We also find that the ad exchange benefits

from intermediaries implementing POST auctions.

We then let demand-side intermediaries set reserve (or floor) prices, that are known to

increase an auctioneer’s expected revenue. For issues of analytical tractability, we only

consider scenarios with two intermediaries but we also compare the two Vickrey varia-

tions in heterogeneous settings where one intermediary implements the first whereas the

other implements the second variation. We find that intermediaries, in general, follow

mixed reserve-price-setting strategies whose distributions are difficult to derive analyt-

ically. For this reason, we use the fictitious play algorithm to calculate approximate

equilibria and numerically compare the revenue and efficiency of the three mechanisms

for specific instances. We find that PRE seems to perform best in terms of attained

profit but is less efficient than POST. Hence, the latter might be a better option for

intermediaries in the long term.

Finally, we extend the previous setting by letting advertisers strategically select one of

the two intermediaries when the latter implement each of the two Vickrey variations.

We analytically derive the advertisers’ intermediary selection strategies in equilibrium.

Given that, in some cases, these strategies are rather complex, we use again the fictitious

play algorithm to numerically calculate the intermediaries’ and the ad exchange’s best

responses for the same instances as before. We find that, when both intermediaries im-

plement POST auctions, advertisers always select the low-reserve intermediary, otherwise

they generally follow randomized strategies. Last, we find that the ad exchange benefits

from intermediaries implementing the pre-award Vickrey variation compared to a setting

with two heterogeneous Vickrey intermediary auctioneers, whereas the opposite is true

for the intermediaries.
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Chapter 1

Introduction

Online advertising constitutes the main source of revenue for the majority of businesses

on the web and is the reason why people can enjoy many online services for free. It is

estimated that online advertising saves each Internet user approximately £140 a year1.

The first online advertisement (also called an ad) appeared on 27 October 1994, when

HotWired, the first commercial web magazine, sold and displayed a banner clickable

ad for AT&T (Kaye and Merdoff, 2001). According to some sources, Global Network

Navigator (GNN) was the first company to serve an online advertisement on 19932

(Rubinfeld and Ratliff, 2010). However, it was not until 1999 that interest in online

advertising increased, as the Internet bubble began attracting more and more advertisers.

Since then, it has become a multi-billion business with an annual profit of $ 42.8 billions

only in the U.S. for 2013 (PwC, 2014), a 17% increase over 2012 (see Figure 1.1). In

Europe, online advertising revenue for 2013 was approximately e 27.3 billions, 11.2%

higher than 2012, with the U.K. having by far the highest total revenue of e 7.4 billions

among the 26 countries included in the study (IHS, 2014).

The major reason for such a growth, besides the rapid expansion of the Internet, is the

vast technological innovation that nowadays allows for the targeting of users browsing the

web. Although traditional advertising has been around for several centuries, companies

using it have no other option than showing their advertisements to an audience based

on previous statistics on its expected demographics, using surveys with questionnaires.

The main problem with this approach for advertisers working with traditional media,

such as TV, radio and newspapers, was pointedly stated by John Wanamaker, the father

of modern advertising, in 1875:“Half the money I spend on advertising is wasted; the

trouble is I don’t know which half”. This problem is nowadays less apparent. Current

1Source: http://www.telegraph.co.uk/technology/news/11047801/Would-you-pay-140-a-year-for-an-
ad-free-web.html

2Probably Prodigy, a joint venture of IBM and Sears, was the first company to offer online but
non-clickable advertisements.

3
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Figure 1.1: Online advertising annual revenue and compound annual growth rate
(Source: Interactive Advertising Bureau).

technology makes it possible in most cases3 to target each user separately, tracking their

browsing behavior and transaction history via special files, known as “cookies”, that

are installed on their browser. In this way, advertisers can now match each individual

advertisement placement to a user.

The abundance of information about each specific user’s intentions and characteristics

led to the development of new markets for the trading of online advertisements. More

specifically, in 1998, GoTo.com (later renamed as Overture and now owned by Yahoo!)

introduced the first sponsored search ads, i.e. advertisements on search engines, which

since then have been traded using auctions based on query terms (keywords) that users

enter. One of the novelties was also in the pricing rule, called cost-per-click (CPC),

whereby payments are made only when a user clicks on an ad (Jansen and Mullen,

2008).

In contrast, marketeers in display (i.e. banner/video) advertising, although better es-

tablished, followed the traditional cost-per-mille (CPM) (i.e. per thousand ad views,

known as impressions in the context of online advertising) pricing model. Similar to the

offline advertising process, in this market, known as guaranteed delivery, owners of web

pages (called the publishers) would contact advertisers to trade advertising space in bulk

on their websites via a negotiation process that led to bilateral contracts long before the

3This is not true for advertisements shown on social network platforms, such as Facebook, or other
types of online advertising, such as viral marketing or mobile advertising. Moreover, one of the most
prominent issues is how to perform cross-device targeting, i.e. how to recognize the same user on different
devices (mobile, tablets and PCs) or browsers.
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start of the advertising campaigns. These contracts specify an agreed upon volume and

price for advertisements to be shown for specified dates to a future set of users that

match the advertiser’s desired demographics. For instance, an advertiser could agree

with The New York Times to have 1 million advertisements displayed on its website

during the following December and only to males, 25-35 years old, from California, with

income $ 100,000 - $ 200,000 for $ 5 CPM. This was a time-consuming process with high

search costs for both sides (see Figure 1.2 for the steps involved in a typical display

advertisement order). For this reason, the vast majority of publishers and advertisers

started working with specialized intermediaries, known as ad networks. These inter-

mediaries were responsible for matching the supply with the demand for ads, taking a

percentage cut for their services. This, in turn, created a number of complications, the

most important of which is that often complex, long chains of ad networks would form

between publishers and advertisers, taking most of the surplus generated, and leading

to inefficiencies as well as opaque trades on the two ends of this chain.

Figure 1.2: A typical online display advertisement order (Source: NextMark).

To alleviate the aforementioned problems, borrowing ideas from sponsored search, the

use of auctions was adopted in 2005, when Right Media (now owned by Yahoo!) in-

troduced the first auction-based marketplace for display advertisements, known as an

ad exchange4 (Muthukrishnan, 2009). This allowed for the programmatic trading of

advertising space, reducing the number of intermediaries, and increasing transparency.

However, it was not until the early 2010 when ad exchanges gained substantial growth,

4There have been previous reported efforts on creating such exchanges in 2001 (MediaPort ad ex-
change, founded by the three largest ad networks of that time), but the market was not technologically
mature enough to accept these institutions during that period, and the dot-com bubble was one of the
main reasons for their collapse (Fiss and Kennedy, 2008).
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with the introduction of real-time bidding (RTB), the ability to bid differently for each

specific user visiting a specific website in almost real time5. In 2013, approximately $ 4.5

billions have been traded worldwide on RTB, 66% higher than 2012 (IDC, 2013) and

this number is expected to grow up to $ 20.8 billions in 2017 (see Figure 1.3). Nowadays,

two parallel markets are present: the guaranteed delivery market, trading mainly ads

for brand recognition between large partners (known as premium inventory), and the ad

exchange spot market, trading the remaining advertising space (known as the remnant

inventory), mainly for performance-driven advertisers6 (Evans, 2008).

Figure 1.3: Real-time bidding historical and projected revenue (Source: International
Data Corporation).

Ad exchanges are characterized by the extremely high speed of trades (each auction lasts

approximately 100 ms) and immense number of advertising slots traded (billions of such

auctions are conducted daily, (McAfee, 2011)). On top of this, there is an exponential

number of attributes that advertisers can target for (Lahaie et al., 2008; Engel and

Tennenholtz, 2013). These facts make it impossible for humans to handle trading and

so both the bidding and auctioning are performed by specialized, autonomous pieces of

software, known as intelligent agents (Wooldridge, 2001). All these challenges make clear

the importance of properly designing these auctions by careful analysis of the strategic

interactions of all stakeholders.

Against this background, in the remainder of this chapter, we provide more details on

the operation of ad exchanges and outline the requirements and contributions of our

study. More specifically, Section 1.1 gives a general description of the online display

advertising industry. Section 1.2 discusses the research challenges as well as the main

motivation for this thesis. Then, Section 1.3 outlines our major contributions. Finally,

in Section 1.4, we outline the content of the remaining chapters within this thesis.

5Source: http://www.infectiousmedia.com/birth-real-time-bidding/
6These are advertisers whose target is to get some immediate action from the user, such as clicking

an ad, buying a product or filling in a form, an event known as conversion.
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1.1 The Online Ad Exchange Landscape

As described before, ad exchanges are technology platforms that bring together buyers

and sellers of advertising space in a centralized online auction-based marketplace, provid-

ing better liquidity, and thus increasing competition and efficiency. The main reason for

their introduction was the opaque, bulk trading of impressions through a series of inter-

mediaries. However, even today, the display advertising market is quite fragmented, as

the landscape of Figure 1.4 illustrates. More specifically, the technological advancement

requires specialization which the majority of both publishers and advertisers find diffi-

cult to acquire by themselves. For this reason, similar to financial exchanges, publishers

and advertisers participate in the ad exchanges via the use of sell- and demand-side

intermediaries, called supply- or sell-side (SSPs) and demand-side platforms (DSPs),

respectively. These intermediaries provide the technical infrastructure, relevant tools,

as well as a centralized point of access to the various ad exchanges, acting as brokers and

executing orders on behalf of their customers. Another stakeholder that plays a crucial

role in the trading of ads in real time are data management platforms (DMPs), also

called data exchanges (O’Connell and Greene, 2011), which offer user profiling data to

the intermediaries or their clients in order to increase the effectiveness of their targeting.

The existence of these intermediaries creates a number of complications for designing

the auction at the exchange, as will be shown in the remainder of this thesis. This is in

contrast with sponsored search advertising where the publisher (search engine) contacts

advertisers directly and which has been the focus of the majority of research (we refer

the interested reader to (Maillé et al., 2010) for a survey). Other characteristics that

need to be taken into account include:

• Goods are extremely perishable: as soon as an impression is generated, an appro-

priate advertisement must be shown, otherwise there is no value for any of the

involved parties.

• Goods are heterogeneous: the expected profit of an advertiser for each ad is

uniquely determined by the user that visits the web page and the context of that

page.

• There are information asymmetries: different intermediaries (or advertisers) can

have different information about the user visiting the web page based on the track-

ing cookies they have previously installed on his browser. This means that some

intermediaries can target the user more effectively and have more precise infor-

mation on how much he is worth to them (i.e. better estimation on the expected

profit from showing him their selected ad).

• Delivery of ads must be fast : the time between the user visiting the web page and

the display of impressions is infinitesimal, in the order of milliseconds, which means
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that the rules of the auction must be simple and yet effective, while implementation

must be robust to failures.

• The volume of impressions is extremely high whereas the value of the ads is minis-

cule: every day, billions of impressions are generated whereas pricing is performed

on a per thousand scale, and the average CPM for an ad is usually around $ 1-$ 5

(which means that the cost for a single impression is small, typically from 0.1 to

0.5 cents)7.

©  LUMA  Partners  LLC  2014
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Figure 1.4: The online advertising landscape (Source: LUMA Partners).

The auction process for one advertising slot is shown in Figure 1.5. The timing is as

follows. Whenever some user enters a web page, the owner of that web page (i.e. the

publisher) contacts the ad exchange, either directly or indirectly through an SSP, sending

relevant information about the user and the web page. The ad exchange/SSP then calls

for bids from the DSPs each of which represents a number of advertisers. This process

is known as a call out and lasts approximately 100 ms (Chakraborty et al., 2010). Then

DSPs run some local mechanism of their choice to determine the bid(s) and the ad(s)

to send on behalf of their advertisers. Then the ad exchange/SSP runs an auction with

those bids, determining a winner and a payment, and the ad is finally displayed to the

7We refer the reader to http://yourvalue.inrialpes.fr/ for an interesting online experiment on the
value of impressions.
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user. This whole process takes approximately 150 ms8. Formal models will be provided

in sections 2.2.1 and 3.3.

Figure 1.5: The online ad exchange auction (Netmining, 2011).

1.1.1 Research in Ad Exchanges

Given their recent appearance and complexity, research on ad exchanges has risen over

the last years. Muthukrishnan (2009) offers a succinct introduction to the research

challenges that arise in this area. More specifically, emphasis has been given on the

publishers’ problem of optimally allocating their inventory in the guaranteed and ad

exchange markets so as to maximize revenue but also reduce their risk (Ghosh et al.,

2009a; Yang et al., 2010; Chen, 2010; Balseiro et al., 2011). For the advertisers, most

of the literature has focused on bidding strategies, usually employing optimization tech-

niques (Ghosh et al., 2009b; Chen et al., 2011; Bartels et al., 2012; Amin et al., 2012;

Zhang et al., 2014; Tran-Thanh et al., 2014). Notable exceptions are the works of Gum-

madi et al. (2012); Balseiro et al. (2013) who have also taken into account the strategic

interactions between advertisers. Another problem that the stakeholders face is the

asymmetry of information between publishers and advertisers but also among the ad-

vertisers themselves. This is due to the fact that some advertisers or DSPs have (free or

paid) access to more data which increases the effectiveness of their targeting and leads to

an effect called cream skimming or cherry picking, whereby informed advertisers obtain

all good-quality inventory, leaving only low-quality inventory to the uninformed ones

(McAfee, 2011). The publisher/ad exchange might also have information that can be

shared and researchers have looked at the effect of such a revelation on its revenue (Levin

and Milgrom, 2010; Abraham et al., 2011; Fu et al., 2012; Emek et al., 2012; Babaioff

et al., 2012; Mahdian et al., 2012; Arnosti et al., 2014; Miltersen and Sheffet, 2012).

Probably one of the major challenges in this context is the design of the auction at

the exchange. Some of the problems include, but are not limited to, the facts that the

auctions are repeated, advertisers vary, have budgets and also have different incentives

8We refer the reader to http://cmsummit.com/behindthebanner/ for a clear animated depiction.
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(mainly brand promotion versus performance advertising), advertisements come in dif-

ferent sizes and multiple ad slots are usually available (see Section 2.2 for more details

as well as the excellent articles of Muthukrishnan (2009); McAfee (2011)).

1.1.2 The Effect of DSPs

Probably the most crucial issue in auction design by ad exchanges is the introduction

of the demand-side intermediaries, i.e. DSPs. These intermediaries typically9 submit

a single bid at the ad exchange on behalf of their (multiple) advertisers, thus hiding

some of the demand from the ad exchange. This can potentially reduce the exchange’s

revenue and can decrease its efficiency since the advertising space might not always be

allocated to the advertiser that values it most (this will be more evident throughout

the thesis, starting from the examples of Section 3.4). This situation is reminiscent of

auctions with colluding bidders for the exchange (see Section 2.4 for an exposition). In

the ad exchange setting, DSPs are seen as colluding groups by the ad exchange and

hamper its successful operation. More specifically, the majority of DSPs run some local

mechanism (i.e. decisions about which advertiser wins the advertising space and how

much to get charged) and determine a typically single bid to send at the exchange.

There are currently two types of such intermediaries: self-service (also known as self-

serve) and managed service. The latter type follow the classical ad network model,

whereby the intermediary agrees with each advertiser the budget, pricing and number

as well as type of delivered impressions, and the intermediary manages the campaign

on behalf of each advertiser. On the other hand, self-service intermediaries, which ap-

peared along with RTB, offer only the necessary tools and infrastructure and advertisers

manage their campaigns by themselves10. For this reason, the predominant mechanism

implemented by self-service intermediaries is the use of local auctions among their clients.

Although managed-service intermediaries seem to be the prevalent type of such demand-

side intermediaries, more and more such intermediaries are moving to the self-service

type11. The competition between the latter type of demand-side intermediaries where

they pocket the difference between what they get paid by their advertisers and what

they pay at the exchange is the problem studied within this thesis, as will be described

in detail in the following section.

9Some DSPs might be contracted not to hide any of the demand from their advertisers (Mansour
et al., 2012).

10There is a tendency in the advertising world to consider demand-side intermediaries true DSPs only
if they belong to the self-service category (see http://www.adexchanger.com/data-driven-thinking/not-
every-demand-side-platform-dsp-is-created-equal-what-is-a-true-dsp/).

11See http://www.adexchanger.com/data-driven-thinking/whats-behind-the-rise-in-self-serve-
programmatic/.
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1.2 Research Objectives

The aim of the work in this thesis is to analyze the effects of the existence and com-

petition between a small, finite number of demand-side intermediaries (i.e. imperfect

competition) on the profits of each of the main stakeholders in these systems, namely

the ad exchange/publisher, the DSPs and the advertisers.

More specifically, our research objectives within this thesis include:

• Analysis of the competition between real-world demand-side intermedi-

aries. As has been mentioned before, DSPs implement local auctions that compete

at the ad exchange for the advertising space. Hence, it becomes necessary to study

the impact of the choice of auction and bid submission strategies at the exchange

that are currently predominantly used by DSPs on the revenue generated as well as

the efficiency of the ad exchange marketplace. This can help both the ad exchange

and DSP auctioneers to efficiently design their markets as this will determine the

future adoption of RTB in the world of online advertising.

• Analysis of the profit maximization problem of the ad exchange and

demand-side intermediaries when the latter compete. Auction theory pro-

vides guidance on what auctioneers can do to increase their revenue, mainly by

setting a reserve (also known as a floor) price that, if appropriately determined,

has been shown to maximize the revenue of a monopolistic auctioneer. It is thus

important to study the benefits and drawbacks, if any, of setting suitable reserve

prices for both the ad exchange and the intermediaries.

• Analysis of the advertisers’ demand-side intermediary selection strate-

gies. The objective of advertisers in ad exchanges is to maximize their surplus,

which is the difference between what they receive from displaying an advertisement

and what they pay. This can be done by appropriately adjusting their bids based

on the rules of the auction. However, in such markets, the advertisers must select

the DSP to operate their trades. Advertisers are offered similar services from a

multitude of demand-side intermediaries and must decide which is the best trading

partner to work with for their campaigns. Doing so, they need to take into account

the intermediary selections of the other advertisers, as this crucially determines

their probability of winning and payment. Hence, our aim is to characterize stable

outcomes of these strategic decisions of the advertisers that provide guidance and

can serve as a benchmark against simpler, heuristic approaches that advertisers

often take.

• Analysis of the competition between demand-side intermediaries with

strategic advertisers’ allocation. Given that advertisers have incentives to
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strategically select a DSP for their trades, the latter should take advertisers’ ex-

pected decisions into account along with the designs of their opponent intermedi-

aries when designing their auctions. This is also true for the ad exchanges which

need to consider the expected behavior of the intermediaries and the advertisers,

when optimizing their auctions for revenue or any other objective.

Having explained our research objectives for this thesis, in the next section we detail

the research contributions in this direction.

1.3 Research Contributions

Given the research objectives outlined in the previous section, the research reported in

this thesis provides insights into the following aspects of ad exchanges:

1. Competing real-world demand-side intermediaries (Chapter 4). We first

analyze the effect of competition between intermediaries that implement three

widely-used auctions for their operations: two variations of the second-price sealed-

bid auction and the first-price sealed-bid auction. Specifically, we consider a single

advertising slot auctioned at an ad exchange (the publisher and the ad exchange

will be considered a single entity throughout the rest of the thesis) that sets a

reserve price. We focus on homogeneous intermediaries, i.e. intermediaries imple-

menting the same auction. Moreover, we assume that all intermediaries have the

same number of advertisers12 and that advertisers have contractual agreements

with their intermediaries and hence cannot move between them (i.e. are captive).

We find that the reserve price of the ad exchange increases with the number of

buyers and/or intermediaries even for a single-intermediary setting. We also show

that there cannot be a complete profit ranking between the three auctions but

first-price sealed-bid auctions seem to provide a good trade-off between profit and

efficiency.

2. Competing demand-side intermediaries with reserve prices (Chapter 5).

We extend the above-mentioned analysis by letting intermediaries set appropriate

reserve prices. This problem has been first studied by Feldman et al. (2010) who

have determined the optimal (i.e. profit maximizing) mechanism for the interme-

diaries, but only for the case of one advertiser per intermediary. They show that

their results generalize to more than one advertiser per intermediary, but cannot

analytically derive the reserve prices of the intermediaries in equilibrium. The

authors show that intermediaries follow complex reserve-price-setting strategies

that involve randomization of reserve prices from a defined interval. Given these

12Each intermediary has a different, finite set of advertisers whose cardinality is the same for all
intermediaries.
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issues of technical tractability, we limit our setting to two competing DSPs. In

this duopoly scenario, we keep the symmetry and captivity assumptions for the

intermediaries. We then numerically find the resulting approximate equilibria for

the auction studied by Feldman et al. (2010) as well as the other two auctions.

We show that our numerical technique provides a good approximation to the the-

oretical results, when those are available, and that, in general, intermediaries still

follow randomized reserve-price-setting strategies. To the best of our knowledge,

this is the first attempt to formally study the effects of reserve prices for different

DSP mechanisms and the ad exchange. Our numerical examples depict that the

mechanism studied by Feldman et al. (2010) yields the highest profit among the

mechanisms studied but is less efficient than other mechanisms, i.e. the ad space

is not always allocated to the advertiser that values it the most.

3. Competing demand-side intermediaries with reserve prices and strate-

gic intermediary selecting advertisers (Chapter 6). We then remove the

captivity assumption for the advertisers and let them strategically select their in-

termediary in a setting with two intermediaries, each implementing one of the

second-price auction variations with a reserve price. We assume that advertisers

single-home, i.e. select only one intermediary. Letting the advertisers select both

intermediaries would give less insight since, in our model, that would mean that ad-

vertisers select all intermediaries, which cannot happen in reality where hundreds

of DSPs operate. Moreover, there is an inherent cost of managing a campaign13.

This is the first time that this problem has been addressed given the fact that

little is known about the operation of ad exchanges but also due to the complex-

ity increased by the presence of the intermediaries. We show that, in contrast

to previous literature on competing auctions, in some settings, the advertisers’

intermediary selection strategies involve non-uniform randomization between the

intermediaries. Finally, we numerically derive the intermediaries’ profit and the ad

exchange’s revenue in an approximate equilibrium using learning techniques. We

find that the center and the ad exchange system as a whole benefits from inter-

mediaries implementing the same auction from our restricted set of mechanisms,

whereas the opposite is true for the intermediaries.

The work described in this thesis has led to the following peer-reviewed publications:

• L. C. Stavrogiannis, E. H. Gerding and M. Polukarov. Competing Intermediary

Auctions. In Proceedings of the 2013 international conference on Autonomous

Agents and Multi-Agent Systems (AAMAS ’13), pp. 667 - 674, St. Paul, MN,

U.S.A., 2013.

138-28% of each advertiser’s budget is estimated to be spent on operational costs (Source:
http://www.admonsters.com/blog/get-ready-coming-operationally-driven-marketplace/).
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• L. C. Stavrogiannis, E. H. Gerding and M. Polukarov. Auction mechanisms for

demand-side intermediaries in online advertising exchanges. In Proceedings of the

2014 international conference on Autonomous Agents and Multi-Agent Systems

(AAMAS ’14), pp. 1037 - 1044, Paris, France, 2014.

The author’s work has also resulted in the following peer-reviewed publications that are

not reported here as they do not fit perfectly into the context of this work:

• L. C. Stavrogiannis, E. H. Gerding and M. Polukarov. Competing Intermediaries

in Online Display Advertising. Proceedings of AAMAS Joint Workshop on Trading

Agent Design and Analysis and Agent-Mediated Electronic Commerce, pp. 103 -

116, Valencia, Spain, 2012.

This work deals with the demand-side intermediary selection problem of the ad-

vertisers in a two-intermediary setting, where both intermediaries implement the

same second-price sealed-bid auction, for a single item auctioned at an ad exchange

when the latter sets no reserve price, i.e. minimum bid. The setting studied here

is a complete-information one, where advertisers’ valuations for the item are pub-

licly known. We find that an infinite number of symmetric Nash equilibria exist

for the advertisers’ selection strategies, and that the reserve-price-setting prob-

lem of the intermediaries admits a symmetric subgame-perfect equilibrium, where

both intermediaries set a reserve price equal to the second-highest valuation of the

advertisers.

• L. Tran-Thanh, L. C. Stavrogiannis, V. Naroditskiy, V. Robu, N. R. Jennings,

P. Key. Efficient regret bounds for online bid optimisation in budget-limited

sponsored search auctions. Proceedings of the 30th Conference on Uncertainty

in Artificial Intelligence (UAI 2014), pp. 809 - 818, Quebec, Canada, 2014.

This work deals with the problem of an advertiser who needs to allocate her budget,

B, across a number, T , of real-time second-price sealed-bid auctions. It is assumed

that the highest opponent bid gets revealed at the end of each auction only if the

advertiser wins the auction14, i.e. the data is right-censored, where it is assumed

that this bid is independent and identically (i.i.d.) drawn from a fixed but unknown

distribution. It is shown that two previously proposed algorithms achieve O(
√
T )

regret with high probability compared to the optimal stochastic algorithm and

another algorithm, ε-First, is proposed and is shown to achieve O(T
2
3 ) regret with

high probability. The results are numerically verified using real sponsored search

bidding data.

14This is commonly done in the vast majority of ad exchanges.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• In Chapter 2, we provide a short introduction to the area of game theory that

includes the tool set we use for our analysis. We then present the state-of-the-

art in the ad exchanges literature from an auction theoretic perspective. We also

summarize literature on competing mechanisms, auctions with intermediaries and

auctions with bidding rings, which are closely related to the setting we study.

• Chapter 3 introduces a formal model of an ad exchange with competing demand-

side intermediaries and then presents a number of motivating examples that shed

some light in the issues related to the presence of these intermediaries.

• In Chapter 4, we present our analysis of the competing demand-side intermediaries

with captive advertisers. We start with the special case of a single intermediary

and then move to the more general setting with multiple homogeneous interme-

diaries where we compare, both theoretically and numerically, the three auction

mechanisms studied. Finally, we conclude with the analysis of heterogeneous in-

termediary auctions.

• Chapter 5 deals with the competition of the same auction mechanisms but now

including appropriate reserve prices. We start again with the motivating case of

a single intermediary and then study the equilibrium reserve prices of the three

intermediary mechanisms in a two-intermediary setting. We find that, in general,

intermediaries should follow randomized reserve-price-setting strategies, so we con-

clude offering numerical results for the case where advertisers’ private valuations

are i.i.d. random variables following the uniform distribution.

• Chapter 6 then considers the intermediary selection problem of the advertisers in

a duopoly setting with both homogeneous and heterogeneous second-price sealed-

bid intermediary auctioneers. Based on these results, the reserve-price-setting

problem is considered for the intermediaries and the ad exchange, where, given

the complexity of their strategies, numerical results are depicted and comparisons

are made against the previous settings with captive advertisers.

• Finally, Chapter 7 summarizes the contributions of this thesis and provides direc-

tions for future work that will increase the practical applicability of our work to

real-world ad exchanges.





Chapter 2

Literature Review

In this chapter, we discuss related work on the field of online display advertising and

auction theory. We begin by introducing the notions of game theory, emphasizing on

two of its sub-areas, namely mechanism design and auction theory (Section 2.1) that are

necessary to follow the remainder of this thesis. We then review related work in the field

of online advertising exchanges, the main application area of this thesis, where we focus

on the auction theoretic issues that arise (Section 2.2). Following this, we provide a

short introduction to the areas of auctions with intermediaries and collusion in Sections

2.3 and 2.4 respectively, that share some similarities with the setting studied within

this thesis. After that, Section 2.5 discusses previous work on competition between

auctioneers. Finally, Section 2.6 summarizes.

2.1 Introduction to Game Theory, Mechanism Design and

Auction Theory

In this section, we provide a short introduction to game theory, emphasizing on two of its

sub-areas that are of immediate interest, namely mechanism design and auction theory.

More specifically, we first formally define the notion of a game and the strategic interac-

tions it encompasses, and then move to the description of the general task of designing

such games for the allocation of resources, known as mechanism design. Following this,

we review some of the most important results in the field of auction theory.

2.1.1 Game Theory

Game theory can be defined as the mathematical study of strategic interactions, such

as conflict or cooperation, between intelligent, rational decision makers (Myerson, 1991;

17
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Shoham and Leyton-Brown, 2008). A game is a formal representation of such interac-

tions and comprises (i) a set of players (the decision makers), (ii) the rules, i.e. the

order of moves and information available to each player as well as his available choices

(called actions), (iii) the outcomes, which are the possible results of the game, given the

actions by the players, (iv) the payoffs for each player related to each possible outcome

(Mas-Colell et al., 1995). A player is rational if his decisions are made only with regard

to his own objectives, and he is intelligent if he knows everything that is available to

him and makes inferences about the situation based on his knowledge (Myerson, 1991).

For the remainder of this thesis we will use the terms player and agent interchangeably,

and assume that agents’ rationality is common knowledge among them.

Games can be described using two main types of representation: the strategic or normal

form and the extensive form. The former makes use of a matrix to specify player

actions and their corresponding payoffs and is mostly used to represent simultaneous-

move games, i.e. one-stage games where players perform actions at the same time.

The extensive form is preferred in sequential-move games, where players take actions

in turns. The game is represented by a tree (called the game tree) which specifies all

possible states and actions until the end of the game, unraveling the tree at each action

selection stage. Although there are many other forms to represent a game, each of

them has an “induced normal form”, which is an equivalent normal-form representation

that maintains game-theoretic properties (Shoham and Leyton-Brown, 2008). A formal

definition of a normal-form game (NFG) follows.

Definition 2.1. A finite, n-person normal-form (or strategic-form) game, ΓN , is a tuple

(N,S, u), where:

• N is a finite set of n players, indexed by i;

• S = ×iSi, is the set of all possible strategy profiles, where Si is a finite set of

(pure) strategies available to player i. A player’s strategy si ∈ Si is a complete

contingency plan, i.e. a function mapping each state of the game to an action. A

vector s = (s1, s2, . . . , sn) is called a strategy profile. The notation s = (si, s−i)

can be used instead, where s−i = (s1, s2, . . . , si−1, si+1, . . . , sn);

• u = (u1, u2, . . . , un) where ui : S → R is a real-valued utility (or payoff) function

for player i. It provides the von Neumann-Morgenstern utility levels associated

with the outcome produced by strategies s.

An example of a normal-form game representation is shown in Figure 2.1(a), for a

game known as the Battle of the Sexes. In this game, there are two players, namely the

husband (H) and the wife (W), who must decide whether to go to a fight (F) or an opera

(O) play. In the matrix shown, the row player is the husband and the column player is

the wife. Each element of the matrix contains two numbers, the first corresponding to

the utility of the row player and the second to that of the column player.
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(a) Normal form representation. (b) Extensive form representation.

Figure 2.1: The Battle of the Sexes game.

Games can be separated in two broad categories based on the information available

to each player on his opponents, namely perfect-information and imperfect-information

games. Informally, in the former type of games, players can observe their opponents’ pre-

vious moves (Mas-Colell et al., 1995). On the other hand, in the imperfect-information

case, players might need to make decisions with limited or no knowledge of their oppo-

nents’ past actions or they might even have limited record of their own actions (Shoham

and Leyton-Brown, 2008). Let us define formally these two categories, making use of

the extensive-form representation:

Definition 2.2. Perfect-information extensive-form game. A finite, perfect-information

extensive-form game, ΓE , is a tuple (N,A, H,Z, act, ρ, σ, u), where:

• N is a finite set of n players, indexed by i;

• A is a (single) set of actions;

• H is a set of non-terminal choice nodes;

• Z is a set of terminal nodes, disjoint from H;

• act : H → 2A is the action function, assigning a set of possible actions to each

choice node;

• ρ : H → N is the player function, assigning to each non-terminal node a player i

who selects an action at that node;

• σ : H×A→ H ∪Z is the successor function, mapping a choice node and action to

a new choice or terminal node such that ∀h1, h2 ∈ H and α1, α2 ∈ A, if σ(h1, α1) =

σ(h2, α2) then h1 = h2 and α1 = α2;

• u = (u1, u2, . . . , un), where ui : Z → R is a real-valued utility (or payoff) function

for player i on the terminal nodes Z.
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The Battle of Sexes is a perfect-information game whose extensive form is illustrated in

Figure 2.1(b).

Below we define a game with imperfect information:

Definition 2.3. Imperfect-information extensive-form game. A finite, imperfect-

information extensive-form game, ΓIE , is a tuple (N,A, H,Z, act, ρ, σ, u, I), where:

• (N,A,H,Z, act, ρ, σ, u) is a perfect-information game;

• I = (I1, I2, . . . , In), where for each player i, Ii = (Ii,1, Ii,2, . . . , Ii,ki) is a partition

of {h ∈ H : ρ(h) = i} with the property that act(h) = act(h′) whenever there

exists a j for which h ∈ Ii,j and h′ ∈ Ii,j . That is, player i does not distinguish

between nodes h and h′ that belong to the same subset of partition Ii.

Until now we have assumed that a strategy of a player is deterministic, yielding a single

action for each possible state of the game. These strategies are called pure strategies.

However, in many cases, players may have to randomize over their possible choices, so

as to be unpredictable in the eyes of their opponents. This leads to the concept of a

mixed strategy (Mas-Colell et al., 1995):

Definition 2.4. Mixed strategy. Given player i’s (finite) pure strategy set, Si, a

mixed strategy for him, ξi : Si → [0, 1], assigns to each pure strategy si ∈ Si a probability

ξi(si) ≥ 0 that si will be played, where
∑

si∈Si ξi(si) = 1.

Given that players follow mixed strategies, a player’s payoff is his expected utility where

the expectation is taken with respect to the probabilities on the pure-strategy profiles

induced by the incorporation of the former type of strategies.

Definition 2.5. Expected utility. Given a game Γ, the expected utility, Eξ[ui(s)],
for player i of the mixed-strategy profile ξ = (ξ1, ξ2, . . . , ξn), where the expectation

is taken with respect to the probabilities induced by ξ on pure strategy profiles s =

(s1, s2, . . . , sn), is
∑

s∈S ui(s)
∏n
j=1 ξj(sj), where S = S1 × S2 · · · × Sn.

Moreover, if for any set X, ∆(X) denotes the set of all probability distributions over X:

∆(X) = {q : X → R|
∑
x∈X

q(x) = 1 and q(x) ≥ 0, ∀x ∈ X} (2.1)

then the set of mixed strategies for player i is Ξi = ∆(Si).

In both types of games defined above, we have implicitly made the assumption that

players have full knowledge of the parameters of the game played, such as the number

of players, their possible actions and, most importantly, their corresponding payoffs.
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This is not true in many real cases, where players must infer all this information and

make decisions in this limited environment. This leads to the definition of an incomplete-

information game, also known as a Bayesian game, introduced by Harsanyi (1967). This

type of games can be modeled as an imperfect-information game with the incorpora-

tion of a special player, called Nature, that makes probabilistic choices in a way that

is common knowledge to all agents and has no (or has constant) utility function. More

specifically, we can imagine the user’s private preferences (called his type) being deter-

mined by a random variable, whose prior probability distribution is common knowledge,

and whose realization is performed by Nature1. Formally (Shoham and Leyton-Brown,

2008):

Definition 2.6. Bayesian game. A Bayesian game, ΓB, is a tuple (N,S,Θ, pr, u)

where:

• N is a finite set of n players, indexed by i;

• S = S1×S2×· · ·×Sn, where Si is the set of strategies available to player i, known

as the strategy space of i;

• Θ = Θ1 ×Θ2 × · · · ×Θn, where Θi is the space of (epistemic) types of player i;

• pr : Θ→ [0, 1] is a common prior over types;

• u = (u1, u2, . . . , un), where ui = S ×Θ→ R is the utility function of i.

In such a game, there is an additional source of uncertainty due to the introduction of

players’ types. Hence, we can have three different types of expected utilities for a player,

defined as follows (Shoham and Leyton-Brown, 2008; Mas-Colell et al., 1995):

Definition 2.7. Ex-post expected utility. Given a Bayesian game, ΓB = (N,S,Θ,

pr, u), the ex-post expected utility, EUi(ξ, θ), for player i of the mixed-strategy profile

ξ = (ξ1, ξ2, . . . , ξn) on pure-strategy profiles s = (s1, s2, . . . , sn) when agent’s types are

given by θ = (θ1, θ2, . . . , θn), is:

EUi(ξ, θ) =
∑
s∈S

ui(s, θ)

n∏
j=1

ξj(sj |θj) (2.2)

Definition 2.8. Ex-interim expected utility. Given a Bayesian game, ΓB = (N,S,Θ,

pr, u), the ex-interim expected utility, EUi(ξ, θi), for player i of the mixed-strategy pro-

file ξ = (ξ1, ξ2, . . . , ξn) on pure-strategy profiles s = (s1, s2, . . . , sn), when i’s type is θi,

is:

EUi(ξ, θi) =
∑

θ−i∈Θ−i

pr(θ−i|θi)
∑
s∈S

ui(s, θ−i, θi)
n∏
j=1

ξj(sj |θj) (2.3)

1We limit the scope of this definition to settings with common prior beliefs for all agents.
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Definition 2.9. Ex-ante expected utility. Given a Bayesian game, ΓB = (N,S,Θ,

pr, u), the ex-ante expected utility, EUi(ξ), for player i of the mixed-strategy profile

ξ = (ξ1, ξ2, . . . , ξn) on pure-strategy profiles s = (s1, s2, . . . , sn), is:

EUi(ξ) =
∑
θ∈Θ

pr(θ)
∑
s∈S

ui(s, θ)
n∏
j=1

ξj(sj |θj) (2.4)

As mentioned above, the objective of game theory is to analyze the strategic behavior

of players in a game so as to predict actual, stable where possible, outcomes and hence

propose optimal actions to them at every state. We now define some of the involved

so called solution concepts that help provide answers to these questions. Before this,

it is useful to define the strategy that satisfies the single player’s objective of utility

maximization given the strategies of the others (Shoham and Leyton-Brown, 2008):

Definition 2.10. Best response. Player i’s best response to the strategy profile ξ−i

is a mixed strategy ξ∗i ∈ Ξi such that ui(ξ
∗
i , ξ−i) ≥ ui(ξi, ξ−i) for all strategies ξi ∈ Ξi.

However, in a Bayesian game, a player’s set2 of best responses is defined on her ex-ante

expected utility (Shoham and Leyton-Brown, 2008):

Definition 2.11. Best response in a Bayesian game. The set of player i’s best

responses to mixed-strategy profile ξ−i are given by:

BRi(ξ−i) = arg max
ξ′i∈Ξi

EUi(ξ
′
i, ξ−i) (2.5)

The first solution concept to introduce is that of dominance. A strategy si ∈ Si for

player i is (weakly) dominant if, no matter what other agents select, i will do at least as

well as he would do if he would select any other strategy (Wooldridge, 2001). Formally:

Definition 2.12. Very weakly dominant strategy. A strategy si ∈ Si is a very

weakly dominant strategy for player i in game ΓN = (N,S, u), if for all s′i 6= si, ui(si, s−i) ≥
ui(s

′
i, s−i),∀s−i ∈ S−i.

Definition 2.13. Weakly dominant strategy. A strategy si ∈ Si is a weakly dom-

inant strategy for player i in game ΓN = (N,S, u), if for all s′i 6= si, ui(si, s−i) ≥
ui(s

′
i, s−i),∀s−i ∈ S−i, and for at least one s−i ∈ S−i, ui(si, s−i) > ui(s

′
i, s−i).

Definition 2.14. Strictly dominant strategy. A strategy si ∈ Si is a strictly dom-

inant strategy for player i in game ΓN = (N,S, u), if for all s′i 6= si, ui(si, s−i) >

ui(s
′
i, s−i),∀s−i ∈ S−i.

All the above-mentioned notions of dominance generalize to mixed strategies in a straight-

forward manner.
2Since many strategies might lead to the same expected utility.



Chapter 2 Literature Review 23

Dominance is quite a strong concept, as players may not always be in position to find a

best action without taking into consideration the strategies of their opponents. A more

widely-used solution concept is that of Nash equilibrium (NE) (Nash, 1951). Under this

concept, when an agent has selected an action and knows the strategies of other agents,

he cannot benefit from unilaterally deviating from the current strategy profile. This

situation is formally expressed in the following definition for pure strategies (Mas-Colell

et al., 1995):

Definition 2.15. Pure-strategy Nash equilibrium (PSNE). A pure strategy profile

s = (s1, s2, . . . , sn) constitutes a (weak) Nash equilibrium of the game ΓN = (N,S, u), if

for every i = 1, 2, . . . , n, ui(si, s−i) ≥ ui(s′i, s−i),∀s′i ∈ Si.

A stronger type of equilibrium is the strict Nash equilibrium:

Definition 2.16. Strict PSNE. A pure strategy profile s = (s1, s2, . . . , sn) constitutes

a strict Nash equilibrium of the game ΓN = (N,S, u), if for every i = 1, 2, . . . , n, and

∀s′i 6= si, ui(si, s−i) > ui(s
′
i, s−i).

The concept of such an equilibrium naturally extends the case of mixed strategies:

Definition 2.17. Mixed-strategy Nash equilibrium (MSNE). A mixed strategy

profile ξ = (ξ1, ξ2, . . . , ξn) constitutes a Nash equilibrium of the game ΓN = (N,∆(S), u)

if for every i = 1, 2, . . . , n, ui(ξi, ξ−i) ≥ ui(ξ′i, ξ−i),∀ξ′i ∈ ∆(Si).

Now, we can introduce the famous Nash’s theorem, proving the existence of a NE in

every finite strategic game (Nash, 1951):

Theorem 2.18. Every game ΓN = (N,∆(S), u) in which the sets S1, S2, . . . , Sn have a

finite number of elements has a mixed-strategy Nash equilibrium.

It is clear that a strategy profile where every agent has a dominant strategy is also

a Nash equilibrium, known as the equilibrium in dominant strategies, which will be

unique for the case of strictly dominant strategies (Shoham and Leyton-Brown, 2008).

Finally, another (weaker) solution concept is that of an ε-Nash equilibrium (Shoham and

Leyton-Brown, 2008):

Definition 2.19. ε-Nash equilibrium (ε−NE). Fix (a small) ε > 0. A strategy profile

s = (s1, s2, . . . , sn) constitutes an ε-Nash equilibrium of the game ΓN = (N,S, u), if for

every i = 1, 2, . . . , n, and ∀s′i 6= si, ui(si, s−i) ≥ ui(s′i, s−i)− ε.

This is an extremely useful concept for algorithms that try to find Nash equilibria, since

the floating-point approximation of all computing devices means that the latter can

only find such equilibria even though exact solutions may be claimed. It is also true
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L R
T 1, 1 0, 0
B 1 + ε

2 , 1 20, 20

Figure 2.2: In this game (B,R) is the unique pure-strategy Nash equilibrium, but
both (B,R) and (T, L) are ε-Nash equilibria.

that every NE is always surrounded by ε-NE, hence ε-NE always exist, although the

opposite is not always true (cf. Figure 2.2).

Another useful solution concept that arises in perfect-information extensive-form games

is that of a subgame-perfect equilibrium. To define this it is necessary to formally present

what is known as a subgame of such games (Shoham and Leyton-Brown, 2008):

Definition 2.20. Subgame. Given a game, ΓE = (N,A, H,Z, act, ρ, σ, u), the subgame

of ΓE , rooted at node h, is the restriction of G to the descendants of h.

Following this, we can now define the solution concept of a subgame-perfect equilibrium,

first introduced by Selten (1965), (Shoham and Leyton-Brown, 2008):

Definition 2.21. Subgame-perfect equilibrium (SPE). The subgame-perfect equi-

libria of a game, ΓE , are all strategy profiles s such that for any subgame Γ′E of ΓE , the

restriction of s to Γ′E is a Nash equilibrium of Γ′E .

Every SPE is also a NE, but the opposite does not always hold, and SPE always exist

in every perfect-information extensive-form game.

We now move to the Bayesian game setting to obtain similar types of equilibria. In such

a game, a strategy si of player i is a mapping from his type to an action, i.e. si : Θi → Ai,

and similarly mixed strategies can be defined as probability distributions over the space

of pure strategies. In this case, a player’s expected payoff given the pure strategies of all

agents can be written as Eθ[ui(s1(θ1), s2(θ2), . . . , sn(θn)), θi]. A Bayesian or Bayes-Nash

equilibrium (BNE) can then be defined as follows (Mas-Colell et al., 1995):

Definition 2.22. Bayes-Nash equilibrium. A (pure-strategy) Bayes-Nash or Bayesian

equilibrium for the game ΓB = (N,S,Θ, pr, u) is a profile of strategies (s1, s2, . . . , sn)

that constitutes a Nash equilibrium of the game ΓN = (N,S,Eθ[u]). That is, for every

i = 1, 2, . . . , n, Eθ[ui(si, s−i)] ≥ Eθ[ui(s′i, s−i)],∀s′i ∈ Si.

Until now, we have presented the basic notions of game theory and its fundamental con-

cept, that of a Nash equilibrium. In what follows, we now describe one of the techniques

that have been devised to numerically find such an equilibrium or an approximation of

it (ε-NE), fictitious play.
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2.1.2 The Fictitious Play Algorithm

Finding both pure- and mixed-strategy Nash equilibria is a topic of considerable research

and a lot of effort has been taken in being able to do this using numerical techniques.

There are currently two strands of literature on this area. First, researchers have devised

optimization techniques to find exact or approximate Nash equilibria, starting with the

celebrated Lemke-Howson algorithm by formulating the problem as a linear comple-

mentarity one (Von Stengel, 2002). However, finding Nash equilibria has been proved to

be computationally hard, even in the simplest two-player case (Chen and Deng, 2006;

Daskalakis et al., 2006).

Given the exponential time it sometimes takes to find a Nash equilibrium, the other

approach taken is the development of learning algorithms that converge to exact or ε-

NE. The main three categories of such learning algorithms are fictitious play, partial

best response and replicator dynamics. However, in what follows, we just focus on the

first, since this is the technique that we use in some of the settings to compute the

equilibria where theoretical results are not available. We refer the reader to (Fudenberg

and Levine, 1998) for a concise introduction to the theory of learning in games.

Fictitious play is the oldest and probably most well-studied learning algorithm (Brown,

1951; Robinson, 1951). In a two-player fictitious play, each player believes that the

opponent is using an unknown but stationary mixed strategy. At each time-step, t, a

player then keeps track of the sequence of the opponent’s actions up to t − 1 and best

responds to the observed opponent strategy distribution. This distribution is assumed

to be uniform over the actions observed so far, i.e. the player best responds to the

empirical frequency of opponent actions, called the empirical distribution. Hence, in

this class of learning algorithms, players best respond myopically, disregarding the effect

of their choices on the opponents’ future play. In more detail, each player i has a function

of initial weight, κi0 : S−i 7→ R+, exogenously given, which represents his initial beliefs

about the opponent and which is updated every time the opponent plays as follows

(Fudenberg and Levine, 1998):

κit(s
−i) = κit−1(s−i) + 1{s−it−1=s−i} (2.6)

thus giving a probability of opponent play for each of her strategies:

γit(s
−i) =

κit(s
−i)∑

s̃−i∈S−i κ
i
t(s̃
−i)

(2.7)

Given this, in fictitious play, a player plays a best response to these beliefs, pit(γ
i
t) ∈

BRi(γit). This is a simple rule that assumes stationarity of strategies from the players’

point of view, so myopic best response is consistent with the players’ beliefs. This

assumption is not in general realistic. However, it has been shown that, if a strategy
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profile constitutes a strict Nash equilibrium and is played at some time, t, then it will be

played in all subsequent steps (Fudenberg and Levine, 1998), and this strategy profile is

called a steady or absorbing state (Shoham and Leyton-Brown, 2008). The relation of

fictitious play and Nash equilibria is established in the following theorem (Shoham and

Leyton-Brown, 2008):

Theorem 2.23. If the empirical distribution of each player’s strategies converges in

fictitious play, then it converges to a Nash equilibrium.

Fictitious play has been proved theoretically to always converge to a NE for two-player

games that are zero-sum or solvable by iterated elimination of strictly dominated strate-

gies, or when these are potential games, or 2 × n and have generic payoffs3 (Shoham

and Leyton-Brown, 2008; Fudenberg and Levine, 1998). In all other cases, fictitious

play can converge but there are no theoretical guarantees for it. One famous exam-

ple of non-convergence is that of Shapley (1964) who has shown cyclic behavior in a

modification of the rock-scissors-paper game. Recently, Conitzer (2009) has shown that

fictitious play is guaranteed to converge to an ε-NE with ε = t+1
2t

4, t being the number

of first time-steps for which both players uniformly randomize over their actions, for a

two-player normal-form game where the players’ utilities lie in [0, 1].

Having introduced the basic notions of game theory and the fictitious play algorithm,

we now continue by shortly presenting the foundations of mechanism design, the area

of games with private information where the designer of the mechanism designs the

structure of their payoffs.

2.1.3 Mechanism Design

Mechanism design is a sub-field of game theory that studies how social solutions with

good system properties can be implemented when aggregating individual preferences

that are privately known to each agent. Mechanism design deals with the problem of

designing the rules of these social systems so that some desirable objectives are met.

Some of these objectives can be expressed via the social choice function, which selects

optimal outcomes given agents’ private information (i.e. types) (Mas-Colell et al., 1995;

Parkes, 2001):

Definition 2.24. Social choice function. A social choice function scf : Θ1 × Θ2 ×
. . . × Θn → O chooses an outcome for each possible profile of the agent’s types θ =

(θ1, θ2, . . . , θn). An element in the set of possible outcomes O may define an allocation

of items or a task assignment, a public good alternative, an elected committee or a

candidate, or another social decision, depending on the problem in question.

3The definition of genericity in payoffs is out of the scope of this thesis.
4We consider an additive approximation.
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Mechanism design is the art of engineering mechanisms. But what is a mechanism? In-

formally, a mechanism includes the possible strategies to players as well as the technique

to select an outcome based on agents’ actual strategies. More formally (Parkes, 2001):

Definition 2.25. Mechanism. A mechanism M = (S1, S2, . . . , Sn, g
∗(·)) includes the

set of strategies Si available to each agent i, and an outcome rule g∗ : S1×S2×. . .×Sn →
O, such that g∗(s) is the outcome implemented by the mechanism for the strategy profile

s = (s1, s2, . . . , sn).

We say that a mechanism implements a social choice function scf(·) if the mechanism’s

game equilibrium outcome is a solution to scf(·) for each possible type profile of the

agents θ = (θ1, θ2, . . . , θn), as stated in the following definition (Mas-Colell et al., 1995):

Definition 2.26. Implementation. The mechanism M = (S1, S2, . . . , Sn, g
∗(·)) im-

plements social choice function scf(·) if there is an equilibrium strategy profile (s∗1, s
∗
2,

. . . , s∗n) of the game induced by M such that g∗(s∗1(θ1), s∗2(θ2), . . . , s∗n(θn)) = scf(θ1, θ2,

. . . , θn), ∀(θ1, θ2, . . . , θn) ∈ Θ1 ×Θ2 × . . .×Θn.

In general, the equilibrium in the aforementioned definition can refer to any of the

solution concepts stated before, such as Bayes-Nash or dominant-strategy equilibrium.

A common assumption in the mechanism design literature is that the utility functions

of agents are quasi-linear (Shoham and Leyton-Brown, 2008):

Definition 2.27. Quasi-linear utility. A quasi-linear utility function for agent i with

type θi in an n−player game, when the set of outcomes is O = L × Rn for a finite set

L, has the form ui(o, θi) = υi(x, θi) − fi(pi), where o = (x, p) ∈ O is an element of O
defining a choice x ∈ L from a discrete choice set, υi : L × Θi → R is the valuation

function, expressing his value for a choice x ∈ L, fi : R→ R is a strictly monotonically

increasing function, and pi is the payment for the agent when p is the vector of all agent

payments.

Quasi-linear utility functions allow for the separation of the outcome of a social choice

function and an outcome rule into a choice x ∈ L and a payment pi(θ) to be made by

each agent i.

As was previously stated, we are interested in designing mechanisms with desirable

properties. We now focus on the most important and general of these properties that

will be necessary for the following sections. The first of them is direct revelation. In

this type of mechanisms, agent i’s strategy is to express his reported type θ̂i = si(θi):

Definition 2.28. Direct-revelation mechanism. A direct-revelation mechanism

M = (Θ1,Θ2, . . . ,Θn, g
∗(·)) restricts the strategy set Si to Θi, ∀i and has outcome

rule g∗ : Θ1 × Θ2 × . . . × Θn → O, which selects an outcome g∗(θ̂) based on reported

types θ̂ = (θ̂1, θ̂2, . . . , θ̂n).
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Another significant property of some mechanisms is incentive compatibility (IC), ac-

cording to which it is optimal for the agents to reveal their preferences truthfully in

equilibrium, i.e. si(θi) = θi ∀θi ∈ Θi for agent i. This type of strategies is called

truth-telling or truth-revealing. This is crucial in many cases, as the designer of the

mechanism can make agents’ expected behavior to be according to his objectives and,

moreover, knowing the valuations is many times the only way to evaluate the proper-

ties of the outcome. If we restrict our solution concept to dominant strategies5, then

strategy-proofness can be defined as follows:

Definition 2.29. Strategy-proofness. A direct-revelation mechanism M is strategy-

proof or dominant-strategy incentive-compatible if truth-revelation is a dominant strat-

egy equilibrium.

Importantly, when designing a mechanism, we can restrict our attention to these truth-

revealing direct-revelation mechanisms; this is due to a theorem called the revelation

principle (Mas-Colell et al., 1995; Parkes, 2001), although details are out of the scope of

this thesis. Finally, another important property of a mechanism is individual rationality

(IR). A mechanism is individually rational if agents yield as much utility in expectation

from participating in the mechanism than not taking part in it. Formally (Parkes, 2001):

Definition 2.30. Individual rationality. A mechanism M is (interim) individu-

ally rational if for all preferences θi it implements a social choice function scf(θ) with

Eθ−i [ui(scf(θi, θ−i))] ≥ ui(θi), where ui(θi) is the expected utility for non-participation

(usually zero).

From the perspective of the society, it is often desirable to achieve (allocative) efficiency,

that is, to maximize total value over agents. First, let us define the corresponding social

choice function:

Definition 2.31. Allocatively efficient social choice function. Social choice func-

tion scf(θ) = (x(θ), p(θ)) is allocatively efficient if for all preferences θ = (θ1, θ2, . . . , θn)∑n
i=1 υi(x(θ), θi) ≥

∑n
i=1 υi(x

′(θ), θi), ∀x′ ∈ L.

Consequently, an allocatively efficient mechanism is one that implements an allocatively

efficiently social choice function scf(θ). Such a mechanism is said to maximize the social

welfare, where the latter equals the sum of all agents’ valuations. Formally:

Definition 2.32. Social welfare. The social welfare of a choice x ∈ L is defined as

the sum of all agents’ valuations for x, i.e.
∑n

i=1 υi(x(θ), θi), θ = (θ1, θ2, . . . , θn).

A well-known family of direct mechanisms with all the previous properties (allocative ef-

ficiency, strategy-proofness, individual rationality) is the Vickrey-Clarke-Groves (VCG)

5Similar definitions exist for other solution concepts.
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family (Mas-Colell et al., 1995; Parkes, 2001). For this type of mechanisms, we consider

agents with quasi-linear utility functions. In a VCG mechanism, each agent i submits

his (reported) type, θ̂i = si(θi), and then the choice rule computes the correspond-

ing optimal choice, x∗, based on agents’ reported type profile θ̂ = (θ̂1, θ̂2, . . . , θ̂n), that

maximizes the total reported value over the agents:

x∗(θ̂) = arg max
x∈L

n∑
i=1

υi(x(θ̂), θ̂i) (2.8)

The payment, pi, of agent i according to this class of mechanisms is then:

pi(θ̂−i) = hi(θ̂−i)−
∑
j 6=i

υj(x
∗(θ̂), θ̂j) (2.9)

where hi : Θ−i → R is an arbitrary function.

A special case of the VCG family is the Pivotal mechanism (Clarke, 1971) where hi(·)
takes the form:

hi(θ̂−i) =
∑
j 6=i

υj(x
∗
−i(θ̂−i), θ̂j) (2.10)

where x∗−i(θ̂−i) is the optimal choice without the agent i in the mechanism: x∗−i(θ̂−i) =

arg maxx∈L
∑

j 6=i υj(x, θ̂j). In this way the mechanism achieves individual rationality

and maximizes agent payments to the designer.

The most crucial property of the VCG family is that an agent’s payment does not depend

on his reported type but only on the others’ reported types, thus providing incentives to

the agent for truthfully expressing his private information, i.e. it is dominant-strategy

incentive compatible (DSIC). After this (very) short introduction to the field of mecha-

nism design, we now introduce the main application area of this work, auction theory,

which is a special area of mechanism design where there is a seller.

2.1.4 Auction Theory

According to McAfee and McMillan (1987), an auction can be defined as “a market

institution with an explicit set of rules determining resource allocation and prices on

the basis of bids from the market participants” which naturally arises in settings with

asymmetries of information between sellers and buyers of goods. From a game theoretic

perspective, auctions are usually considered as games of incomplete information given

the fact that valuations for the goods to be traded are, in general, private information to

participants. There are two characteristics that distinguish auctions from other mech-

anisms, namely, that outcomes are reached based on information elicitation from the

bidders, and the fact that these institutions are anonymous, meaning that all bidders

are treated in the same way, so prices are only based on bids and not on their identities
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(Krishna, 2010). Usually, it is assumed that valuations are independent between bidders

(independent private values (IPV) setting), i.e. that each bidder receives a valuation

which is independently drawn from a commonly-known distribution function. However,

in some cases, valuations might be influenced by the information of opponent bidders

(called interdependent values setting) or the valuations could be equal and unknown to

all bidders (common value (CV) setting). A key concept in the latter setting is that of

the “winner’s curse”; the winner always has the highest estimation among all partici-

pants and thus in many cases he will pay more than the actual value of the good. In

this section, we focus on single-object, single-unit symmetric IPV auctions which is the

setting studied throughout this thesis. For an in-depth introduction to auction theory,

we refer the reader to the excellent textbooks of Krishna (2010); Menezes and Monteiro

(2005); Milgrom (2004), and Cassady (1967) for a field study.

There are four widely-used formats of auctions, namely the English, the second-price

sealed-bid (SPSB) (or Vickrey after the name of its inventor6 who is also the first re-

searcher that has formally analyzed auctions (Vickrey, 1961)), the Dutch and the first-

price sealed-bid (FPSB) auction (Krishna, 2010). In an English auction, an auctioneer

initiates the auction by announcing a very low price that is steadily increased until there

is only one bidder who is willing to buy the good7. English auctions are often used to

sell pieces of art and are the most commonly-used form of auctions. On the other hand,

in a Dutch auction, the auctioneer announces an artificially high price that is continu-

ously lowered until a bidder declares his interest in buying the item at the current price.

Applications of this auction include the selling of flowers in the Netherlands, as well as

fishes in other countries such as Australia, Spain and France. An FPSB (or sealed-bid

tender) auction requires bidders to submit bids in sealed envelopes to the auctioneer,

and then the winner (i.e. the owner of the highest bid) pays the auctioneer the price of

his bid. This is the most widely-used form of procurement auctions. However, probably

the most theoretically important type of auctions is the Vickrey auction; in this auction,

bidders also submit sealed bids, but the winner pays the second-highest bid instead of

his own bid. The importance of this auction lies in the fact that it is a special case of the

general VCG family of mechanisms, enjoying all its desirable properties (as described in

Section 2.1.3). This is the main type of auction used to trade display ads. These four

types of auctions are pairwise equivalent under some conditions. More specifically, an

FPSB auction is strategically equivalent to the Dutch auction, and the English auction

shares the same optimal strategies with Vickrey auction when valuations are indepen-

dent (IPV) or when there are only two bidders (weak equivalence). More specifically,

in a symmetric IPV FPSB or Dutch auction with n bidders whose private valuations

are i.i.d. drawn from the strictly increasing cumulative distribution F with support in

[0, ω], the equilibrium bidding strategy, β(·), of a bidder with private valuation υ will

6It has been claimed that stamps have been traded via SPSB auctions long before Vickrey’s analysis
though.

7Actually, this specific variation where there are no bid jumps is known as the Japanese auction.
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be (Krishna, 2010):

β(υ) = υ −
∫ υ

0 F
n−1(y)dy

Fn−1(υ)
(2.11)

i.e. bidders shade their bids, bidding below their valuations. In contrast, bidders in

IPV Vickrey or English auctions have a weakly dominant strategy of bidding their true

valuations (Krishna, 2010).

Moreover, according to a well-known result, called the revenue equivalence principle, the

expected revenue to the seller from any of these auctions is the same for independent

private valuations. Formally (Riley and Samuelson, 1981; Myerson, 1981; Vickrey, 1961;

Milgrom and Weber, 1982):

Theorem 2.33. Revenue equivalence principle. If valuations are independent and

identically distributed and all bidders are risk neutral (i.e. have quasi-linear utility func-

tions), then any symmetric and increasing equilibrium of any standard auction8, such

that the expected payment of a bidder with zero valuation is zero, yields the same expected

revenue to the seller.

It is important to note that this principle holds only under the assumptions of inde-

pendence, risk neutrality, identical valuation distributions9 as well as absence of budget

constraints for the bidders. If any of them is violated, then the principle is no longer

valid. This is due to the allocation of the good; Myerson (1981) has first shown that

all auctions that implement the same allocation rule should have the same expected

payments.

As in any mechanism design problem, different objectives might be required by the

designer. Nevertheless, probably the most commonly-found are (allocative) efficiency

(or, equivalently, social welfare) and optimality. As already mentioned, an auction is

efficient if the good is allocated to the bidder that values it most, which is indeed the

case with the four aforementioned auction formats. On the other hand, optimal auctions

maximize the auctioneer’s revenue. Although not always, these two objectives are often

in conflict (Krishna, 2010). Other common objectives include simplicity of the rules as

well as prevention of collusion among bidders (see Section 2.4).

One of the tools that auctioneers usually implement to achieve optimality are reserve

(or floor) prices. These are minimum acceptable prices attached to the good so as to

guarantee a minimum desirable revenue for the seller. This of course requires that there

is at least one bidder who is willing to bid no less than these prices. For a Vickrey

8An auction is called standard if it dictates that the good is awarded to the bidder with the highest
bid.

9Myerson (1981) has shown that the revenue equivalence still holds for asymmetric bidders, i.e. whose
private valuations are independently drawn from different distributions, but only if the probability of
winning the auction is independent of the auction type for any realization of the valuations. This is not
typically true in asymmetric auctions (Fibich et al., 2004).
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auction with independent private valuations, where a reserve price is set at r, the ex-

interim expected payment of a bidder whose valuation is υ ≥ r, is (Krishna, 2010):

p(υ, r) = r ·Fn−1(r) +

∫ υ

r
y(n− 1)Fn−2(y)f(y)dy = υFn−1(υ)−

∫ υ

r
Fn−1(y)dy (2.12)

The ex-ante expected payment of such a bidder is then:

E[p(υ, r)] =

∫ ω

r
p(υ, r)f(υ)dυ =

=
1

n

∫ ω

r
υf

(n)
1 (υ)dυ −

∫ ω

r
f(υ)(

∫ υ

r
Fn−1(y)dy)dυ (2.13)

where f
(n)
1 (x) = nFn−1(x)f(x) is the probability density function (p.d.f.) of the highest-

order statistic10 among n samples i.i.d. drawn from F . Then the ex-ante expected

revenue of the auctioneer with a valuation of υ0 for the good in an auction with n such

bidders will be equal to n times this expected payment plus υ0 if there is no sale (Riley

and Samuelson, 1981):

revenue(r) = υ0F
n(r) +

∫ ω

r
υf

(n)
1 (υ)dυ − n

∫ ω

r
f(υ)(

∫ υ

r
Fn−1(y)dy)dυ (2.14)

Integrating by parts yields:∫ ω

r
f(υ)(

∫ υ

r
Fn−1(y)dy)dυ =

∫ ω

r
Fn−1(υ)dυ −

∫ ω

r
Fn(υ)dυ =

=
1

n

∫ ω

r
f

(n)
1 (υ)

1− F (υ)

f(υ)
dυ (2.15)

Hence the former equation yields:

revenue(r) = υ0F
n(r) +

∫ ω

r
f

(n)
1 (υ)(υ − 1− F (υ)

f(υ)
)dυ (2.16)

where the function φ(υ) = υ − 1−F (υ)
f(υ) is known as the virtual valuation function, the

difference between the valuation and the multiplicative inverse hazard rate, which can

be translated as the auctioneer’s marginal revenue from a bidder11. Taking the first-

order condition (FOC) on this equation yields the equation that the auctioneer’s optimal

reserve price12, r∗, should solve (Riley and Samuelson, 1981):

r∗ = υ0 +
1− F (r∗)

f(r∗)
(2.17)

which is independent of the number of bidders. This solution is unique if the hazard

rate of the distribution function, f(υ)
1−F (υ) , is strictly monotone increasing.

10Auction theorists call this the first-order statistic.
11We refer the reader to Bulow and Roberts (1989) for an explanation of the connection of an auc-

tioneer’s revenue maximization and a monopolist’s third-degree price discrimination.
12This is the reserve price that maximizes the auctioneer’s revenue.
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For an FPSB auction, the introduction of the reserve price naturally induces a different

bid shading for bidders, who are bidding more aggressively compared to a setting with

no reserve prices. Indeed, given that β(r) = r, the equilibrium bidding function for a

bidder with valuation υ ≥ r in this case will be:

β(υ) = υ −
∫ υ
r F

n−1(y)dy

Fn−1(υ)
(2.18)

After our short introduction to the field of game theory and, more specifically, to the

areas of mechanism design and auction theory, in the following section, we provide a

survey of the literature on our main application area, advertising exchanges, emphasizing

on its auction theoretic side, since this is the most relevant to the work within this thesis.

2.2 Online Advertising Exchanges

In this section, we provide a review of the relevant literature on ad exchanges, which is

the main application area of this thesis. As stated in Chapter 1, the display advertising

marketplace is a complex system, comprising two types of markets: a long-term mar-

ket for guaranteed delivery where trading is performed via bilateral negotiations, and a

short term one for the remnant inventory which is currently performed via ad exchanges,

implementing some of the aforementioned auction types. The dominant form of pricing

in the latter markets is cost per thousand impressions13 (CPM). In general, advertisers

prefer paying per click (CPC pricing), given that they require visibility and good-quality

inventory, whereas publishers prefer the current CPM model that reduces their risk. On

the other hand, the latter pricing model induces high-quality advertisements (i.e. adver-

tisements leading to clicks), whereas the former creates incentives for good traffic to the

publisher (McAfee and Vassilvitskii, 2012). This is because, in a CPM model, advertisers

pay irrespective of the users’ interest on the ad, so are incentivized to provide relevant

advertisements to increase their revenue. In contrast, in a CPC model, publishers take

the responsibility of showing the advertisements to interested users since otherwise they

receive zero revenue by getting no clicks. Advertisers can either buy advertisements in

CPM or CPC (and less often cost-per-acquisition (CPA)), where the conversion is made

in terms of expected click-through rate (E[CTR]), the probability of a click given an

impression, so the term effective CPM (eCPM) is often used instead (eCPM = E[CTR]

· CPC · 1000). This creates a number of complicating issues, such as the bias of the es-

timation (Edelman and Lee, 2008; Bax et al., 2012; Shanahan and Kurra, 2011). Hence,

it is common for specialized intermediaries to undertake this risk of conversion, arbitrag-

ing between the two pricing formats (Cavallo et al., 2012). Another interesting pricing

model was recently proposed by Goldstein et al. (2012), who consider time-based pricing

of display advertisements and show that, under general assumptions, this will increase

13This is for historical reasons where ads have been traded in bulk. Ad exchanges allow for individual
impression pricing, leading to an equivalent cost-per-impression (CPI) pricing model.
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revenue for publishers and provide better targeting (i.e. increased value) for advertisers

as well. However, it is still not clear which type of pricing will prevail. Hence, to avoid all

aforementioned issues, CPM pricing is adopted throughout the remainder of this thesis.

We now continue by presenting a generic model of ad exchanges.

2.2.1 The AdX Model

Although there is no standard format for the operation of ad exchanges (e.g. Yahoo!’s

Right Media ad exchange organizes its market with the use of constrained path optimiza-

tion algorithms14 (Lang et al., 2011)), Muthukrishnan (2009) has presented a general

model to describe the operation of ad exchanges for a single advertising slot, which he

calls the AdX model, illustrated in Figure 2.3. This is the basis of the model we have

extended and used for our study (see Chapter 3 for details). The sequence of actions in

AdX proceeds as follows:

1. User enters a web page belonging to publisher P .

2. P provides to the ad exchange E information about the web page, the user, as

well as the publisher’s minimum accepted price, r, for the ad to be placed.

3. E contacts ad networks adn1, adn2, · · · , adn|adn| with this information, which might

mask some of the attributes of the web page or the user based on the contract with

the publisher. Moreover, E will typically demand a higher reserve price than what

P has asked.

4. Each adni returns a bid15 (bi, di) to E on behalf of his more suitable (winning)

advertiser, based on some local auction or other allocation mechanism, which com-

prises a price, bi, and an ad, di, to be shown. However, ad networks have the

possibility of not submitting a bid.

5. E determines a winner, i∗, and its price, c∗i , such that r ≤ c∗i ≤ b∗i via an auction

and informs the winning ad network.

6. P shows the winning ad within the web page to the user for the current impression.

The AdX model is quite generic and many research questions remain to be answered.

Some of the those questions were pointedly stated in the same paper by Muthukrishnan

(2009). However, since the focus of this work is on the auctions involved, in the following

subsection we focus on research related to the design of auctions of for both the ad

exchange and the ad networks.

14More recently, Right Media has implemented a mixture of first- and second-price auctions for its
operation (Johnson, 2013).

15This model presupposes that each ad network submits a single bid.
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Figure 2.3: The AdX model.

2.2.2 Auction Design Issues

The vast majority of current ad exchanges implement variants of the SPSB auction with

an appropriately set reserve price16. However, advertisers do not, in general, bid directly

in the ad exchange but participate via a number of demand-side intermediaries, described

as ad networks in the above-mentioned AdX model. Designing an appropriate auction for

both the ad exchange and the demand-side intermediaries is a challenging task, especially

given the volume and time constraints of the system (billions of impressions are traded

every day, whereas each auction must be conducted in less than 100 milliseconds). Two

main issues that should be taken into account when designing an auction for the exchange

are as follows.

First, the ad exchange is in principle a matching platform and hence must optimize

its operations so that these satisfy the short- and long-term objectives of both the

publishers, the advertisers (and their representatives) in terms of relevance and revenue

or profit, as well as maximizing its own long-term profit. Other desirable properties of an

ad exchange include (McAfee and Vassilvitskii, 2012): (i) efficiency, i.e. maximizing the

total value produced in the exchange, (ii) expressiveness, i.e. devising suitable bidding

languages that describe the preferences of the participants in the best possible manner,

(iii) neutrality, i.e. being fair towards all participants (being in accordance with the

objectives of the exchange) and (iv) strategic simplicity, which makes it simple and less

costly for the participants to enter the exchange.

Second, another crucial issue is the existence of the ad networks which extract some of the

potential revenue from the ad exchange (an effect called double marginalization (Tirole,

1993)). In this vein, one of the open problems proposed by Muthukrishnan (2009) is how

the ad exchange can extract a revenue close to the book value, i.e. the second among all

advertisers’ bids, given that the former does not have full information about the entire

book of bids. This was recently studied in (Mansour et al., 2012), where the authors

16Variations include the OSP auction in Google’s DoubleClick, explained later, or mixtures of first-
price and second-price auctions using what is called hard and soft floor (reserve) prices (Yuan et al.,
2013) or first-price/second-price discriminating auctions based on the type of bids (fixed or real-time)
(Johnson, 2013).



36 Chapter 2 Literature Review

describe the auction they have devised, and which is currently implemented in Google’s

DoubleClick ad exchange. More specifically, the authors propose a variant of the Vickrey

auction with a reserve price, called the Optional Second Price (OSP) auction. In this

auction, ad networks submit a mandatory bid and an optional, second bid (lower than or

equal to the first one). Then a regular Vickrey auction with a reserve price is run among

these bids to determine the winner and the price to be paid. Although this might not

be the case, the authors note that in many cases ad networks are contractually obliged

to submit only truthful reports. OSP allows for a variety of auction formats for the ad

networks, especially a second-price logic, as the one implemented by Google AdWords.

The authors provide a simple analysis where K advertisers are uniformly assigned at

random to one of |adn| ad networks and show that the expected loss of the ad exchange

from an ad network not truthfully reporting its second price is O( 1
K|adn|) of the book

value, which is small as long as no network has a significantly high share of the market.

Feldman et al. (2010) also consider the problem of auction design at the ad exchange

as well as the ad networks, when the latter compete for a single good in a Bayesian

setting by running local auctions to determine a single bid to send at the exchange.

This is the most closely-related work to this thesis, where it is assumed that advertisers

are allocated to ad networks such that each ad network has exactly the same number of

advertisers and advertisers cannot change their allocated ad network (i.e. remain captive

in their ad network). The authors assume that both the ad exchange (called the center in

their terminology) and the ad networks (called the intermediaries) implement Vickrey

auctions with reserve prices, where the ad networks decide about the allocation and

payment in their local mechanisms before the center’s auction. Hence the ad networks’

auctions are contingent, meaning that the ad network trades with its advertisers the

obligation to deliver the ad at a specific price only if it wins at the central auction.

The authors start their analysis by considering a single advertiser per ad network and

prove that the only DSIC mechanism for them is to offer a take-it-or-leave-it price to

their advertiser. They also prove that there is an MSNE for the ad networks where they

offer such prices drawn randomly from an interval according to a derived probability

distribution function. They show that the upper bound of this interval increases with

the number of the ad networks and the mass of the probability distribution function gets

closer to this upper bound under the same condition. On the other hand, the reserve

price of the ad exchange decreases but remains strictly positive as the number of ad

networks increases. Finally, the authors extend their results for the case of ad networks

with more than one advertiser per network, where the number of advertisers is the same

for each of the networks. They show that ad networks will use randomized reserve prices

in equilibrium but do not manage to explicitly characterize the equilibrium distribution.

Ghosh et al. (2013) have considered a similar problem, albeit in a complete-information

setting, where buyers compete for a good via a number of intermediaries in a series of

levels on a tree, participating in a series of multiplicative revenue-sharing bargains, so
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that the winning bidder at level ` gets a revenue share of w` and submits (1−w`) of the

bid to the next level until the root of the tree, i.e. the seller, is reached. These correspond

to fee-based mechanisms that intermediaries implement sometimes. The authors prove

the existence of a unique fixed point that can be efficiently (i.e. in polynomial time)

calculated by reducing the problem to a path-bargaining one.

Related to this, Gomes and Mirrokni (2014) also study the design of the auction at the

exchange when a publisher is present. However, they do not consider the presence of

intermediaries. In more detail, the authors study the problem of designing an optimal

revenue-sharing double auction for the ad exchange auctioneer, given that, in practice,

ad exchanges often forward publishers’ reserve prices and get a fixed share of the rev-

enue. The authors find the optimal revenue-sharing mechanism. In doing so, they deal

with the possibility of competition by other ad exchanges in their design by expressing

the exchange’s objective function as a weighted sum of its revenue and the publisher’s

profit. They then compare this mechanism with a revenue-sharing mechanism with fixed

shares, as is common in practice, and find that such a scheme is optimal only when the

publisher’s distribution of opportunity cost has a power form, which can be translated

to a constant elasticity of demand. Finally, they characterize optimal revenue-sharing

mechanisms where the exchange’s objective is the maximization of the seller’s profit

subject to a minimum revenue on its side, and find that such an optimization cannot be

implemented by constant revenue shares. The use of a double auction for ad exchanges

has also been proposed in (Deng et al., 2014).

For a similar setting, where ad networks and advertisers are treated in the same way

(as bidders), Celis et al. (2011, 2012) consider a different type of mechanism for the

exchange, called the Buy-It-Now or Take-A-Chance (BIN-TAC) mechanism, which is a

hybrid of an auction and a take-it-or-leave-it price and which they claim to be truthful

in expectation. Their argument is that, in reality, valuations are not drawn from a single

distribution, but there are high-valued and low-valued advertisers based on the matching

between their desired ad and the user or content available, i.e. there is a small probability

of matching between an advertiser and a publisher-user pair, due to targeting. In their

analysis, they assume two types of bidders, high-valued and low-valued ones, and that

the virtual valuation function is increasing over two intervals (corresponding to low and

high values). According to the BIN-TAC mechanism, the center first offers a (high) take-

it-or-leave-it price to the bidders, tlp; if more than one agree on this price, then a Vickrey

auction with the former price as a reserve price is run among them. However, if no bidder

agrees, then the top di bidders are considered and the slot is given to one of these bidders

uniformly at random at the (di + 1)-st price (a second reserve price, r, can be defined

for this auction). The authors characterize the equilibrium of this mechanism: there

is a unique pure-strategy BNE with a threshold so that bidders with valuations above

it will go for the BIN option. Moreover, advertisers always bid their true valuations

in the subsequent stage, if the good is not traded in this BIN stage. Although this
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auction is not the optimal mechanism analyzed by Myerson (1981), it provides similar

rules to the former in the setting under investigation. Finally, experiments on real data

from Microsoft’s AdECN ad exchange show that, after determining the best di, r, tlp,

BIN-TAC achieves 4.5% more revenue than the “optimal” Vickrey auction with reserve

price, increasing at the same time consumer surplus by 11%.

Balseiro et al. (2013) have studied the auction design problem of the exchange in a re-

peated setting with no intermediaries but where bidders have budgets and stochastically

enter and leave the exchange. The authors use a new type of equilibrium that they name

the fluid mean-field equilibrium. This is a concept that can be used in games with very

large populations, as is the case in ad exchanges. In such games, the agent is assumed

to best respond to a mass of other agents instead of treating each of them individu-

ally, using a stochastic approximation17. Balseiro et al. also consider simplified bidding

strategies for buyers that are only functions of their valuations, disregarding the history

of play. They show that, in this unique fluid mean-field equilibrium, advertisers will

shade their bids by a constant factor when their budgets are tight (otherwise they bid

truthfully in equilibrium as in the Vickrey auction). They also study the publisher/ad

exchange’s problem of optimizing the reserve price, the rate of impressions sent to the

exchange and the information disclosed to the advertisers. They find that the reserve

price is higher compared to a single-shot setting and that publishers should disclose all

information when enforcing this optimal reserve price.

Another interesting design is proposed by Arnosti et al. (2014), who study the problem

of auction design in a private ad exchange for a publisher with both brand and perfor-

mance advertisers. In their setting, the former have contracts for guaranteed delivery,

seeking brand recognition, whereas the latter are targeting for immediate interaction

(i.e. clicks or conversions), getting the most valuable audience. The authors provide

a list of properties that a mechanism should satisfy so as to be fair to both types of

clients. More specifically, according to the authors, a qualifying mechanism should be

deterministic, strategy-proof, false-name proof (i.e. advertisers should be incentivized

not to submit multiple bids) and anonymous among performance advertisers, and only

winning bidders should pay. Moreover, they propose a mechanism, called the modified

second-price auction, that satisfies these properties for valuation distributions that are

fat-tailed (such as the power law), in a setting with valuations that are the product of a

common random variable (i.e. they are different for every impression) and an advertiser-

specific variable. According to this mechanism, the highest performance advertiser’s bid

wins and pays the second-highest performance bid, if their difference is above a pre-

specified threshold. Otherwise the brand advertiser wins. Finally, they show that this

mechanism is also adverse-selection free, meaning that the probability of the brand ad-

vertiser winning the impression is independent of the common factor of the performance

advertisers’ valuations.

17For an introduction to this area, we refer the interested reader to (Lasry and Lions, 2007).
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Game theorists have sometimes been criticized for setting unrealistic assumptions or

information that is not available in real settings. Given this, a number of researchers

have worked on the optimization of auctions for an ad exchange using learning-based

methods. One such work is that of Cesa-Bianchi et al. (2013) who study the reserve price

optimization problem of an ad exchange/publisher who runs a repeated Vickrey auction.

In their setting, bidders are symmetric but their number is either unknown or stochastic

and the second-highest bid is the only bid revealed given that this is higher than the

reserve price (left-censored data). The authors propose a learning algorithm with regret,

i.e. the difference between the optimal revenue and the revenue achieved,
∼
O(
√
T ), T

being the number of auctions. This work has been extended by Mohri and Medina (2014)

who also consider user features in their algorithm. A similar problem to that of Cesa-

Bianchi et al. (2013) has been studied by Amin et al. (2013) who nevertheless consider

a repeated single-bidder posted-price auction where the bidder is strategic. Kanoria

and Nazerzadeh (2014) study a similar setting (with respect to the strategic aspects

of bidders’ strategies) with multiple bidders for repeated auctions where the good is

of binary type which is unknown to the auctioneer (only probabilities of each type are

available) but known to the bidders and their private valuations are i.i.d. drawn at

the beginning and then remain fixed. The authors propose an approximately incentive

compatible threshold mechanism where a low reserve price is set until there is a bid

above a predefined threshold, at which point a higher reserve price is set. They show

that, if the bidders’ distribution of private valuations is regular18, then a Vickrey auction

with an a priori set, fixed reserve price is no worse than setting a dynamic reserve price.

However, if this is not the case, they show that their threshold mechanism yields higher

revenue, albeit in a probably approximately correct (PAC) framework.

The problem of auction design for the ad exchanges has also been studied by Feige

et al. (2013) who propose a mechanism to deal with the existence of the demand-side

intermediaries in a complete-information single-item setting. The proposed mechanism

is a randomized auction where one of the top di bidders (where di is selected by the

auctioneer) obtains the good according to some predefined probability mass function

and incurs VCG payments. The authors show that, when the advertisers are allowed to

submit any number of bids both through intermediaries and directly at the exchange,

they prefer bidding through the intermediaries and that the revenue generated is higher

compared to the predominantly-used Vickrey auction.

2.3 Auctions Involving Intermediaries

As the previous section depicts, one of the main problems for ad exchanges is the exis-

tence of various types of intermediaries. This is not the only area where such intermedi-

aries exist. For this reason, in this section we shortly survey literature on auctions where

18This means that the c.d.f. is strictly increasing and so is the virtual valuation function.
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intermediaries are present. Besides the work of Feldman et al. (2010) on ad exchange

auctions with intermediaries, there are two other relevant areas, namely procurement

auctions19 with subcontracting and network resource allocation markets.

Our setting is similar to that of auctions with resale where bidders in an auction resell

the won item either to their competitors or to other buyers. There is a significant

literature on this topic (e.g. Bikhchandani and Huang (1989); Haile (2003)), however

the majority focuses on the reselling to competitor bidders. Reselling to other (non-

competitor) buyers seems more relevant to the setting with ad exchanges and demand-

side intermediaries. However, in both cases, resale auctions typically take place after

the primary auction, inducing different dynamics (Bose and Deltas, 2007).

Auctions with subcontracting are procurement auctions which are typically used by

governments and other public organizations to assign public projects, such as highways.

Given the size of such projects, often large companies, called the contractors, are unable

to take on the whole project but instead assign parts of it to smaller companies, called

the subcontractors. Although contractors can implement some other mechanism with

the subcontractors, such as bargaining, they often organize local auctions before or after

the allocation at the central auction to determine the ones with which they will share

the project. Ad exchanges with intermediaries are a limiting case of such auctions where

intermediaries, in contrast to contractors, have no valuation for the object. Traditional

works in this area deal with the principal-agency relation of a contractor with its sub-

contractors, focusing on how and when (before or after the main auction) to optimally

divide the project (e.g. Kawasaki and McMillan (1987); Maréchal and Morand (2003)).

Nevertheless, there are two works which are closely related to the topic of this thesis.

A very relevant work is that of Wambach (2009) who studies the effects of auction de-

sign for subcontracting before the main auction, for a single contractor with exclusive,

captive subcontractors. More specifically, the author compares FPSB and Vickrey sub-

contracting auctions with no reserve prices, taking the allocation function at the main

auction as exogenous. Translated to our setting, the author shows that the contractor

receives higher revenue with an FPSB than with a Vickrey auction, making a connec-

tion with auctions where bidders are risk-averse, and justifying this result to the fact

that the subcontracting auction is contingent. Finally, the author takes a mechanism

design approach to characterize the properties of the optimal contractor’s mechanism.

Specifically, the mechanism is efficient, the optimal contractor’s bid depends only on the

highest-valuation subcontractor and this bid is the same as with a bidder whose private

valuation is the contractor’s private valuation plus the virtual valuation of the highest

subcontractor.

19Procurement auctions are reverse auctions where the lowest bidder wins, since the auctioneer is a
buyer.
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The second relevant work regarding auctions with subcontracting is that of Watan-

abe and Nakabayashi (2011). The authors have experimentally studied auctions with

subcontracting in a single-object, two-contractor setting with two subcontractors each

whose private valuations (costs) are i.i.d. drawn from the uniform distribution. The

authors show theoretically and experimentally that Vickrey auctions yield higher profit

to the contractors than FPSB auctions when all contractors use the same mechanism

and that the latter auctions are more efficient than the former. They also emphasize

on the risk aversion of bidders in their experimental setting. Nakabayashi (2010), in a

subsequent work, studies the same problem in a more general symmetric setting, where

he finds that FPSB auctions yield higher revenue for the contractors than Vickrey auc-

tions, in agreement with the result of Wambach (2009). More specifically, he studies the

equilibrium FPSB bidding function of the subcontractors for a standard main auction,

showing that the aggressiveness level increases with the number of contractors and de-

creases with the auction’s reserve price. Then, he proves that, if contractors’ costs are

fixed, the subcontractors’ bidding function is non-concave and there is no reserve price,

contractors increase their profit by implementing FPSB auctions compared to Vickrey.

The author notes that the competition between contractors induces a downward shift

of the distribution of bids at the central auction, making a connection to the work of

Hansen (1988) on auctions with downstream markets where the quantity is induced by

the winning bid. Finally, he also shows that the auctioneer’s reserve price is a function

of the number of bidders and that the FPSB auction is generally more efficient (this is

in agreement with our results in Chapter 4).

Another relevant stream of literature is on the allocation of network (spectrum) re-

sources, such as bandwidth, where there are multiple levels of markets, and the target

is to achieve efficiency (Bitsaki et al., 2006). Tang and Jain (2012) have considered such

a setting in a complete-information environment, where a seller auctions off a good to

some intermediaries who then resell this to their exclusive lower-level bidders, who then

do the same, in a tree-like structure, until the final buyers obtain the item. The authors

compare FPSB and Vickrey auctions in a setting with a single unit, where they once

again confirm the increased inefficiency of second-price auctions, and then continue with

auctions involving multiple items where they show that VCG-type auctions, which they

call the hierarchical network second-price auctions, can achieve efficiency and budget

balance. Iosifidis (2012) considers a similar problem in a Bayesian setting where he

proposes a novel mechanism for the case where the central auctioneer aims to maximize

efficiency whereas intermediaries are purely profit maximizers. Other issues, such as

the stability of tree structures with multiple intermediary levels, have been studied by

Polanski and Cardona (2012) for an FPSB auction and uniformly distributed private

valuations for buyers, where it was shown that only a single level of intermediaries is

stable.

For the ad exchange auctioneers, demand-side intermediaries act as colluding bidders,
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since only a single bid is submitted on behalf of their advertisers, thus suppressing

competition at the exchange. For this reason, in the next section, we review related

literature on collusion in auctions.

2.4 Bidding Rings

One of the most important issues that auction designers should take into account in

selecting their mechanisms is the possibility of collusion between the bidders, which is

known as bid-rigging in the context of auctions (Marshall and Marx, 2012; Hendricks

et al., 2013; von Ungern-Sternberg, 1988). Often a subset of bidders form cartels, also

called bidding rings (or sometimes “kippers” (Cassady, 1967)), in an effort to depress the

closing price and, consequently, capture some of the revenue from the seller – called the

collusive surplus, collusive gain or spoils (Hendricks et al., 2013; McAfee and McMillan,

1992). The latter surplus can be positive only when the cartel includes both the highest

and second-highest valuation bidders, and is maximized when the former bidder is the

one that bids in the main auction. In such a situation, the collusion is said to be efficient

(Mailath and Zemsky, 1991).

Collusion between bidders can be either explicit, where side-payments between the ring

members are permitted (strong cartels), or implicit, also known as tacit collusion, where

bidders coordinate indirectly on their actions, using some bid rotation scheme (Comanor

and Schankerman, 1976), so as to decrease the probability for the bidding ring to be

detected by the auctioneer or other antitrust authorities (weak cartels). This section

focuses on the former type of collusion in single-item single-shot IPV auction settings,

since this is the main type of auctions implemented in advertising exchanges and there

are no legal issues regarding the operation of the demand-side intermediaries20.

The design of the bidding ring comprises three different decisions that need to be made:

(i) the amount of the bids that will be submitted in the auction (including the potential

winning bids, known as the serious bids, along with other, non-serious, bids that might

be submitted so that the cartel cannot be detected or for enforcing the ring’s agreement);

(ii) the allocation of the won items to the ring members; (iii) the way that the collusive

surplus will be divided between the members of the ring for strong cartels. In line

with the classical mechanism design approach, these decisions must take into account

the incentive compatibility and individual rationality constraints for the ring members

along with an additional “no-cheat” constraint; ring members should be incentivized to

bid in the auction according to the ring’s directions (Marshall et al., 2012). Often the

mechanism is assumed to be implemented by the ring’s “center”, a coordinating device

that ensures that the rules of the ring are enforced as agreed, acting as a banker. One

20For a general study on collusion, including tacit collusion in repeated auction settings, we refer the
reader to (Marshall and Marx, 2012) and references therein.
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of the most frequently-used mechanisms for the determination of winner and payments

in single-item settings is for the ring to organize an internal auction before or after the

main auction, known as pre- or post-auction knockout (PAKT) (Hendricks and Porter,

1989; McAfee and McMillan, 1992). For repeated settings, bidding rings often use some

bid rotation scheme, such as bidding based on the phases of the moon, to determine the

winner (Hendricks and Porter, 1989; Marshall and Marx, 2012; Hendricks et al., 2013).

In a simple complete-information setting, when there is no uncertainty about the valu-

ations of all bidders, Marshall et al. (2012) illustrate that in both English, second-price

and first-price sealed bid auctions with more than one ring, when no ring includes both

the highest and second-highest bid, no surplus can be realized by collusion (the ring is

“ineffective”). In the same setting, there is no incentive for the highest-valuation bidder

to participate in the first place in such a ring since the side-payment that needs to be

paid equals his extra surplus from participation. This effect becomes more apparent as

the number of bidders increases, as the highest bidder’s surplus decreases compared to

non-cooperative bidding. Also, in FPSB auctions, the collusion is not sustainable since

the highest-valuation bidder’s necessary side-payments so that ring members refrain

from cheating are too costly.

In his seminal work, Robinson (1984) provides a first attempt to formally study collusion

in auctions where, among other results, he shows that English and SPSB auctions are

more susceptible to bid rigging than FPSB or Dutch auctions in a complete-information

case, both for IPV and CV settings, albeit when cartel membership is exogenously de-

termined. Graham and Marshall (1987) study collusion in single-item SPSB and English

auctions where there is a single bidding ring and both the auctioneer and non-ring mem-

bers are unaware of this. They describe a mechanism whereby the ring members run an

incentive-compatible pre-auction knockout auction to determine the bid to be submitted,

which is the highest internal bid, and all ring members receive a fixed payment which

is an equal share of the collusive surplus (i.e. the difference between the ring’s second-

highest bid and the second-highest bid outside the auction, if it is positive, otherwise

zero). They show that PAKT achieves budget balance in expectation and that revenue

equivalence between the two auction formats still holds in such a collusive environment.

Finally, they prove that the reserve price of the auctioneer increases with the number of

collusive bidders and that bidders will form an all-inclusive ring in equilibrium. More

specifically, if there are n total bidders, m > 1 of which form a bidding ring, whose

private valuations are i.i.d. drawn from the same distribution, F , with support [0, 1]

and positive density f > 0, then the auctioneer’s ex-ante expected revenue, if a reserve

price, r, is set, is:

revenuePAKT = r{(n−m)[1− F (r)]Fn−1(r) + [1− Fm(r)]Fn−m(r)}+

+

∫ 1

r
y(n−m)[(n− 1)Fn−2(y)− nFn−1(y) + Fn−m−1(y)]f(y)dy (2.19)
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The first term corresponds to the probability of the second-highest bid being less than

the reserve price times the reserve price, and the second term is the probability that

the opposite happens times the conditional expected second-highest bid given that this

is the case. Taking the first-order condition on the aforementioned revenue yields the

following expression for the optimal reserve price, r∗:

(n−m)[1− F (r∗)]Fn−1(r∗) + [1− Fm(r∗)]Fn−m(r∗) = r∗nFn−1(r∗)f(r∗) (2.20)

Graham et al. (1990) extend the aforementioned analysis where nested cartels are also

considered, i.e. cartels where a subset of the members form another cartel, participating

as a single entity in the original cartel. They first establish an equivalence between a

member’s surplus and the Shapley value in a complete-information scenario with hetero-

geneous bidders. Then, they extend their analysis for the incomplete-information case

where they assume that knockout auctions take place after the main auction and homo-

geneous bidders. The authors show that, in this case, members will overbid in equilib-

rium. Finally, their analysis includes the incomplete-information case of heterogeneous

bidders, where they consider a single bidding ring and propose the same second-price

PAKT as in (Graham and Marshall, 1987), where they again establish the correspon-

dence between members’ side-payments and their ex-ante Shapley value of the auction

game. Heterogeneous bidder collusion in SPSB auctions is also studied in (Mailath and

Zemsky, 1991), where, using a mechanism design approach, it is shown that an ex-post

efficient collusive mechanism21 exists both for complete (i.e. all-inclusive) and partial

rings, and, using concepts from cooperative game theory, that the payments can be

designed in such a way so that once the grand coalition, i.e. an all-inclusive bidding

ring, is formed, it will be stable. Finally, the authors confirm that the auctioneer’s op-

timal reserve price increases with the ring size under conditions that guarantee that it

is unique and is affected by the size of the ring.

McAfee and McMillan (1992) discuss collusion in an unrepeated single-item IPV FPSB

setting, both for weak and strong all-inclusive cartels, i.e. when m = n. In the latter,

more relevant case, they also describe an efficient PAKT where the highest bidder wins

and pays each ring member (including himself) an equal share of the expected difference

between his valuation and the reserve price, given that his valuation is higher than the

reserve price, and also submits a bid equal to the latter price to the auctioneer. This

mechanism can be implemented by using an FPSB PAKT or a Vickrey PAKT, and the

authors show that no other mechanism can yield higher surplus for the ring. FPSB

PAKT allows for ex-post budget balance but bidding strategies are in NE, whereas

Vickrey PAKT allows for budget balance only in expectation but is DSIC. They then

consider non-inclusive (partial) cartels, where, they show that both members and non-

members will randomize their bids when their private valuations are i.i.d. drawn from

21A bidding ring is called ex-post efficient if for each vector of valuations, the outcome of the ring
formation is Pareto undominated by any other allocation (Cramton and Palfrey, 1990).
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a distribution with support {0, 1}22. Leyton-Brown et al. (2002) study the behavior

of multiple bidding rings in single-item IPV FPSB auctions where they additionally

assume that bidders have probabilistic estimates about the number of bidders and can

voluntarily enter in a bidding ring, whereas non-ring members are not aware of the

number of bids suppressed by a bidding ring, and it is required that the identity of the

winner is announced after the end of the auction. They find that bidders truthfully

reveal their valuations to the ring centers (called the coordinators) and both members

and non-members benefit from the existence of the bidding rings, however they cannot

characterize all resulting BNE of the game23 and the ring centers are assumed to be

incentiveless.

Another interesting work is that by Marshall and Marx (2007) who consider collusion in

single-item FPSB and Vickrey auctions with heterogeneous bidders and a partial (less

than all-inclusive) bidding ring where potential ring members are common knowledge

and decide whether to enter the ring before learning their private valuations. The authors

study the possibility of suppressing competition in the ring, given the competition from

non-ring members, under two scenarios. In the first one, the ring can only provide bid

and payment recommendations to its members but cannot enforce a single bid submission

on behalf of the ring (BCM setting). According to the second scenario, the ring can

additionally enforce submitting a single bid on behalf of the ring members (BSM setting).

It is found that, in the former scenario, there cannot be a mechanism which is incentive

compatible, individually rational, budget balanced and ex-post efficient that can enforce

such a submission in FPSB auctions. This is because some members have an incentive

to bid above their suggested amount and get the item, hence it is shown that at least

two bids will be submitted that are very close to each other and higher than the single

recommended bid. In contrast, for the BSM setting, rings can suppress within-ring

competition for both types of auctions, under individual rationality constraints that

need to be evaluated numerically for each private valuation distribution for the case

of FPSB auctions. In line with the previous work, Lopomo et al. (2011) show that

all-inclusive BSM bidding rings in FPSB auctions are not stable (i.e. they yield the

same expected surplus to the colluders) in a simple 2-bidder setting with binary private

valuations.

Finally, Laffont and Martimort (1997); Che and Kim (2006); Pavlov (2008) have stud-

ied the optimal auction design problem of an auctioneer in the presence of a group of

colluders from a mechanism design perspective. They find that, in some environments,

the auctioneer can design an optimal mechanism that yields the same revenue as a fully

competitive optimal auction.

22As the authors note, this setting is the same as asymmetric FPSB auctions where it is not, in general,
known when equilibria of the bidding function exist.

23Actually, a BNE is identified where all potential ring members decline the ring’s invitation and bid
non-cooperatively.
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In this section, we shortly reviewed the literature in bidding rings for single-item auc-

tions and strong cartels. As we have shown, most of the literature has focused on the

ring’s allocation of the bids and side-payments to its members, so that the ring is effi-

cient, stable and budget balanced. However, the vast majority of the work in this area

deals with a single bidding ring (with and without competition from non-ring members)

and assumes that the ring center acts as a means of coordination. In contrast, in the

advertising exchange marketplace, demand-side intermediaries correspond to such ring

centers which are, in contrast, purely self-interested and profit-maximizing. Moreover,

demand-side intermediaries compete both when bidding in the ad exchange but also in

an effort to attract the qualified demand from the advertisers. For this reason, in the

following section, we provide a summary of the closely related literature on competition

between auctioneers.

2.5 Competing Mechanisms

The majority of studies in mechanism design and auction theory consider the case of

a monopolist seller who is auctioning goods to a number of bidders so as to maximize

revenue or allocative efficiency. In this case, the optimal reserve price is such that

the marginal cost of increasing the reserve price (and hence excluding buyers with low

valuations) equals the marginal profit due to extracting more surplus from high-valued

buyers (Myerson, 1981). However, much less is known in settings where sellers compete

to attract buyers by announcing appropriate mechanisms, a situation that often arises in

real markets, such as search engines, financial markets, auction houses, or online auction

sites. In contrast to the monopolistic setting, in these cases an increase in the reserve

price might not yield enough surplus extraction from the buyers, as the latter now have

the opportunity to select another mechanism.

There is relatively little research in the area of competing auctions. The main reasons

for the scarcity of results in this area are the intractability of analysis and the fact that,

until recently, auctions were standalone events and of limited use (Haruvy et al., 2008).

Pai (2010) provides two major explanations for the former fact. First, there is no analog

to the revelation principle; even when fixing the mechanisms of others, calculating the

revenue of a seller’s mechanism requires knowledge of the buyers’ selection decisions in

equilibrium (i.e. how many buyers will visit the seller and what is the distribution of

their valuations, both of which are endogenously determined based on the selection of

mechanism). This makes the seller’s revenue maximization an optimization problem

involving a fixed-point subroutine (see also (Epstein and Peters, 1999; Martimort and

Stole, 1999; Peters, 2010; Attar et al., 2011a,b; Peters, 2012)). Second, the design of

a mechanism will influence the response of other mechanisms, resulting in an infinite

regress whose fixed point is difficult to find and utilize. For these reasons, the vast

majority of research on competing auctions is either experimental (Anwar et al., 2006;
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Haruvy et al., 2008) or focuses on the two ends of the competition, i.e. duopoly markets

and markets with an infinite number of agents. Moreover, often the mechanisms consid-

ered are inevitably fixed, transforming the mechanism competition to that of price or

quantity competition which are more amenable to analysis. Competition in prices and

quantities between firms has a long history with the models of Bertrand and Cournot re-

spectively (Mas-Colell et al., 1995), although the institutions considered are exogenously

determined and information about demand is considered to be perfect.

Analysis of competing mechanisms starts with the seminal paper of McAfee (1993) in

a multi-period setting with multiple sellers and buyers having single-unit supply and

demand, where the latter single-home (i.e. can only select one seller at each period).

This work is based on a “large market hypothesis”, meaning that the number of agents

tends to infinity in the limit. Also, the ratio of buyers to sellers is kept constant and the

work focuses on the steady-state result of the competition. The first hypothesis ensures

that a change of one mechanism does not influence the available surplus of the buyers not

participating in the mechanism and hence the response of the other mechanisms. McAfee

shows that there is a unique symmetric pure-strategy equilibrium24 where sellers hold

Vickrey auctions with reserve prices that equal their production costs, whereas buyers

select one of these auctions uniformly at random.

In a subsequent work, Peters (1997) validates the results of McAfee in a more general

setting, relaxing McAfee’s assumptions about symmetric mechanisms and ignorance

about a seller’s mechanism effect of deviation on the buyers and opponent sellers. In

a follow-up paper, Peters and Severinov (1997) consider a similar setting for Vickrey

auctions, where they study two different variations: cases where buyers select an auction

before learning their valuation and cases where the selection is done after having acquired

such information. The authors express the revenue of the sellers in a closed form for

finite populations of agents and then get the limit as this number goes to infinity. They

show that, in the former scenario, there exist symmetric equilibria for the sellers with

reserve prices between their production costs and the monopolist optimal reserve price.

In the latter case, they show that, in their formulation, there will also be a symmetric

equilibrium where sellers set zero reserve prices, and buyers randomize equally between

the auctions.

Hernando-Veciana (2005) extends the aforementioned results to a finite population of

sellers with asymmetric production costs that implement Vickrey auctions25 and can

select among a finite set of reserve prices. He shows that there exists a unique MSNE

for the buyers’ entry game, involving ns cut-off points (where ns is the number of

sellers), so that buyers with valuations above each corresponding cut-off point select one

of the eligible auctions (i.e. having a reserve price lower or equal than their valuations)

24McAfee considers an equilibrium concept he terms the Competitive Subform Consistent Equilibrium
(CSCE).

25He mentions that the results can be generalized to FPSB auctions resulting from the revenue equiv-
alence theorem.
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uniformly at random. Moreover, he shows that, when the number of sellers is large

enough, there is also a unique symmetric pure-strategy equilibrium in the sellers’ game,

where reserve prices equal production costs. A crucial assumption for this result is that

production costs have the same support as the available reserve prices.

In a more recent study, Virág (2010) generalizes the previous results for finite markets

with ns Vickrey auctions with a continuum of feasible reserve prices, and nb buyers

where, in contrast to all previous works, he relaxes the requirement for the ratio ns/nb

to be fixed. First, he confirms the result that the buyers’ selection game admits a

unique MSNE, involving ns cut-off points, as before. Then, he also shows that there are

mixed-strategy equilibria with reserve prices converging to the symmetric production

cost, zero, in the limit, once the market is large enough. He argues that this happens

because sellers in such a market cannot influence the surplus of buyers and hence should

only decrease their reserve prices which will induce more buyer visits. Crucially, he is

also able to provide necessary conditions for the existence of a symmetric pure-strategy

equilibrium for the sellers that do not depend on the distribution of valuations, by

assuming that the lowest valuation is higher than the production cost of the sellers (i.e.

positive), in contrast to previous literature. Finally, he illustrates that these symmetric

reserve prices quickly converge to zero as the market becomes large, as long as the ratio

of buyers to sellers does not converge to infinity fast enough. Valverde (2012) extends

these results to heterogeneous goods, showing that the buyers’ entry game involves pure

cut-off strategies, where buyers either select or do not enter a seller’s auction based on

their valuation for the item under consideration, and equilibrium reserve prices tend to

production costs under the condition that (only) the buyers’ population is large enough.

Damianov (2005) reaches a similar conclusion for a finite number of competing sellers

(and buyers) implementing general mechanisms, where buyers select their auction be-

fore learning their valuation. He shows that the buyers’ entry game admits a symmetric

MSNE where they uniformly randomize between the sellers, and that the sellers’ sym-

metric mechanism in equilibrium is a Vickrey auction with zero reserve price and an

entrance fee which is independent of the number of buyers in the auction.

At the other end of the competing mechanisms spectrum, Burguet and Sákovics (1999)

studied the duopoly competition of two Vickrey auctions with reserve prices. They show

that the buyers’ entry game admits a unique BNE involving a cut-off point, so that

buyers with valuations below this point always select the low-reserve auction, whereas

buyers with valuations higher than this cut-off point equally randomize between the two

auctions. What’s more, they show that the sellers’ reserve-price-setting game cannot

have a symmetric pure-strategy equilibrium, as is the case with large markets, but will

involve a mixed-strategy equilibrium with reserve prices above their production costs

(i.e. positive). However, they cannot fully characterize it. Finally, the authors extend

their results for a larger class of mechanisms, called quasi-efficient. These are mecha-

nisms that allocate the good to the buyer with the highest valuation given that buyers’
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entry decisions are identical to the ones obtained under Vickrey auctions, hence ineffi-

ciencies arise only from the seller withholding the good. For this class of mechanisms,

they show that the entry game of the buyers involves two cut-off points, so that buyers

with valuations lower than the low cut-off point do not attend any seller’s mechanism,

buyers with valuations between the cut-off points all select the same seller, and buyers

with valuations higher than the high cut-off point randomize equally between the mech-

anisms. Pai (2009) considers more general mechanisms, incorporating a “hierarchical

allocation rule” (i.e. the allocation is based on a declared priority on the bidder types,

each above a specified threshold), for a duopoly market. More specifically, he consid-

ers the best response of an auctioneer when his opponent implements a quasi-efficient

mechanism. He shows that the equilibrium strategy of buyers’ entry game is as before

(Burguet and Sákovics, 1999) and then proves the existence of a symmetric weak-perfect

BNE in the sellers’ game where both implement a quasi-efficient mechanism when the

probability distribution function of buyers’ valuations satisfies the monotone hazard rate

condition and, additionally, is a weakly decreasing function. As noticed, this means that

auctioneers’ mechanisms will involve a posted-price component.

Moreover, Gerding et al. (2007) consider the case where sellers offer Vickrey auctions

with reserve prices in the presence of a mediator (such as eBay) and can make use of

shill bids (i.e. bids submitted on behalf of the seller without buyers knowing it so that

selling price is increased). The authors analytically find the equilibrium strategies of the

sellers in the case of two auctions (by iteratively discretizing the space of reserve prices)

and then implement evolutionary experiments to study the setting with more sellers.

They show that sellers have incentives to adopt shill bids which can be deferred by the

mediator by charging them appropriate auction fees. In another study, Ellison et al.

(2004) study the competition of two mediators with multiple sellers and buyers, where

both can select one of the mediators, and buyers learn their valuations after entering

the corresponding market. Hence, in this model, participants face network effects, both

from their opponents (i.e. higher competition leads to smaller expected profit) and their

counterparts (i.e. large numbers of sellers/buyers induces higher expected profit for

buyers/sellers respectively). The authors find that under some conditions, mediators

with different sizes can co-exist.

In sponsored search auctions, Liu et al. (2008) have studied the competition between

two search engines that differ in their ranking rule, which can either be according to bids

or according to revenue (i.e. adjusted bids by quality). Moreover, advertisers are split

in two categories, low-quality and high-quality ones. The authors find that if the search

engines adopt different such rules, the equilibrium behavior of the advertisers depends

on the ratio of high- to low-quality advertisers. If this ratio is greater than half, then

low-quality bidders go to the bid-based ranking mechanism, and high-quality advertisers

will go to each of them with a probability that is a function of the aforementioned ratio.

Otherwise, low-quality advertisers prefer the revenue-based ranking mechanism with a
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probability which is a function of their private valuation as well as the ratio of the low-

and high-quality values selected. In this case, high-quality advertisers always select the

search engine with the revenue-based ranking rule.

In line with the previous work, Ashlagi et al. (2011b) consider a setting with two auctions

that differ in their click-through rate (i.e. popularity). One of their findings is that,

when sellers offer VCG auctions with reserve prices, there is a unique equilibrium for

the buyers’ selection subgame, involving more complex strategies. More specifically,

the equilibrium strategy is uniquely defined by two cut-off points, so that buyers with

valuations in the interval defined by the cut-off points follow a strictly mixed strategy,

whereas buyers with valuations outside of this interval follow pure strategies. However,

none of the previous works considers the problem of competing intermediaries in a non-

captive setting, whose presence fundamentally changes the nature of the problem. More

specifically, the auctions are no longer independent, as they have to compete additionally

as bidders at the central auction for the same good, and so the buyers’ intermediary

selection affects both the intermediaries’ profit as well as the center’s revenue. Finally,

intermediary auctioneers face similar tradeoffs as the buyers: the higher their profit

the smaller is their probability of obtaining the item at the center. In (Ashlagi et al.,

2011a), the same authors extend their work allowing for buyer participation costs and

capacity differences for generalized second-price search engines. They show that, under

this model, large advertisers are likely to multi-home (where the buyers’ entry game

admits a PSNE with a single cut-off point), and that joining of the two search engines,

such as the Microsoft-Yahoo! deal on 2008, may or may not benefit social welfare, based

on the difference in capacities and popularities between the search engines.

Motivated by the online display advertising marketplace, Polevoy et al. (2014) extend

the work of Emek et al. (2012) for multiple sellers that compete to attract buyers with

binary valuations for a set of goods. The authors consider revenue maximizing sellers

each of whom has a good (that corresponds to a flow of ads) and must decide what kind

of attribute partitions should be revealed to the buyers. They show that the buyers’

selection problem is a potential game26 (hence admits a pure NE strategy) where the

potential is the social welfare. Then, they study how competition affects social welfare,

and they provide tight bounds, showing that competition might minimally increase social

welfare but can also lead to significant loss compared to the setting with a monopolist.

Finally, another growing strand of literature deals with the competition between two-

sided platforms, such as financial exchanges (Rochet and Tirole, 2006; Cantillon and Yin,

2011). However, the vast majority of this literature emphasizes on the network effects

that influence the traders’ decision about which platform to select as well as fee-based

platforms where the focus is on the structure of the fees. Our model (see Section 3.3)

26A game, G =(N,S, u), is a potential game if there exists a function Φ : S 7→ R such that, for all
i ∈ N , all s−i ∈ S−i and si, s

′
i ∈ Si, ui(si, s−i) − ui(s′i, s−i) = Φ(si, s−i) − Φ(s′i, s−i). Φ(·) is known as

the potential function (Monderer and Shapley, 1996).
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departs from these settings, since intermediaries represent only one side of the market

and are assumed to make a profit by pocketing the difference between what they get

paid by their advertisers and what they pay at the exchange.

2.6 Summary

In this chapter, we reviewed related literature on auctions for ad exchanges and, more

generally, auctions involving intermediaries. In particular, we began by introducing the

key notions of game theory, the theory of strategic interaction among agents, and put

an emphasis on auction theory, the main area of interest to this thesis.

We then presented related work in the area of online ad exchanges from an auction-

theoretic perspective. More specifically, we described the AdX model along with the

state-of-the-art literature in the auction design problems for the ad exchange and the

publisher. As depicted, some of the problems that ad exchanges face include the exis-

tence of advertisers with different incentives and budgets, the fact that goods are het-

erogeneous and billions of auctions are conducted daily, so auctions need to be simple

and fast. There are also important issues that need to be considered by all stakeholders,

such as the limited information on opponents and bids that need to be learned over time.

Finally, one of the most important issues is the existence of the intermediaries that hide

some of the demand to the exchange and publisher.

This last issue is of immediate relevance to this thesis. For this reason, we continued our

literature review on domains with auctions involving intermediaries where we showed

the connection between ad exchanges, procurement auctions with subcontracting and

auctions for network resource allocation. Specifically, we have seen that other researchers

have compared first-price and second-price auctions in these settings. However, although

some of the results share similarities with the work within this thesis, there are a number

of issues that have not been addressed before to satisfy our research aims. Specifically,

in these works, the intermediaries are assumed to be homogeneous and have no strategic

tools to increase their profit, such as reserve prices. The only exception is the work by

Feldman et al. (2010) who nevertheless derive results for intermediaries with a single

buyer each. In addition, the related literature considers competing intermediary auc-

tions where both the allocation and payments are determined before the central auction.

Wambach (2009) has considered this timing issue but avoids explicitly modeling compe-

tition by other intermediaries. We aim to bridge this gap by considering both pre- and

post-award intermediary auctioneers (see Section 3.4 for the mechanisms studied) and

letting both the central auctioneer and the intermediaries set appropriate reserve prices

(Chapter 5).

Intermediary auctions act as bidding rings in the eyes of the ad exchange auctioneer. For

this reason, we followed with a summary of research in that area. We illustrated that
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in explicit collusion, colluders often organize local auctions to determine the bid at the

central auction, as well as the local payment and allocation if the ring wins. However,

the emphasis in this stream of literature has been on a single bidding ring, in contrast to

our competing intermediaries setting. Moreover, the main issues studied are related to

the enforcement of the agreed bids, since bidders can directly bid at the central auction.

Currently, this is not an issue in our ad exchange setting, since advertisers typically

lack the expertise and infrastructure, or are not allowed to bid directly at the exchange.

We complement some of the works in this area by considering different mechanisms

for the rings, when multiple, competing such bidding rings are present in Chapter 4.

More specifically, we find that the reserve price of the central auctioneer increases with

the number of bidders and that it can also depend on the number of intermediaries for

some types of PAKT. Finally, within the same chapter, our insights from competing,

self-interested intermediary auctioneers, can also provide insights on which collusion

mechanism colluders should choose in face of competition from other rings.

Finally, given that intermediary auctioneers are in direct competition, we offered a short

survey of the growing literature on the problem of competition between auctioneers,

which is the main broad area of our work. Specifically, we pointed out the difficulties in

applying traditional mechanism design techniques, such as the revelation principle, in

imperfect competition settings. This stream of literature considers the competition be-

tween auctioneers by predominantly fixing the mechanisms and converting the problem

to that of price or quantity competition. Also, works in this literature consider either

duopoly or perfect competition, mainly for tractability issues. In this thesis, we take

the former approach, considering settings with two intermediaries that use predefined

auction mechanisms and compete by setting appropriate reserve prices. This is the first

time that this has been studied, since the vast majority of previous literature has focused

on independent auctioneers, whereas in our ad exchange setting, intermediaries act as

both auctioneers and bidders. In Chapter 6, we first study the intermediary selection

problem faced by the advertisers, which is shown to be complex and remarkably differ-

ent than that of previous works. Given this complexity, learning algorithms are used to

calculate the intermediaries’ equilibrium reserve-price-setting strategies.

In summary, we showed that the literature up to now has not sufficiently addressed the

problem of competition between intermediary auctioneers. Against this background,

in the next chapters, we aim to fill this gap, by analyzing the imperfect competition

between demand-side intermediaries that satisfies our research objectives (Section 1.2).

In particular, we study the imperfect (i.e. small, finite) competition between demand-

side intermediaries with captive buyers when the latter do not impose any reserve prices

(Chapter 4). We then look at the impact of such reserve prices in the revenue and

efficiency of the ad exchange ecosystem, in Chapter 5. Finally, in Chapter 6, we remove

the captivity limitation and instead let the advertisers select their favorite intermediary
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in a simple two-intermediary setting. Before doing this, in the next chapter, we formally

present our model and assumptions.





Chapter 3

The Problem of Competing

Intermediary Auctioneers

In this chapter, we provide a general formalization of the problem of competing interme-

diaries that will be studied in the following chapters within this thesis. The aim of this

discussion is to present a high-level model of the setting considered along with a number

of necessary assumptions that will form the basis for the theoretical analysis presented

in the remainder of this thesis.

To this end, first, the roles of each set of agents within our setting are outlined in Section

3.1. Then, Section 3.2 lays down the assumptions taken that were deemed necessary for

the analytical tractability of the results. Following this, Section 3.3 presents a general

formulation of the model that will be used in the next chapters. Next, Section 3.4

provides a description of the three mechanisms that are studied in the chapters that

follow along with a number of motivating examples that show some of the implications

of the presence of competing intermediaries and their strategic interaction. Finally,

Section 3.5 concludes this chapter.

3.1 The Agents

As it has been discussed in Chapter 1, the online advertising industry is significantly

complex, comprising a large variety of companies, each specializing in a different area.

However, for issues of clarity and tractability of our model and since our focus is on the

competition between demand-side platforms, in the setting studied, three different types

of strategic participants are considered1:

1We borrow the terminology from Feldman et al. (2010).

55



56 Chapter 3 The Problem of Competing Intermediary Auctioneers

• The center represents an ad exchange or a supply-side platform that calls out a

number of interested advertisers (or, mainly, their representative intermediaries, as

discussed below) every time a user visits a web page of a publisher whose supply is

managed by the platform. The center takes the role of an auctioneer that forwards

eligible information (if any) about the user and the web page to the bidders and

conducts an auction in which the latter have to submit an advertisement tag along

with a price offer (henceforth called a bid). The winning bidder’s advertisement is

then shown to the user (an event known as an impression) and the center shares

the obtained revenue with the publisher based on a predetermined commission

rate. In what follows, the publisher and third-party running the ad exchange or

supply-side platform will be considered as a single entity.

• A number of demand-side intermediaries. These intermediaries provide advertis-

ers with the technical infrastructure, expertise, relevant tools as well as a central-

ized point of access to the various ad exchanges. There are two broad categories

of such intermediaries: self-serve and managed. The latter type follow the tra-

ditional ad network business model, whereby the intermediary agrees in advance

with the advertiser on a budget to be spent on purchasing a specified number of

qualified impressions. Furthermore, these intermediaries take full responsibility for

managing the advertiser’s campaign. In contrast, self-serve intermediaries, known

as demand-side platforms, typically provide an application programming interface

along with additional useful data to their advertisers who are now responsible for

their bidding strategy and campaign management. Given that there is usually

more than one interested advertiser for each impression in an intermediary’s plat-

form, the latter implements a mechanism, predominantly an auction, that decides

which of the advertisers’ bids to submit at the center and how much to ask for its

services.

• A number of buyers. These are the advertisers that have some predefined demand

for ad placement on web pages and for user types of their choice. The vast majority

of buyers have a budget and have to decide how much to bid2. In addition, they

have to decide which advertisement to show for each available impression at the ad

exchange, if called out. Buyers connect to the ad exchange via some intermediary,

hence it is crucial for buyers to select an intermediary that maximizes their surplus.

In what follows, a buyer’s utility will be called her surplus, an intermediary’s utility will

be called his profit and the center’s utility will be called its revenue3.

Now that the main participant roles considered have been illustrated, in the following

section, we present the assumptions that were taken in our model to make it amenable

to theoretical analysis.

2Bid amounts are usually much smaller compared to a buyer’s budget.
3For the remainder of this thesis, we follow the convention that buyers are female and intermediaries

are male.
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3.2 Assumptions

Before presenting our model formally, we first simplify the complexity of the real-world

ad exchange area by making the following assumptions:

• All agents are self-interested.

• There is a single slot available for ad placement that is auctioned at the center4.

• There is a single center implementing a second-price sealed-bid auction with a

reserve price and a fair tie-breaking rule. This mechanism is chosen since it is used

in all major ad exchanges. Moreover, this mechanism is incentive compatible and

is revenue-optimal when participants are symmetric (Myerson, 1981), which is a

reasonable assumption for fair, open platforms like ad exchanges.

• The pricing model implemented is CPM, i.e. advertisements are traded on a per

impression basis, as is the case in the vast majority of the current ad exchanges.

Moreover, this pricing scheme alleviates problems related to the bias inherent in

the estimation of the click-through rate of the advertisements (see Section 2.2).

• Buyers can only participate in the center’s auction via demand-side intermediaries.

This naturally arises in the complex online display advertising marketplace, as ad-

vertisers usually lack the required expertise and technical infrastructure, or are not

allowed to bid directly in the ad exchange (e.g. Microsoft’s advertising exchange).

• Buyers single-home, i.e. each buyer can select at most one intermediary. This is a

first step towards understanding the interactions of buyers. Also, in practice ad-

vertisers typically select one demand-side intermediary for each type of campaigns;

this is to avoid campaign management costs as well as the possibility of bidding

against themselves5.

Having laid out the assumptions, we now continue by detailing the ad exchange model,

presenting our setting along with the timing and actions available to the center, the

intermediaries and the buyers.

4In practice, a page has often several ads. However, currently these ads are mostly sold independently,
even though there are often interactions (so-called externalities) between ads (e.g. if the same ad is
shown multiple times, or if competing brands are shown). Finding good mechanisms to deal with such
interactions is still an open problem.

5For the PRE mechanism, bidding against one’s self is not possible, however we can assume that there
is a cost for entering in an intermediary’s auction related to the cost of managing a campaign, identical
for all intermediaries, that is normalized to zero.
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3.3 Model

Our model extends that of Feldman et al. (2010) (see Section 2.2.2) by letting the buyers

optionally strategically select an intermediary. Specifically, suppose that the center is

auctioning an indivisible good to K ∈ N+ ex-ante symmetric, surplus-maximizing buyers

via a number, n ∈ N+, of intermediary auctioneers sj , j = 1, ..., n. We assume that the

center and the intermediaries have no valuation for the good6 and that the preferences

of the buyers and auctioneers are described by von Neumann and Morgenstern utility

functions. Buyers have independent valuations, υi, i = 1, ...,K, i.i.d. drawn from a

commonly-known distribution F with a continuous, positive, differentiable density f ,

and a compact support V = [0, 1]. The center runs a second-price sealed-bid auction

with a reserve price, ρ ∈ V , and a fair tie-breaking rule, and each intermediary is allowed

to submit a single bid7. Hence, the center’s revenue equals the maximum of the second-

highest submitted bid and ρ, if there is at least a bid above ρ, and is otherwise zero.

Each intermediary, sj , j = {1, ..., n}, runs a contingent auction among its set of kj ≥ 1

buyers (where
∑n

j=1 kj = K). This auction determines the winning bid, the price to

be paid by the winning buyer as well as the bidding amount to be submitted at the

center. The intermediary’s profit is the difference between the payment he receives from

his winning buyer and the price he pays at the center, whereas the surplus of a buyer is

the difference between her valuation and the price paid at the intermediary. Specifically,

contingent on the intermediary winning at the central auction, the expected surplus for

a buyer i with valuation υi is Πj(υi) = αj(υi)(υi − pj), where αj : V 7→ [0, 1] is the

probability of obtaining the item in intermediary sj ’s local auction, and pj ∈ [0, 1] the

price to be paid to the intermediary. In more detail, the game proceeds as follows:

1. The center announces its reserve price, ρ, to the intermediaries.

2. Intermediaries announce their reserve prices, rj ≥ ρ, j = {1, ..., n}, to the popula-

tion of buyers.

3. Buyers learn their valuations for the good.

4. Buyers (optionally) simultaneously select their preferred (single) intermediary, sj ,

and submit a bid to that intermediary.

5. Intermediaries run auctions among their buyers and submit their (single) bids (if

any) to the center.

6. The center runs its auction with the intermediaries’ bids, transfers the good to the

winning intermediary (if any) and receives payment from that intermediary.

7. The winning intermediary (if any) transfers the good to his winning buyer and

receives payment from that buyer.

6The center can have a valuation for the good that is normalized to zero.
7This is the predominant mechanism used in ad exchanges.
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This formulation is general enough and so can be used in other settings, such as auctions

for real estate or treasury bills, procurement auctions with subcontracting or resale, auc-

tions with bidding rings, auctions for network resources allocation or any other auctions

involving intermediaries.

Some of the implications of the introduction of intermediaries’ auctions will be more clear

in the examples of the following section where we present the intermediary auctions that

we will study throughout the remainder of this thesis.

3.4 Auction Mechanisms for the Demand-Side Intermedi-

aries

Due to the limitations inherent in the analysis of competing auctioneers, i.e. the lack of

an analog to the revelation principle and the infinite regression resulting from auction-

eers’ best responses (see Section 2.5), in the following chapters, we fix the mechanisms of

intermediaries. Specifically, we focus our analysis on three different widely-used auction

mechanisms for the intermediaries, where they make a profit by pocketing the difference

between the received payments from their buyers and the payment to the center, given

that they win in the latter’s auction. In more detail, we consider two variations of the

Vickrey auction that we call PRE and POST based on the time of the determination of the

intermediary’s exact contingent payment, i.e. before or after the center’s auction, as well

as FPSB auctions. The three auction types are described in the following subsections.

3.4.1 Pre-Award Second-Price Sealed-Bid Auction (PRE)

In the first mechanism, named pre-award SPSB or PRE auction, the intermediary runs

a local SPSB auction and determines the exact payment before the center’s auction.

Specifically, contingent on the intermediary winning the good at the central auction,

the local highest bidder wins and pays the maximum of the local second-highest bid

and the intermediary’s announced reserve price given that her bid is higher than the

latter price. Since this maximum is the intermediary’s payment in case he wins at

the central auction, it corresponds to his (private to other intermediaries) “valuation”.

As the center’s auction is DSIC8 this is also the amount that the intermediary bids

at the central auction (given that there is at least one bid above the intermediary’s

reserve price, otherwise the intermediary does not submit a bid). The PRE auction is

the mechanism studied by Feldman et al. (2010) and is also DSIC for the buyers as the

following proposition illustrates.

8For an exposition of all the bidding equilibria of the SPSB auction, we refer the reader to the work
of Blume and Heidhues (2004).
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Proposition 3.1. Truthful bidding is a dominant-strategy equilibrium for the buyers in

a PRE intermediary auction.

Proof. Assume buyer i with private valuation υi participating in intermediary j’s PRE

auction submits a bid bi. The highest opponent local bid in j’s auction is bj and the

highest opponent intermediary q 6= j’s bid submitted at the center is bq. W.l.o.g. we

assume that the intermediaries and the center do not impose any reserve prices. We

proceed by case analysis.

• υi > bj . If bj ≥ bq, then intermediary j wins (with probability 1
2 if the two bids

are equal), since he submits bj , and hence buyer i best responds with a bid bi > bj

that yields positive surplus υi− bj . If bj < bq, then intermediary j loses and buyer

i is indifferent across all bids. Hence, in both cases, bi = υi is a weakly-dominant

strategy.

• υi = bj . In this case, buyer i is indifferent across all bids since her surplus is always

0, so bidding υi is a weakly-dominant strategy.

• υi < bj . If bj ≥ bq, then intermediary j wins and buyer i best responds with

bidding bi < bj , since otherwise she gets a negative surplus. If bj < bq, then buyer

i is indifferent across all bids. Hence, in both cases, bi = υi is a weakly-dominant

strategy.

Having shown that the PRE auction is DSIC, in the following examples we aim to illus-

trate some of the effects of the competition between homogeneous intermediaries. More

specifically, consider a setting with two intermediaries, s1, s2, and a population of K = 4

buyers with discrete valuations υ1 > υ2 > υ3 > υ4 which are assumed to be common

knowledge among all parties and who submit bids b1, b2, b3, b4. This means that, if the

intermediaries were not present, the center’s revenue would be max{ρ, υ2}.

In our first example, we assume that the center and the intermediaries do not set any

reserve prices and that the allocation of the buyers to the intermediaries is exogenously

determined.

Example 3.1. Consider the following possible scenarios:

• Buyers 1 and 2 have been allocated to intermediary s1 whereas the other buyers to

intermediary s2. If both intermediaries implement PRE mechanisms, then bi = υi

for i = {1, 2, 3, 4}, hence intermediaries submit their local second-highest bids,

υ2, υ4, at the center. This means that the center’s revenue is υ4, intermediary s1

wins at the central auction and obtains a profit of υ2 − υ4 and buyer 1 wins for a

surplus of υ1 − υ2.
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• Buyers 1 and 3 have been allocated to intermediary s1 whereas the other buyers to

intermediary s2. Then, PRE intermediaries submit υ3, υ4 at the center. Hence, the

center again receives υ4, intermediary s1 wins at the central auction and obtains

a profit of υ3 − υ4 and buyer 1 wins for a surplus of υ1 − υ3.

• Buyers 1 and 4 have been allocated to intermediary s1 whereas the other buyers to

intermediary s2. Then, PRE intermediaries submit υ4, υ3 at the center. Hence, the

center again receives υ4, intermediary s2 in this case wins at the central auction

and obtains a profit of υ3 − υ4 and buyer 2 wins for a surplus of υ2 − υ3.

In this example, it can be seen that the outcome is not always efficient since, in the third

case, buyer 2 who is not the buyer with the highest valuation obtains the item. Moreover,

the center’s revenue is invariant to the buyers’ allocation to intermediaries when no

reserve prices are present but it decreases compared to the case without intermediaries.

In the previous example, we assumed that buyers are exogenously allocated to interme-

diaries. In the following example, we remove this limitation (see (Stavrogiannis et al.,

2013a) for a complete analysis).

Example 3.2. Suppose that the center does not impose a reserve price but intermediaries

s1, s2 set reserve prices r1, r2 respectively such that r1 ≤ r2. If buyers strategically select

one of the intermediaries based on the announced reserve prices, it is interesting to

see what their decision will be in equilibrium, since this will determine the equilibrium

reserve prices of the intermediaries. For PRE intermediary auctioneers, the intermediary

selection is a 3-player game, that of the buyers with the three highest valuations, since

the payment will be at least υ3 and both buyers 1 and 2 can obtain the good. More

specifically, if r1 ≤ r2 < υ3, buyer 1 tries to select the same intermediary as buyer 3,

and different intermediary than buyer 2, since this will maximize her surplus. Also,

there is a pressure for the intermediaries to increase their reserve prices, since these can

be their payments contingent on winning at the center and, at the same time, will try

not to set these too high so as to attract buyer 1. In equilibrium, both intermediaries set

reserve prices r1 = r2 = υ2.

This example shows the complexity of the buyers’ intermediary selection problem for PRE

intermediaries and the inherent pressure for increasing their reserve prices. In the next

subsection, we present the other variation of the Vickrey auction for the intermediaries.

3.4.2 Post-Award Second-Price Sealed-Bid Auction (POST)

Similar to the previous mechanism, in the post-award SPSB or POST mechanism, the

intermediary runs a local SPSB auction. However, he forwards the local highest bid to

the center (given that this is higher than his reserve price), increasing his probability of



62 Chapter 3 The Problem of Competing Intermediary Auctioneers

winning compared to the PRE mechanism. Moreover, his payment is determined after

the central auction as the maximum of the local second-highest bid, the center’s reserve

price and the second-highest bid submitted at the center, contingent on the intermediary

winning the good at the center. This mechanism is inspired by the operation of second-

price PAKT found in the literature on bidding rings (see Section 2.4); the intermediary’s

profit is the collusive surplus, i.e. the difference between the local second-highest bid

and the opponent intermediaries’ highest submitted bid, only when this is positive, i.e.

when the intermediary has both the highest and second-highest bids in total submitted

in his local auction, otherwise the intermediary receives zero profit. Hence, compared to

the PRE auction, this mechanism balances a higher probability of winning at the center

(since the highest bid is submitted) with the possibility of receiving zero profit (when the

second-highest bid among all buyers’ population is submitted in another intermediary).

The POST auction is also DSIC for the buyers as proved in the following proposition.

Proposition 3.2. Truthful bidding is a dominant-strategy equilibrium for the buyers in

a POST intermediary auction.

Proof. Assume buyer i with private valuation υi participating in intermediary j’s POST

auction submits a bid bi. The highest opponent local bid in j’s auction is bj and the

highest opponent intermediary q 6= j’s bid submitted at the center is bq. W.l.o.g. we

assume that the intermediaries and the center do not impose any reserve prices. We

proceed by case analysis.

• υi > max{bj , bq}. Buyer i best responds by bidding above this maximum to obtain

a positive surplus of υi −max{bj , bq}. Bidding anything lower than this leads to

either losing the local auction (when bi < bj) or winning that auction but then

losing at the central auction (when bj < bi < bq). So, bidding bi = υi is a weakly-

dominant strategy.

• υi = max{bj , bq}. In this case, buyer i is indifferent across all bids since her surplus

is always 0. More specifically, when υi = bj > bq, then bidding (i) any amount

above υi guarantees the good but at a price of bj = υi, (ii) any amount lower than

υi leads to not winning at the local auction, and (iii) bidding exactly υi gives her

the good with probability 1
2 . In all these cases, her surplus is zero. Similarly, when

υi = bq > bj , bidding (i) any amount below bq leads to either not winning at the

local auction or winning the local auction but losing at the central auction, (ii) any

amount above bq leads to a negative surplus, υi − bq, and (iii) an amount equal to

bq gives i the item with probability 1
2 . In all cases, her surplus is also zero. Hence,

bidding bi = υi is a weakly-dominant strategy.

• υi < max{bj , bq}. Buyer i’s best response is to bid bi < max{bj , bq}, for zero

surplus, irrespective of the bid, since otherwise she obtains a negative surplus. So,

bi = υi is a weakly-dominant strategy.
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As we have shown, the POST auction is also DSIC for the buyers. We now illustrate

some of the implications of the intermediaries using this mechanism compared to the

case of PRE, using the same example as Example 3.1. More specifically, we consider a

setting with two intermediaries, s1, s2, now implementing POST auctions, and a popula-

tion of K = 4 buyers with discrete valuations υ1 > υ2 > υ3 > υ4 and who submit bids

b1, b2, b3, b4. We also assume that both the center and the intermediaries do not any

reserve prices and that buyers are exogenously allocated to the intermediaries.

Example 3.3. Consider the following possible scenarios:

• Buyers 1 and 2 have been allocated to intermediary s1 whereas the other buyers to

intermediary s2. If both intermediaries implement POST mechanisms, then bi = υi

for i = 1, 2, 3, 4, hence intermediaries submit their local highest bids, υ1, υ3, at the

center. This means that the center’s revenue is υ3, intermediary s1 wins at the

central auction and obtains a profit of υ2 − υ3 and buyer 1 wins for a surplus of

υ1 − υ2.

• Buyers 1 and 3 have been allocated to intermediary s1 whereas the other buyers to

intermediary s2. Then, POST intermediaries submit υ1, υ2 at the center. Hence,

the center receives υ2, intermediary s1 wins at the central auction but obtains a

profit of 0 and buyer 1 wins for a surplus of υ1 − υ2.

• Buyers 1 and 4 have been allocated to intermediary s1 whereas the other buyers to

intermediary s2. Then, POST intermediaries submit υ1, υ2 at the center. Hence,

the center again receives υ2, intermediary s1 wins at the central auction but also

obtains a profit of 0 and buyer 1 wins for a surplus of υ1 − υ2.

In this example, we can see that the outcome is always efficient (i.e. the highest bidder

obtains the item), the center’s revenue is higher than that of Example 3.1 for PRE

intermediaries, and is equal to that of a setting without intermediaries. Nevertheless,

there are settings where the winning intermediary obtains zero profit even though he

wins at the center (second and third case above).

We now move to present the third intermediary mechanism, FPSB.

3.4.3 First-Price Sealed-Bid Auction (FPSB)

In this FPSB mechanism, the intermediary uses an FPSB auction for his local buyers.

Hence an intermediary’s local winner obtains the good for a price equal to her bid only

if her selected intermediary wins at the center. Since the payment of the intermediary is

the aforementioned price, determined before the central auction, and the latter auction
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is DSIC, intermediaries submit their local winning bids at the center (given that there

is at least one bid above their reserve price, otherwise they do not submit a bid), as was

the case with the PRE mechanisms. For this reason, the profit of a winning intermediary

is the difference between his local winning bid and the maximum of the second-highest

intermediaries’ bid and the center’s reserve price. As we will show, this mechanism is

also more efficient than the PRE auction; however, buyers in this mechanism follow BNE

bidding strategies.

We now illustrate some of the implications of the intermediaries using this mechanism

compared to PRE and POST auctions, using the same example as examples 3.1 and 3.3.

More specifically, we consider a setting with two intermediaries, s1, s2, now implementing

FPSB auctions, and a population of K = 4 buyers with discrete valuations υ1 > υ2 >

υ3 > υ4 and who submit bids b1, b2, b3, b4. Since FPSB auctions are not DSIC, bi < υi

in general for i = {1, 2, 3, 4}. We assume, as before, that both the center and the

intermediaries do not any reserve prices and that buyers are exogenously allocated to

the intermediaries.

Example 3.4. Consider the following possible scenarios:

• Buyers 1 and 2 have been allocated to intermediary s1 whereas the other buyers to

intermediary s2. If both intermediaries implement FPSB mechanisms, then inter-

mediaries submit their local highest bids, b1, b3, at the center. This means that the

center’s revenue is b3, intermediary s1 wins at the central auction and obtains a

profit of b1 − b3 and buyer 1 wins for a surplus of υ1 − b1.

• Buyers 1 and 3 have been allocated to intermediary s1 whereas the other buyers

to intermediary s2. Then, FPSB intermediaries submit b1, b2 at the center. Hence,

the center receives b2, intermediary s1 wins at the central auction and obtains a

profit of b1 − b2 and buyer 1 wins for a surplus of υ1 − b1.

• Buyers 1 and 4 have been allocated to intermediary s1 whereas the other buyers

to intermediary s2. Then, FPSB intermediaries submit b1, b2 at the center. Hence,

the center again receives b2, intermediary s1 wins at the central auction and also

obtains a profit of b1 − b2 and buyer 1 wins for a surplus of υ1 − b1.

In this example, and under the assumption about the ordering of the bids9, the outcome

is always efficient as was the case with POST intermediaries. What’s more, the winning

intermediary always makes a positive profit, as was the case with PRE intermediaries.

Hence, FPSB combine the benefits of both Vickrey variations but are not DSIC, so buyers

must strategize about their bidding amounts. Finally, in all cases, the center’s revenue

is lower than that for POST intermediaries.

9This is actually true for this example. For more details, see Section 4.2.3
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3.5 Summary

In this chapter, we introduced a generic model for the ad exchange ecosystem. Within

this model, we made several simplifying assumptions that are necessary for tractability

reasons. However, our model is a qualitatively reasonable abstraction of this complex

marketplace. Having presented our assumptions, we then described the details of our

model, including the timing and available actions of all the participants. In contrast

to other models (AdX model of Muthukrishnan (2009) and Feldman et al. (2010)), we

allow buyers to strategically select one of the two intermediaries, in the same manner

that Burguet and Sákovics (1999) do for independent auctioneers. Following this, we

presented three auction mechanisms for the intermediaries that form the basis of our

analysis. Finally, we provided a number of examples that depict the resulting issues

from the competition of intermediaries and their choice of mechanism for the center, the

buyers and the intermediaries themselves.

In what follows, we analyze the competition between intermediaries in a Bayesian setting

with captive buyers, where we consider intermediaries both without (Chapter 4) and

with reserve prices (Chapter 5). We then remove the captivity assumption in Chapter

6 where we study the case with buyers strategically selecting one of the intermediaries,

albeit in a simpler duopoly intermediary setting.





Chapter 4

Intermediaries with Captive

Buyers: No Intermediary Reserve

Prices

We study the model for ad exchanges presented in the previous chapter under an

incomplete-information or Bayesian setting, where each buyer knows her private val-

uation, but has only probabilistic information about the private valuations of her op-

ponents. More specifically, we consider a single-good setting with intermediaries whose

buyers are captive, i.e. we ignore the issue of strategic selection of intermediaries from

the buyers and assume that, after this exogenously determined allocation to the inter-

mediaries, buyers cannot move between them. We assume that the center sets a reserve

price but the intermediaries do not. Furthermore, we focus our analysis on the case

where each intermediary has the same number of buyers with the same distribution of

private valuations (i.e. the intermediary mechanisms are symmetric) and when all inter-

mediaries implement the same auction (i.e. homogeneous population of intermediaries).

Given this setting, we analyze the effect of the introduction of the intermediaries as well

as their competition on the center’s revenue, the intermediaries’ profit and the buyers’

surplus as well as on the social welfare (i.e. the sum of all agents’ utilities).

In accordance to the model described in Section 3.3, in what follows, we assume that

both the center and the intermediaries have selected their mechanism in advance and, in

the setting studied within this chapter, that buyers are allocated to the intermediaries

such that each intermediary has exactly the same number of buyers. Then, the center

announces a reserve price for the good to be auctioned to the intermediaries who then

forward this to their buyers. Buyers learn their private valuations for the good and

submit a bid for the good to their allocated intermediary. Intermediaries then run local

auctions with their buyers’ bids to determine a winner, if any, and a payment contingent

on winning the item at the central auction, and then submit a single bid (if there is some

67
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qualified bid above the center’s reserve price) to the center. The center then runs its

auction with the intermediaries’ bids, determines a winning intermediary, if any, and a

payment and allocates the good to this intermediary who then allocates the good to his

winning local buyer for the determined price.

To this end, we start our analysis in Section 4.1 with a simple case for a single intermedi-

ary and then move to the competing intermediaries case in Section 4.2. We then proceed

to analyze the incentives of an intermediary to switch to a different mechanism in ho-

mogeneous intermediary settings for PRE and POST mechanisms in Section 4.3. Finally,

Section 4.4 concludes.

4.1 Special Case: Single Intermediary

We start by showing that, even when only one intermediary is introduced, the center’s

optimal reserve price increases as the number of buyers increases and the social welfare1

is smaller than that of a setting without intermediaries. Thus, these changes occur due

to the very presence of the intermediaries, and not only due to their competition.

Feldman et al. (2010) have shown that, for single-buyer intermediaries with reserve

prices, the center’s optimal reserve price decreases with the number of intermediaries.

Since each intermediary in their setting has exactly one buyer, this means that the

optimal reserve price decreases with the number of buyers as well. However, it is not

clear whether this is due to the number of intermediaries and/or number of buyers per

intermediary. Regardless of this, as the authors notice, this is in contrast with the results

by Myerson (1981) for a classical setting with no intermediaries, who has shown that

the optimal reserve price, ρ∗OPT , satisfies the equation:

ρ∗OPT =
1− F (ρ∗OPT )

f(ρ∗OPT )
(4.1)

As can be seen, the optimal reserve price is independent of the number of buyers. In

this case, the auctioneer’s ex-ante expected revenue is:

revenueOPT (ρ) = K

∫ 1

ρ
[xf(x) + F (x)− 1]FK−1(x)dx (4.2)

and a buyer’s ex-interim expected surplus (with a valuation υ ≥ ρ) is:

ΠOPT (υ, ρ) =

∫ υ

ρ
FK−1(y)dy (4.3)

1In accordance with Definition 2.32, the social welfare equals the sum of the center’s expected revenue,
intermediaries’ expected profits and all buyers’ expected surplus.
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and her ex-ante expected surplus is:

E[ΠOPT (ρ)] =

∫ 1

ρ
[1− F (y)]FK−1(y)dy (4.4)

In our setting, we illustrate that, when there is no competition between intermediaries,

the optimal reserve price increases as the number of buyers increases. This is in line

with the results of the literature on bidding rings (cf. Lemma 1 of Graham and Marshall

(1987) and McAfee and McMillan (1992)).

In more detail, since there is only one intermediary, the center’s second-price sealed-bid

auction with a reserve price is equivalent to the center offering a take-it-or-leave-it price,

ρ, to the intermediary representing all the buyers’ population (i.e. K buyers). Given

the lack of competition between intermediaries, when allocated, the good is given to the

highest bidder in all standard intermediary auctions, including the ones we study here.

What’s more, as equation (4.5) below expresses, the center in all three cases receives

the take-it-or-leave-it price only if there is a single buyer in the intermediary’s auction

whose private valuation is above this price. This means that the center’s optimal take-

it-or-leave-it price is the same for the three mechanisms. Hence, as Riley and Samuelson

(1981) have shown for auctions with the same minimum payment, all standard auctions

yield the same expected center’s expected revenue and intermediary’s profit, and, since

the allocation is identical, the same buyers’ expected surplus. W.l.o.g., we assume that

the intermediary runs a PRE auction. Then, the center’s expected revenue equals ρ times

the probability that there is at least one buyer that is willing to accept it:

revenueSINGLE(ρ) = ρ[1− FK(ρ)] (4.5)

which is maximized by setting an optimal ρ∗SINGLE as:

ρ∗SINGLE =
1− FK(ρ∗SINGLE)

KFK−1(ρ∗SINGLE)f(ρ∗SINGLE)
(4.6)

This is essentially the same as equation (2.20) for K = m, i.e. the intermediary acts

as an all-inclusive bidding ring with size K for the center. For this reason, we get the

following theorem.

Theorem 4.1. (Lemma 1 from (Graham and Marshall, 1987)). The reserve price,

ρ∗SINGLE, that would maximize the expected revenue of the center for a single interme-

diary with K buyers is an increasing function of K.
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The intermediary’s ex-ante expected profit is the expected difference of the second-

highest bid and the reserve price, ρ:

profitSINGLE(ρ) =

∫ 1

ρ
(y − ρ)f

(K)
2 (y)dy = 1− ρ−

∫ 1

ρ
F

(K)
2 (y)dy (4.7)

where f
(K)
2 , F

(K)
2 are the probability density function (p.d.f.) and cumulative distribu-

tion function (c.d.f.), respectively, of the second-highest-order statistic among K samples

i.i.d. drawn from f, F . Finally, a buyer’s ex-interim expected surplus for the same re-

serve price can be expressed in the same way as in equation (4.3).

Example 4.1. To illustrate these observations, we consider an example with buyers

whose valuations are drawn from the uniform distribution U(0, 1). Then, equation (4.6)

yields:

ρ∗SINGLE =
1

(K + 1)
1
K

(4.8)

which increases with the number of buyers2. In this case, equations (4.1) - (4.3) and

(4.7) yield:

ρ∗OPT =
1

2
(4.9)

revenueOPT (ρ∗OPT ) =
1

K + 1
[(

1

2
)K +K − 1] (4.10)

E[ΠOPT (ρ∗OPT )] =
2K+1 −K − 2

K(K + 1)2K+1
(4.11)

revenueSINGLE(ρ∗SINGLE) =
K

(K + 1)
K+1
K

(4.12)

E[ΠSINGLE(ρ∗SINGLE)] =
1

(K + 1)
2K+1
K

(4.13)

profitSINGLE(ρ∗SINGLE) =
K

K + 1
− 1

(K + 1)
1
K

[1 +
K − 1

(K + 1)2
] (4.14)

Given this, Figure 4.1 illustrates the center’s ex-ante expected revenue and the social wel-

fare with and without the intermediary, when the center sets the optimal reserve price,

ρ∗, as the number of buyers increases. We can see that the social welfare decreases

compared to the classical setting without the intermediary. This is due to the double

2It is easy to see that limK→∞ (K + 1)−
1
K = 1.
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marginalization effect from the presence of the intermediary. In more detail, the inter-

mediary obtains some of the center’s revenue, so, in response, the center increases its

reserve price and that reduces the demand of the buyers (Tirole, 1993). Finally, it can

be seen that the intermediary’s expected profit decreases with the number of buyers, as

ρ∗ also increases.

1 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of buyers (K)

E
xp

. r
ev

en
ue

/E
xp

. p
ro

fi
t/S

oc
ia

l w
el

fa
re

 

 

Center’s revenue with intermediary
Center’s revenue without intermediary
Intermediary’s profit
Social welfare with intermediary
Social welfare without intermediary

Figure 4.1: Center’s ex-ante expected revenue and social welfare with and without
a single intermediary and the latter’s expected profit as a function of the number of

buyers whose private valuations are i.i.d. drawn from U(0, 1).

In the following section, we extend our analysis to the case where there is a homogeneous

population of multiple intermediaries who compete in a central auction.

4.2 Homogeneous Symmetric Intermediaries

We now consider a scenario with a homogeneous population of n > 1 symmetric in-

termediaries3 (i.e. where all intermediaries implement the same mechanism and have

exactly the same number of buyers each, with their private valuations drawn from the

same distribution function). In line with Feldman et al. (2010), we assume that buyers

are allocated to the intermediaries, such that each intermediary has exactly k buyers in

his market, i.e. kj = k for all j = 1, ..., n and K = nk, and that buyers cannot move

between intermediaries (i.e. they are captive) but, as before, intermediaries do not set

any reserve prices.

We study three mechanisms for the intermediaries, as described in Section 3.4, where

we show that they yield different intermediaries’ expected profits and center’s expected

3Typical numbers of bids submitted at an ad exchange vary considerably, ranging from 2 bids per
auction for mobile advertising to a couple of dozens for the more well-established display advertising
area.
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revenue, although it is not possible to provide a complete ranking of the three. Finally,

we show that the social welfare is the smallest for intermediaries using PRE auctions

compared to the other two mechanisms; this is due to the inefficiency resulting from

misallocations.

In what follows, we first characterize the expected ex-interim surplus, ex-ante profit and

revenue for each buyer, intermediary and the center, respectively, under each mechanism

for the more general case when k ≥ 2. This will allow us to compare, both theoretically

and numerically, the three mechanisms studied in Section 4.2.4.

4.2.1 Pre-Award Second-Price Sealed-Bid Auctions

We first study a setting with PRE intermediary auctions, i.e. auctions where the inter-

mediaries run second-price sealed-bid auctions with their payments determined before

the center’s auction and hence submit the maximum of their second-highest bid and the

center’s reserve price. The center’s ex-ante expected revenue in this case can be written

as:

revenuePRE(ρ) = ρ[Gn(ρ) + n(1−G(ρ))Gn−1(ρ)− Fnk(ρ)] +

∫ 1

ρ
yg

(n)
2 (y)dy =

= 1− ρFnk(ρ)−
∫ 1

ρ
G

(n)
2 (y)dy = 1− ρHn(ρ)−

∫ 1

ρ
G

(n)
2 (y)dy (4.15)

where G = F
(k)
2 is the c.d.f. of the second-highest-order statistic among k bids; G

(n)
2 , g

(n)
2

are, respectively, the c.d.f. and the p.d.f. of the second-highest-order statistic among

the n submitted bids of the intermediaries; H
(n)
1 = Hn is the c.d.f. of the highest-order

statistic among n bids i.i.d. drawn from H = F k (i.e. the c.d.f. of the highest-order

statistic among k bids). In more detail, the center expects to be paid its reserve price, ρ,

with probability that either there is none or only one intermediary whose second-highest

bid is greater than ρ (first and second terms), but when there is at least one bid higher

than ρ (third term). In any other case, the center receives the expected second-highest

among the intermediaries’ submitted bids (fourth term). This means that, by taking the

first-order condition on equation (4.15), the optimal center’s reserve price will satisfy:

ρ∗PRE =
G

(n)
2 (ρ∗PRE)−Hn(ρ∗PRE)

h
(n)
1 (ρ∗PRE)

(4.16)

where h
(n)
1 is the p.d.f. of the highest-order statistic among n bids i.i.d. drawn from

H = F k. Hence, we can see that the center’s optimal reserve price not only depends

on the number of buyers per intermediary but also on the number of participating
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intermediaries. An intermediary’s ex-ante expected profit in this case equals:

profitPRE(ρ) =

∫ 1

ρ
f

(k)
2 (y)

∫ y

ρ
(F

(k)
2 (x))n−1dxdy =

∫ 1

ρ
Gn−1(y)[1−G(y)]dy (4.17)

which is the expectation over the distribution of the second-highest-order statistic of

the probability of winning against n − 1 bids. The c.d.f. of each such bid corresponds

to that of the second-highest-order statistic over k samples i.i.d. drawn from F since

intermediaries submit their local second-highest bids. Finally, a buyer with private

valuation υ ∈ [ρ, 1] expects surplus:

ΠPRE(υ) =

∫ υ

ρ
(υ − y)f

(k−1)
1 (y)Gn−1(y)dy+

+ (υ − ρ)F k−1(ρ)
n−1∑
i=0

(
n−1
i

)
i+ 1

F (n−1−i)k(ρ)[kF k−1(ρ)(1− F (ρ))]i (4.18)

Thus, a buyer expects positive surplus if her bid is the highest in the intermediary’s

auction and, at the same time, the second-highest bid is higher than the bids submitted

at the center and the reserve price (first term). Finally, the buyer wins the good at the

center’s reserve price when all other intermediaries’ submitted bids are less than ρ or

when i other intermediaries also submit their reserve prices, winning with a probability

of 1
i+1 (second term)4.

This mechanism guarantees positive profit for the intermediary that wins at the center

when there are at least two bids above the center’s reserve price. However, besides

the inefficiency due to the center’s reserve price, this auction induces an additional

(misallocation) inefficiency when more than one intermediary is present. To see this,

consider a setting with two intermediaries, s1, s2, a population of four buyers so that

υ1 > υ2 > υ3 > υ4 where buyers 1 and 4 are bidding in intermediary s1’s local auction

and buyers 2 and 3 in s2’s local auction. Given that s1, s2 submit bids equal to υ4, υ3

respectively, intermediary s2 wins and the good is allocated to buyer 2, although buyer

1’s valuation is higher. In the next subsection, we present an alternative mechanism for

the intermediaries, which keeps the incentive compatibility property and does not suffer

from this type of inefficiency.

4.2.2 Post-Award Second-Price Sealed-Bid Auctions

POST intermediary auctioneers run second-price sealed-bid auctions where the payment

is determined after the center’s auction and submit their highest local bid. Given this,

it is straightforward to see that the highest overall bidder always wins in homogeneous

settings. Hence, there are no misallocation inefficiencies. However, compared to the

4We assume a uniform tie-breaking rule at the center.
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previous second-price sealed-bid auction, there is an apparent trade-off: intermediaries

increase their probability of winning by submitting higher bids, but also decrease the

number of times they make a positive profit (they make zero profit even if they win but

their local second-highest bid is smaller than their payment at the center). In this case,

an intermediary’s expected payment to the center will be:

paymentPOST (ρ) =

∫ 1

ρ
f

(k)
1 (y)[ρHn−1(ρ) +

∫ y

ρ
xh

(n−1)
1 (x)dx]dy =

= ρHn−1(ρ)[1−H(ρ)] +

∫ 1

ρ
xh

(n−1)
1 (x)[1−H(x)]dx (4.19)

which is the expectation over the distribution of the intermediary’s highest submitted

bid of the payment for any submitted bid y. Then, the center’s ex-ante expected revenue

can be expressed as:

revenuePOST (ρ) = n · paymentPOST (ρ) = 1− ρHn(ρ)−
∫ 1

ρ
H

(n)
2 (y)dy (4.20)

where H
(n)
2 , h

(n)
2 are, respectively, the c.d.f. and the p.d.f. of the second-highest-order

statistic among the n intermediaries’ bids. Hence, the optimal center’s reserve price will

satisfy:

ρ∗POST =
1−H(ρ∗POST )

h(ρ∗POST )
(4.21)

From this, we can see that the optimal reserve price for the center only depends on the

number of buyers per intermediary and is independent of the number of intermediaries.

Then, each intermediary’s ex-ante expected profit can be written as:

profitPOST (ρ) = F (n−1)k(ρ)

∫ 1

ρ
(y − ρ)f

(k)
2 (y)dy+

+

∫ 1

ρ

∫ y2

ρ
(y2 − x1)f

(n−1)k
1 (x1)f

(k)
2 (y2)dx1dy2 =

=

∫ 1

ρ
F (n−1)k(y)[1− F (k)

2 (y)]dy =

∫ 1

ρ
Hn−1(y)[1−G(y)]dy (4.22)

That is, an intermediary expects to receive the difference between his local second-

highest bid and the center’s reserve price, ρ, only when there are at least two buyers

with bids above ρ and all other opponent bids are less than ρ (first term). The second

term is the expected profit in the other case where the highest opponent of (n−1)k bids

is lower than the second-highest among the winning intermediary’s k bids. Finally, the

ex-interim expected surplus of a buyer whose private valuation is υ ∈ [ρ, 1] is the same
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as with a second-price sealed-bid auction with nk buyers and a reserve price of ρ:

ΠPOST (υ) = (υ − ρ)Fnk−1(ρ) +

∫ υ

ρ
(υ − y)f

(nk−1)
1 (y)dy =

∫ υ

ρ
Fnk−1(y)dy (4.23)

In the next subsection, we present the corresponding buyers’ expected surplus, interme-

diaries’ expected profit and center’s expected revenue for the third mechanism.

4.2.3 First-Price Sealed-Bid Auctions

Intermediaries often employ an FPSB auction, usually for reasons of transparency. This

mechanism also avoids the misallocation inefficiency of the first mechanism, but the

strategies of buyers are no longer DSIC. Moreover, given that the allocation is the

same as with the POST auction, the total revenue generated is the same, but, as will

be shown (Theorem 4.8), the profit share of the intermediaries will be different. When

intermediaries implement FPSB auctions, a buyer i with private valuation υ wins only

if his bid, bi, is the highest submitted bid among all buyers’ bids, i.e. if only bi ≥
maxj={1,...,nk},j 6=ibj . Hence, if buyers use the symmetric, increasing bidding strategy

β(·) : [ρ, 1] → [b, b], buyer i wins if bi ≥ β(Y
(nk−1)

1 ), where Y
(nk−1)

1 is the highest-order

statistic among the other nk − 1 valuations. We assume that a buyer whose private

valuation is less than ρ bids b. Using standard equilibrium analysis (see Krishna (2010)),

in the next theorem we show that buyers’ symmetric BNE strategy is the same as in an

FPSB auction without intermediaries, a reserve price ρ and nk = K buyers.

Theorem 4.2. The symmetric Bayes-Nash equilibrium strategy of K = nk buyers par-

ticipating in a homogeneous population of n intermediaries that implement FPSB auctions

without reserve prices so that each intermediary has exactly k buyers when the center

implements a SPSB auction with reserve price ρ is given by:

β(υ) = υ −
∫ υ
ρ F

nk−1(x)dx

Fnk−1(υ)
, υ ≥ ρ (4.24)

Proof. (Sketch) Without loss of generality, we take the perspective of buyer 1 in inter-

mediary 1 whose private valuation is υ. Then, let us assume that all other buyers use the

symmetric, strictly increasing and differentiable bidding strategy β(·) with range [b, b].

Also, we assume that buyers 2, . . . , k with private valuations υ2, . . . , υk, respectively, are

in intermediary 1, buyers k + 1, ..., 2k with private valuations υk+1, . . . , υ2k are in inter-

mediary 2, and so on. Also, let y1 = max{υ2, . . . , υk}, yj = max{υ(j−1)k+1, . . . , υjk},
j = 2, . . . , n. We also assume for the moment that the center’s reserve price ρ = 0.

Then, if buyer 1 bids b1, she wins (for simplicity, we assume that the buyer loses in

case of a draw) the intermediary’s local auction only if b1 > β(y1) and, since this is
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the bid that will be sent at the center, conditional on this event, it should also be that

b1 > max{β(y2), . . . , β(yn)} for her to obtain the good. The buyer will never bid outside

[b, b], so there is a value y ∈ [0, 1] such that β(y) = b1 and that will be chosen by buyer

1 to maximize her expected surplus:

Π(υ, y) = [υ − β(y)]Pr(β(y) > β(y1))Pr(β(y) > max{β(y2), . . . , β(yn)}|β(y) > β(y1)) =

= [υ − β(y)]Pr(y > y1)Pr(y > max{y2, . . . , yn}|y > y1) =

= [υ − β(y)]Pr(y > max{y1, . . . , yn}) =

= [υ − β(y)]Pr(y > y
(nk−1)
1 ) = [υ − β(y)]Fnk−1(y) (4.25)

where y
(nk−1)
1 is the highest-order statistic among all opponent buyers’ private valuations

and where we have used the fact that β(·) is strictly increasing. For the existence of a

symmetric BNE, we take the first-order condition at y = υ, i.e. Π′(υ, υ) = 0 that yields:

Π′(υ, υ) = [υ − β(υ)](nk − 1)F (υ)nk−2f(υ)− β′(υ)Fnk−1(υ) = 0 =⇒

[β(υ)Fnk−1(υ)]′ = υ(nk − 1)Fnk−2(υ)f(υ) (4.26)

Using the fundamental theorem of Calculus:

β(υ)Fnk−1(υ) =

∫ υ

0
x(nk − 1)Fnk−2(x)f(x)dx+ c (4.27)

where c = 0 since β(0) = 0. Using integration by parts yields:

β(υ) = υ −
∫ υ

0 F
nk−1(x)dx

Fnk−1(υ)
(4.28)

When the center sets a reserve price ρ > 0, this does not affect the first-order condition

of equation (4.26) but only the boundary condition which now becomes β(ρ) = ρ, that

results in equation (4.24). The proof is standard and can be found e.g. in Menezes and

Monteiro (2005).

Since the buyer with the highest overall private valuation, only if this is not less than

ρ, obtains the good, FPSB homogeneous intermediary auctions have the same allocation

as homogeneous POST mechanisms for the same center’s reserve price.

Then, if Fβ(·) = F (β−1(·)) is the c.d.f. of the submitted bids in each intermediary,

and Hβ = F kβ , the c.d.f. of the highest-order statistic of the k local bids, the ex-ante
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expected payment of an intermediary to the center is:

paymentFPSB(ρ) =

∫ β(1)

ρ
f

(k)
β1

(u)[ρHn−1
β (ρ) +

∫ u

ρ
yh

(n−1)
β1

(y)dy]du =

= ρHn−1
β (ρ)[1−Hβ(ρ)] +

∫ β(1)

ρ
yh

(n−1)
β1

(y)[1−Hβ(y)]dy (4.29)

Hence the ex-ante expected revenue for the center is:

revenueFPSB(ρ) = nρHn−1
β (ρ)[1−Hβ(ρ)] +

∫ β(1)

ρ
yh

(n)
β2

(y)dy =

= 1− ρHn(ρ)−
∫ 1

ρ
Fnk−1(x)dx−

∫ 1

ρ
H

(n)
2 (x)β′(x)dx (4.30)

where, if y = β(x) =⇒ dy = β′(x)dx, and Hβ(β(x)) = F kβ (β(x)) = F k(x). Then, using

the facts that:

β′(x) =
(nk − 1)f(x)

∫ x
ρ F

nk−1(y)dy

Fnk(x)
(4.31)

and:

H
(n)
2 (x) = nHn−1(x)− (n− 1)Hn(x) = nF (n−1)k(x)− (n− 1)Fnk(x) (4.32)

equation (4.30) can be written as:

revenueFPSB(ρ) = 1− ρFnk(ρ)−
∫ 1

ρ
Fnk−1(y)dy −

∫ 1

ρ

n(nk − 1)f(x)

F k(x)

(∫ x

ρ
Fnk−1(y)dy

)
dx+

+

∫ 1

ρ
(n− 1)(nk − 1)f(x)

(∫ x

ρ
Fnk−1(y)dy

)
dx = 1− ρFnk(ρ)−

∫ 1

ρ
Fnk−1(y)dy−

− n(nk − 1)

∫ 1

ρ
Fnk−1(y)

(∫ 1

y

f(x)

F k(x)
dx

)
dy + (n− 1)(nk − 1)

∫ 1

ρ
Fnk−1(y)(1− F (y))dy

(4.33)

Then, for k > 1, letting u = F (x) =⇒ du = f(x)dx, then
∫ 1
y

f(x)
Fk(x)

dx =
∫ 1
F (y)

du
uk

=

1−Fk−1(y)
(k−1)Fk−1(y)

and the above equation becomes:

revenueFPSB(ρ) = 1− ρFnk(ρ)−
∫ 1

ρ
Fnk−1(y)dy−

− n(nk − 1)

k − 1

∫ 1

ρ
F (n−1)k(y)(1− F k−1(y))dy + (n− 1)(nk − 1)

∫ 1

ρ
Fnk−1(y)(1− F (y))dy

(4.34)
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Taking first-order condition w.r.t. ρ for the center’s optimal reserve price, ρ∗FPSB, for

k > 1 yields:

ρ∗FPSB =
(nk − 1)[1− F k−1(ρ∗FPSB)]− [(n− 1)k − 1](k − 1)F k−1(ρ∗FPSB)[1− F (ρ∗FPSB)]

k(k − 1)F k−1(ρ∗FPSB)f(ρ∗FPSB)
(4.35)

When k = 1,
∫ 1
y

f(x)
Fk(x)

dx =
∫ 1
F (y)

du
u = − lnF (y), so equation (4.33) becomes:

revenueFPSB(ρ) = 1− ρFn(ρ)−
∫ 1

ρ
Fn−1(y)dy+

+ n(n− 1)

∫ 1

ρ
Fn−1(y) lnF (y)dy + (n− 1)2

∫ 1

ρ
Fn−1(y)(1− F (y))dy (4.36)

Taking first-order condition in this case, i.e. k = 1, yields the following equation for the

center’s optimal reserve price, ρ∗FPSB:

ρ∗FPSB = −
(n− 1) lnF (ρ∗FPSB) + (n− 2)[1− F (ρ∗FPSB)]

f(ρ∗FPSB)
(4.37)

The ex-ante expected profit of an intermediary is:

profitFPSB(ρ) =

∫ β(1)

ρ
f

(k)
β1

(y)

∫ y

ρ
Hn−1
β (u)dudy =

=

∫ β(1)

ρ
Hn−1
β (u)[1−Hβ(u)]du =

∫ 1

ρ
Hn−1(y)[1−H(y)]β′(y)dy (4.38)

Finally, a buyer expects the same surplus as with a POST auction for the same center’s

reserve price, given that the allocation in both mechanisms is the same for that reserve

price, i.e. ΠFPSB(υ) = ΠPOST (υ) for all υ ∈ [0, 1] when ρFPSB = ρPOST .

In what follows, we provide a comparison of the aforementioned intermediary mecha-

nisms, combining our theoretical insights with numerical results.

4.2.4 Comparison of the Three Intermediary Mechanisms

Having expressed the expected utilities for all scenarios, in this subsection, we compare,

both theoretically and numerically, the resulting intermediaries’ expected profits, cen-

ter’s expected revenue and social welfare under the three mechanisms for homogeneous

populations of intermediaries.

We start with Lemma 4.3 below, comparing the optimal reserve prices of the center

under the three mechanisms.
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Lemma 4.3. When all intermediaries implement PRE auctions, the center’s optimal

reserve price, ρ∗PRE, is always not less than the optimal reserve price when all interme-

diaries implement POST auctions, ρ∗POST .

Proof. Let ρ∗PRE , ρ∗POST be the optimal reserve prices for equations (4.16) and (4.21),

respectively. Taking the first-order derivative with respect to ρ in equation (4.15) yields:

d revenuePRE(ρ)

dρ
= −Hn(ρ)− nρHn−1(ρ)h(ρ) +G

(n)
2 (ρ) (4.39)

Now, applying the condition of (4.21) in the equation above, we get:

d revenuePRE(ρ)

dρ
|ρ=ρ∗POST

= −Hn(ρ∗POST )− n
1−H(ρ∗POST )

h(ρ∗POST )
Hn−1(ρ∗POST )h(ρ∗POST )+

+G
(n)
2 (ρ∗POST ) = (n− 1)Hn(ρ∗POST )− nHn−1(ρ∗POST ) +G

(n)
2 (ρ∗POST ) =

= G
(n)
2 (ρ∗POST )−H(n)

2 (ρ∗POST ) =

= nGn−1(ρ∗POST )− (n− 1)Gn(ρ∗POST )− [nHn−1(ρ∗POST )− (n− 1)Hn(ρ∗POST )] ≥ 0

(4.40)

since G(y) − H(y) = kF k−1(y) − (k − 1)F k(y) − F k(y) = (k − 1)F k−1(y)[1 − F (y)] ≥
0 =⇒ G(y) ≥ H(y) for any y ∈ [0, 1], and the function nxn−1 − (n − 1)xn is an

increasing function of x. The above inequality is strict for k > 1 and ρ∗POST ∈ (0, 1).

Hence, since for the existence of an optimal reserve price, the function revenuePRE(ρ)

should be concave, the above equation means that ρ∗POST ≤ ρ∗PRE .

This result allows us to compare the center’s expected revenue for the two SPSB auctions

as follows:

Theorem 4.4. When all intermediaries implement POST auctions, the center’s optimal

expected revenue is at least the expected revenue when all intermediaries implement PRE

auctions.

Proof. Taking the difference of (4.15) and (4.20), for the same reserve price, ρ, we obtain

that:

revenuePOST (ρ)− revenuePRE(ρ) =

∫ 1

ρ
[G

(n)
2 (y)−H(n)

2 (y)]dy ≥ 0 (4.41)

where G
(n)
2 = nGn−1−(n−1)Gn, H

(n)
2 = nHn−1−(n−1)Hn. This is since G(y) ≥ H(y)

and the function nxn−1− (n−1)xn is a strictly increasing function of x. We should also

notice that the inequality is strict for any reasonable reserve, ρ ∈ [0, 1).
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If ρ∗PRE , ρ∗POST are the optimal reserve prices for (4.16) and (4.21), from the previous re-

sult, we have that revenuePOST (ρ∗POST ) ≥ revenuePOST (ρ∗PRE) ≥ revenuePRE(ρ∗PRE).

This, combined with the result of Lemma 4.3, concludes the proof.

Proposition 4.5 below compares the intermediaries’ expected profits for the same SPSB

variations.

Proposition 4.5. For any reserve price, ρ, of the center, the expected profits of PRE

intermediary auctions, profitPRE(ρ), are always not less than the corresponding profits

of POST intermediary auctions, profitPOST (ρ), when all intermediaries implement the

same mechanism.

Proof. This happens if Gn−1(y) ≥ Hn−1(y) from equations (4.17) and (4.22), which is

true (see proof of Lemma 4.3).

We now compare the corresponding values for POST and FPSB intermediaries. We start

with our result for the center’s optimal reserve price for homogeneous intermediaries of

these two kinds.

Lemma 4.6. When all intermediaries implement FPSB auctions, the center’s optimal

reserve price, ρ∗FPSB, is always not less than the optimal reserve price when all inter-

mediaries implement POST auctions, ρ∗POST .

Proof. Let ρ∗FPSB, ρ∗POST be the optimal reserve prices for the center when all interme-

diaries implement FPSB and POST auctions respectively.

We start with the case of k > 1 buyers per intermediary.Taking the first-order derivative

with respect to ρ in equation (4.34) yields:

d revenueFPSB(ρ)

dρ
= nF (n−1)k(ρ)

{
nk − 1

k − 1
[1− F k−1(ρ)]−

− [(n− 1)k − 1]F k−1(ρ)[1− F (ρ)]− kF k−1(ρ)f(ρ)ρ

}
(4.42)

Then, replacing ρ = ρ∗POST from equation (4.21), gives:

d revenueFPSB(ρ)

dρ
|ρ=ρ∗POST

= nF (n−1)k(ρ∗POST )

{
nk − 1

k − 1
[1− F k−1(ρ∗POST )]−

− [(n− 1)k − 1]F k−1(ρ∗POST )[1− F (ρ∗POST )]− [1− F k(ρ∗POST )]

}
=

= nF (n−1)k(ρ∗POST )

{
nk − 1− (k − 1)

k − 1
− nk − 1− (k − 1)

k − 1
F k−1(ρ∗POST )−

− (n− 1)k[F k−1(ρ∗POST )− F k(ρ∗POST )]

}
=
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= nF (n−1)k(ρ∗POST )

{
(n− 1)k

k − 1
[1− F k−1(ρ∗POST )]− (n− 1)kF k−1(ρ∗POST )[1− F (ρ∗POST )]

}
=

=
n(n− 1)k

k − 1
F (n−1)k(ρ∗POST )

{
1− F k−1(ρ∗POST )− (k − 1)F k−1(ρ∗POST )[1− F (ρ∗POST )]

}
=

=
n(n− 1)k

k − 1
F (n−1)k(ρ∗POST )[1−G(ρ∗POST )] ≥ 0 (4.43)

since G(ρ∗POST ) = kF k−1(ρ∗POST )−(k−1)F k(ρ∗POST ) ≤ 1. Hence, since for the existence

of an optimal reserve price, the function revenueFPSB(ρ) should be concave, the above

equation means that ρ∗POST ≤ ρ∗FPSB.

Similarly, for k = 1, taking the first-order derivative of equation (4.36) w.r.t. ρ yields:

d revenueFPSB(ρ)

dρ
= −nFn−1(ρ)

{
(n− 2)[1− F (ρ)] + ρf(ρ) + (n− 1) lnF (ρ)

}
(4.44)

Hence, taking this derivative at ρ∗POST from equation (4.21) gives:

d revenueFPSB(ρ)

dρ
|ρ=ρ∗POST

= −nFn−1(ρ∗POST )

{
(n− 2)[1− F (ρ∗POST )]+

+ 1− F (ρ∗POST ) + (n− 1) lnF (ρ∗POST )

}
=

= −n(n− 1)Fn−1(ρ∗POST )[1− F (ρ∗POST ) + lnF (ρ∗POST )] ≥ 0 (4.45)

since the function 1 − x + lnx ≤ 0 for x ∈ [0, 1]. For the same reason, this means that

ρ∗POST ≤ ρ∗FPSB.

Given this last result, we are now able to compare the center’s ex-ante expected revenue

for these two types of intermediaries.

Theorem 4.7. The expected revenue of the center when intermediaries implement POST

auctions, revenuePOST , is always at least the expected revenue when the latter implement

FPSB auctions, revenueFPSB.

Proof. Let us for the moment assume that the buyers’ private valuations, υi, are known,

that υi > υj when i < j, and that ρ = 0. If all intermediaries implement POST auc-

tions, then the center receives υ2 when buyers 1 and 2 are in different intermediaries.

It receives υ3 when buyers 1 and 2 are in the same intermediary but buyer 3 is not,

υ4 when buyers 1, 2 and 3 are in the same intermediary and buyer 4 is not and so on,

until the case where buyers 1, . . . , k are in the same intermediary and buyer k + 1 is

not when the center obtains υk+1. For the same allocation of buyers to FPSB inter-

mediaries, the center receives β(υ2), β(υ3), β(υ4), . . . , β(υk+1) respectively. When the

private valuations are not known, in BNE (equation (4.24)), β(υ) < υ for all υ ∈ (ρ, 1],

hence revenueFPSB < revenuePOST . Also, since the allocation of the good is the
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same for both types of intermediary auctions and the same center’s reserve price ρ,

then, for ρ > 0, revenueFPSB(ρ) = E[max{β((Y
(k)

1 )
(n)
2 ), ρ}] ≤ E[max{(Y (k)

1 )
(n)
2 ), ρ}] =

revenuePOST (ρ), where (Y
(k)

1 )
(n)
2 is a random variable that corresponds to the second-

highest-order statistic among n samples, each of which is the highest-order statistic

among k samples. So, revenueFPSB(ρ∗FPSB)≤ revenuePOST (ρ∗FPSB)< revenuePOST (ρ∗POST ).

The above theorem along with the fact that the allocation is the same for both FPSB

and POST intermediaries when the center’s reserve price is the same lead to the opposite

direction for the intermediaries’ ex-ante expected profits, as shown in the next corollary.

Corollary 4.8. The expected profits of intermediaries implementing FPSB auctions,

profitFPSB(ρ), are always at least the corresponding profits for POST auctions, profitPOST (ρ),

for the same center’s reserve price, ρ.

Proof. The total revenue obtained by the center and the intermediaries for POST auc-

tioneers (equations (4.20) and (4.22) respectively) can be written as follows:

revenuePOST (ρ) + n · profitPOST (ρ) = 1− ρHn(ρ)−
∫ 1

ρ
H

(n)
2 (y)dy+

+ n

∫ 1

ρ
Hn−1(y)[1−G(y)]dy = 1− ρHn(ρ)− n

∫ 1

ρ
Hn−1(y)dy+

+ (n− 1)

∫ 1

ρ
Hn(y)dy + n

∫ 1

ρ
Hn−1(y)dy − n

∫ 1

ρ
Hn−1(y)G(y)dy =

= 1− ρFnk(ρ) + (n− 1)

∫ 1

ρ
Fnk(y)dy − n

∫ 1

ρ
F (n−1)k(y)[kF k−1(y)− (k − 1)F k(y)]dy =

= 1− ρFnk(ρ) + (nk − 1)

∫ 1

ρ
Fnk(y)dy − nk

∫ 1

ρ
Fnk−1(y)dy =

= 1− ρFK(ρ)−
∫ 1

ρ
F

(K)
2 (y)dy (4.46)

Similarly, using equations (4.30), (4.38) and (4.31), the total revenue obtained by the

center and the FPSB intermediaries can be written as:

revenueFPSB(ρ) + n · profitFPSB(ρ) = 1− ρHn(ρ)−
∫ 1

ρ
Fnk−1(x)dx−

−
∫ 1

ρ
H

(n)
2 (x)β′(x)dx+ n

∫ 1

ρ
Hn−1(x)[1−H(x)]β′(x)dx =
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= 1− ρHn(ρ)−
∫ 1

ρ
Fnk−1(x)dx− n

∫ 1

ρ
Hn−1(x)β′(x)dx+

+ (n− 1)

∫ 1

ρ
Hn(x)β′(x)dx+ n

∫ 1

ρ
Hn−1(x)β′(x)dx− n

∫ 1

ρ
Hn(x)β′(x)dx =

= 1− ρFnk(ρ)−
∫ 1

ρ
Fnk−1(x)dx−

∫ 1

ρ
Fnk(x)β′(x)dx =

= 1− ρFnk(ρ)−
∫ 1

ρ
Fnk−1(x)dx−

∫ 1

ρ
Fnk(x)(nk − 1)

f(x)

Fnk(x)

∫ x

ρ
Fnk−1(y)dydx =

= 1− ρFnk(ρ)−
∫ 1

ρ
Fnk−1(x)dx− (nk − 1)

∫ 1

ρ
Fnk−1(y)[1− F (y)]dy =

= 1− ρFnk(ρ)− nk
∫ 1

ρ
Fnk−1(x)dx+ (nk − 1)

∫ 1

ρ
Fnk(x)dx =

= 1− ρFK(ρ)−
∫ 1

ρ
F

(K)
2 (x)dx (4.47)

So revenueFPSB(ρ) + n · profitFPSB(ρ) = revenuePOST (ρ) + n · profitPOST (ρ). From

Theorem 4.7, revenueFPSB(ρ) ≤ revenuePOST (ρ) =⇒ profitFPSB(ρ) ≥ profitPOST (ρ).

Our theoretical analysis above shows that the center prefers POST auctions for the in-

termediaries. However, no ranking between FPSB and PRE auctions has been provided.

Similarly, it is not clear which mechanism is better for the intermediaries. Corollary 4.8

is valid for the same center’s reserve price, however ρ∗FPSB ≥ ρ∗POST from Lemma 4.6,

so the equilibrium profits are not generally comparable for all distributions. Moreover,

when each intermediary has a single buyer, we can see that the FPSB auction is the only

mechanism that yields positive profit, but for k > 1 buyers per intermediary, it is not

possible to obtain a general ranking of the expected profits for the intermediaries. We

show this and other results using a numerical evaluation.

In more detail, we consider a setting where buyers have private valuations that are i.i.d.

drawn from the uniform distribution U(0, 1). Furthermore, we first consider a population

of K = 100 buyers and vary the number of intermediaries (n = 2, 4, 5, 10, 20, 25, 50),

keeping the total number of buyers fixed. Figure 4.2 shows the resulting expected

profits for the intermediaries. It is clear that intermediaries’ expected profits are very

small, in the order of 10−3, ranging from approximately 0.1% up to 0.5% of the center’s

revenue in total, significantly decreasing as the number of intermediaries increases. As

shown, in this example, PRE auctions yield higher expected profits for a small number

of intermediaries, whereas FPSB auctions yield higher expected profits in the remaining

cases. POST auctions seem to perform worse in terms of profit than their PRE counterpart,

but one can verify that for n = 2, k = 2, the opposite happens5, so a general ranking of

5For n = 2, k = 2, ρ∗POST =
√
3
3

, ρ∗PRE = 2
3

and profitPOST (ρ∗POST ) = 4
45
− 2

15
√
3
≈ 0.0119 >

profitPRE(ρ∗PRE) = 14
1215
≈ 0.0115
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the two is not possible. Nevertheless, POST auctioneers receive a smaller expected profit

in all cases shown than FPSB intermediaries.
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Figure 4.2: Intermediaries’ ex-ante expected profits for the three different mechanisms
with increasing number of opponents for a fixed number of K = 100 buyers whose

private valuations are i.i.d. drawn from U(0, 1).

Next, Figure 4.3 shows the buyers’ ex-ante expected surplus for the three mechanisms

where it is clear that a population of PRE intermediaries yields the highest surplus to

the buyers among all three mechanisms, and the expected surplus for POST interme-

diaries is marginally higher than that for FPSB auctioneers. Figure 4.4 illustrates the

center’s expected revenue and corresponding social welfare for the mechanisms for the

same example. As can be seen, the social welfare for the more efficient FPSB and POST

auctions slightly increases with the number of intermediaries (getting very close to the

social welfare of 0.9901 for the setting without intermediaries), whereas the opposite

effect happens for the PRE mechanism. The latter is due to the fact that, as the num-

ber of buyers per intermediary decreases, the misallocation inefficiency increases, thus

further decreasing the corresponding social welfare. Also POST intermediaries are the

most efficient among the three mechanisms given that the center’s optimal reserve price

is lower than that for FPSB intermediary auctioneers. As for the revenue of the cen-

ter, this slightly increases with the number of intermediaries for the more efficient FPSB

and POST mechanisms, whereas the opposite effect happens for the setting of PRE mecha-

nisms. However, in all cases, the center’s expected revenue is higher for FPSB auctioneers

compared to PRE intermediaries. Finally, Figure 4.5 depicts the optimal reserve price of

the center for the three mechanisms. As shown, for POST and FPSB intermediaries, it

decreases with the number of intermediaries. For POST auctioneers this is due to the fact

that the corresponding number of buyers per intermediary decreases, and the optimal
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reserve price in these cases is only a function of the latter number. The correspond-

ing decrease for FPSB mechanisms is less apparent. In contrast, the center’s optimal

reserve price for PRE intermediaries remains almost constant and is always higher than

the corresponding price for POST and FPSB intermediaries.
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Figure 4.3: Buyers’ ex-ante expected surplus for the three different mechanisms with
increasing number of intermediaries for a fixed number of K = 100 buyers whose private

valuations are i.i.d. drawn from U(0, 1).
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Figure 4.4: Center’s ex-ante expected revenue and social welfare for the three different
mechanisms with an increasing population of intermediaries and a fixed number of

K = 100 buyers whose private valuations are i.i.d. drawn from U(0, 1).

As was previously shown, the generated revenue, profit and surplus for the center, the

intermediaries and the buyers depends, in general, both on the number of intermediaries
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Figure 4.5: Center’s optimal reserve price for the three different mechanisms with an
increasing population of intermediaries and a fixed number of K = 100 buyers whose

private valuations are i.i.d. drawn from U(0, 1).

and the size of their local markets (i.e. number of buyers per intermediary). We complete

our numerical evaluation by removing the limitation of fixed K, considering the full set

of n = 2, ..., 50 intermediaries, each with a number of k = 2, ..., 50 local buyers. Figures

4.6, 4.7, 4.8, 4.9 and 4.10 illustrate the intermediaries’ expected profits, buyers’ expected

surplus, the center’s expected revenue, the social welfare and the center’s optimal re-

serve price, respectively, for the three mechanisms. As can be seen, FPSB intermediary

auctions yield higher profit for a large number of intermediaries with a small number of

buyers each, whereas PRE intermediaries are more profitable in the opposite case, with

fewer intermediaries having more buyers each. Also, the ordering of the mechanisms for

the center seems consistent, with the center having higher expected revenue for POST,

followed by FPSB and PRE mechanisms, and as the number of intermediaries and buyers

increase, this revenue approaches the expected revenue without intermediaries (OPT).

Buyers’ expected surplus is more difficult to compare due to the very small absolute

differences, however PRE mechanisms seem to be better in sum, followed by POST and

FPSB auctions. What’s more, the social welfare is higher for FPSB intermediaries, fol-

lowed by their POST and then PRE counterparts. Finally, the center’s optimal reserve

price increases both with the number of buyers and intermediaries for PRE and FPSB

intermediaries and is always higher for the former type of intermediaries compared to

the latter. Both reserve prices are also higher than the corresponding reserve price for

POST intermediary mechanisms.

In the next section, we continue our analysis for heterogeneous intermediaries where

we look at the incentives of intermediaries to switch to another mechanism from a

homogeneous population of other intermediaries.
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Figure 4.6: Intermediaries’ ex-ante expected profits for the three different mechanisms
with increasing number of opponents and buyers whose private valuations are i.i.d.

drawn from U(0, 1).
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Figure 4.7: Buyers’ ex-ante expected surplus for the three different mechanisms with
increasing number of intermediaries and buyers whose private valuations are i.i.d. drawn

from U(0, 1).
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Figure 4.8: Center’s ex-ante expected revenue for the three different mechanisms with
an increasing population of intermediaries and buyers whose private valuations are i.i.d.

drawn from U(0, 1).
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Figure 4.9: Social welfare for the three different mechanisms with an increasing pop-
ulation of intermediaries and buyers whose private valuations are i.i.d. drawn from

U(0, 1).
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Figure 4.10: Center’s optimal reserve price for the three different mechanisms with
increasing number of intermediaries and buyers whose private valuations are i.i.d. drawn

from U(0, 1).

4.3 Heterogeneous Symmetric Intermediaries

In the previous section, we have assumed intermediaries are homogeneous, i.e. that all

intermediaries implement the same mechanism. In this section, we remove this lim-

itation, considering the pairwise competition between the three auction mechanisms.

Specifically, for tractability reasons, we consider a homogeneous population of n− 1 in-

termediaries implementing one mechanism and one intermediary switching to a different

mechanism. As will be seen, the complexity of the equilibrium bidding strategies for

FPSB auctions makes it difficult to draw conclusions. Hence, our results are only for the

competition in the two Vickrey variations. In more detail, for the competition between

PRE and POST mechanisms, in the next subsection, we show that intermediaries do not

have a unilateral incentive to deviate from the majority mechanism to the other, albeit

only when keeping the center’s reserve price fixed.

4.3.1 Pre- versus Post-Award Second-Price Sealed-Bid Auctions

Assume that there are n − 1 intermediaries that implement PRE (POST) auctions and

one intermediary that switches to a POST (PRE) auction, and that each intermediary, si,

has, as before, exactly k buyers in his local market. Then, keeping the reserve price of

the center fixed6, we show that no intermediary has a strict incentive to deviate from

homogeneous PRE (POST) to POST (PRE) auctions.

6In equilibrium this might not happen since the center’s optimal reserve price with asymmetric
intermediaries might be different for the two cases.
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Proposition 4.9. For any reserve price, ρ, of the center, an intermediary has no strict

incentive to switch from a PRE (POST) to a POST (PRE) auction when all other interme-

diaries implement PRE (POST) auctions.

Proof. First, assume that n − 1 intermediaries implement PRE auctions, and one inter-

mediary switches to a POST auction. Then the deviator’s expected profit will be:

profitdev.POST (ρ) = G(ρ)n−1

∫ 1

ρ
(y − ρ)g(y)dy+

+

∫ 1

ρ

∫ y2

ρ
(y2 − x1)g

(n−1)
1 (x1)g2(y2)dx1dy2 =

∫ 1

ρ
Gn−1(x)(1−G(x))dx (4.48)

which is the same as when implementing pre-award payments. In contrast, if n − 1

intermediaries use POST auctions, then a deviating intermediary’s expected profit when

implementing a PRE auction will be:

profitdev.PRE(ρ) =

∫ 1

ρ
g(y)

∫ y

ρ
Hn−1(x)dxdy =

∫ 1

ρ
Hn−1(x)(1−G(x))dx (4.49)

which is again the same as with POST.

We now continue with a preliminary discussion on the competition between first-price

sealed-bid and our two Vickrey variations.

4.3.2 Pre- and Post-Award Second-Price Sealed-Bid versus First-Price

Sealed-Bid Auctions

In this subsection, we characterize the condition for the FPSB equilibrium bidding func-

tion when an intermediary implements an FPSB auction against n − 1 PRE or POST

mechanisms respectively. Ignoring for the moment the center’s reserve price, let us as-

sume that buyers in this intermediary follow a symmetric, increasing bidding strategy

σ`(·), for ` = {PRE,POST} when bidding against n − 1 PRE or POST intermediaries

respectively. Then, a buyer with private valuation υ who bids s expects surplus that

can be written as:

ΠFPSB−`(υ, s) = (υ − s)F k−1(σ−1
` (s))Mn−1(s) (4.50)

where M(s) = F k(s) for POST and M(s) = F
(k)
2 (s) for PRE opponent intermediaries

respectively. More specifically, the winning FPSB local bid must be higher than the bids

of the two Vickrey variations, which in this case will also equal their private valuations.
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Taking the first-order condition and assuming that in equilibrium s = σ`(υ), the above

equation yields:

∂ΠFPSB−`(υ, s)

∂s
= 0 =⇒ d

dυ
[F k−1(υ)Mn−1(σ`(υ))σ`(υ)] =

= υ
d

dυ
[F k−1(υ)Mn−1(σ`(υ))] (4.51)

Solving this, and taking the condition that σ`(ρ`) = ρ` yields:

σ`(υ) = υ −
∫ υ
ρ`
F k−1(y)Mn−1(σ`(y))dy

F k−1(υ)Mn−1(σ`(υ))
(4.52)

Given that this is a non-linear differential equation, a generic closed form solution

seems implausible. This is also true for the uniform distribution when reserve prices

are present7. This concludes our analysis for competing intermediaries with no reserve

prices and with captive buyers.

4.4 Summary

In this chapter, we analyzed the competition between three intermediary mechanisms,

focusing on the case of symmetric homogeneous intermediaries. Our analysis suggests

that FPSB performs well both in terms of profit and efficiency. The advantages of FPSB

auctions are also verified in practice by the fact that this is the dominant intermediary

mechanism implemented, both in ad exchanges (Elmeleegy et al., 2013) and auctions

with subcontracting (Nakabayashi, 2010) that our model encompasses. This is true not

only from an economic point of view but also from a business perspective since FPSB

offer greater transparency to the final buyers. However, the latter need to employ BNE

bidding strategies that might be difficult to derive and coordinate on. Moreover, FPSB

auctions are known for suffering from stability issues in repeated settings, such as the

ones we observe in ad exchanges (Edelman and Ostrovsky, 2007). From the experiments

with uniform distribution, we see that, when buyers are captive, POST auctions generally

yield lower expected profit than their counterpart, and so are less likely to be adopted

in this scenario. Interestingly, next, we show that, when buyers strategically select their

intermediary, the opposite in general holds. Before we do this, in the following chapter,

we keep the captivity assumption but let intermediaries set reserve prices. As will be

shown, the problem becomes technically challenging and so we make use of learning

techniques to get an approximation of the resulting profits and social welfare.

7When the reserve price is zero, and there are n−1 other POST intermediaries, the equilibrium bidding
function for the uniform distribution U(0, 1) is σ`(υ) = nk−1

nk
υ, i.e. the same as in an FPSB auction with

nk bidders.





Chapter 5

Intermediaries with Captive

Buyers: The Effects of Reserve

Prices

So far, we have assumed that intermediaries do not impose reserve prices. In this chap-

ter, we relax this restriction, as a reserve price is known to increase an auctioneer’s

revenue. However, given that the reserve-price-setting problem for competing auction-

eers is technically challenging, we restrict our analysis to a duopoly intermediary setting.

Specifically, in accordance to the model described in Section 3.3, in what follows, we

assume that both the center and the intermediaries have selected their mechanism in

advance and, in the setting studied within this chapter, that buyers are allocated to

the intermediaries such that each intermediary has exactly the same number of buyers.

Then, the center announces a reserve price for the good to be auctioned to the inter-

mediaries who then, based on this information, strategically select and announce their

local reserve prices to their buyers. Buyers learn their private valuations for the good

and submit a bid for the good to their allocated intermediary. Intermediaries then run

local auctions with their buyers’ bids subject to the constraint imposed by the reserve

price to determine a winner, if any, and a payment contingent on winning the good at

the central auction, and then submit a single bid (if there was some qualified bid) to the

center. The center then runs its auction with intermediaries’ bids, determines a winning

intermediary, if any, and payment and allocates the good to this intermediary, if there is

a winner, who then allocates the good to his winning local buyer for the pre-determined

price.

To this end, we start with the motivating scenario of a single intermediary in Section

5.1. We then extend our analysis for the case of competing intermediaries in Section

5.2 where we characterize all players’ expected utilities and present our theoretical and

numerical results for homogeneous intermediaries and heterogeneous PRE versus POST

93
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intermediary mechanisms. Then, in Section 5.3 we compare the profits and efficiency of

the previous settings in equilibrium and contrast with the results of the previous chapter.

Finally, Section 5.4 summarizes our findings.

5.1 Special Case: Single Intermediary

Let us again consider the case where the center offers a take-it-or-leave-it price, ρ, to

one intermediary representing all the buyers’ population (i.e. K buyers). Given the lack

of intermediary competition, no misallocation inefficiencies arise in this setting. For this

reason, since in addition the center’s ex-ante expected revenue is the same for the three

mechanisms, as in the case of no intermediary’s reserve price (Section 4.1), the center’s

and intermediary’s expected revenue and profit are the same for all standard auctions

(Riley and Samuelson, 1981), so we can assume, without loss of generality, that the

intermediary runs a PRE auction. Hence, the center proposes ρ to the intermediary, who

runs a sealed-bid second-price auction with reserve price, r ≥ ρ. We will now derive the

intermediary’s and center’s ex-ante expected profit and revenue respectively and then

use these to calculate the optimal reserve prices for both. In this case, the distribution

of the second price in the intermediary’s auction, y, is given by:

• y = 0 with probability FK(r).

• y = r with probability K(1− F (r))FK−1(r) (i.e. the probability that K − 1 bids

are less than r and one above r).

• y > r with density K(K − 1)(1 − F (y))f(y)FK−2(y) (i.e. the density of the

second-highest-order statistic, Y
(K)

2 ).

Hence his expected profit is:

profitSINGLE(r, ρ) =

∫ 1

r
f

(K)
2 (y)

∫ y

0
α(b)dbdy+

+K(1− F (r))FK−1(r)

∫ r

0
α(b)db (5.1)

Since the center offers the unique intermediary a take-it-or-leave-it price, the allocation

probability of the item, α(y), is: α(y) = 1 if y ≥ ρ and α(y) = 0 otherwise. So, we can

write the previous equation as:

profitSINGLE(r, ρ) =

∫ 1

r
(y − ρ)f

(K)
2 (y)dy + (r − ρ)[F

(K)
2 (r)− F (K)

1 (r)] =

= 1− ρ−
∫ 1

r
F

(K)
2 (y)dy − (r − ρ)F

(K)
1 (r) (5.2)
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Taking its first-order derivative to find the optimal profit yields:

profit′(r) = F
(K)
2 (r)− F (K)

1 (r)− (r − ρ)f
(K)
1 (r) =

= KFK−1(r)[1− F (r)]−K(r − ρ)FK−1(r)f(r) =

= KFK−1(r)[1− F (r)− f(r)(r − ρ)] (5.3)

The first-order condition yields F (r∗SINGLE) = 0 or r∗SINGLE = ρ+
1−F (r∗SINGLE)

f(r∗SINGLE) for the

intermediary’s optimal reserve price, r∗SINGLE .

As before, the center wants to maximize its revenue, which is ρ times the probability

that the second-highest-order statistic is higher or equal to the intermediary’s reserve

price:

revenueSINGLE(ρ, r) = ρ[1− FK(r)] (5.4)

Hence, for the optimal intermediary’s reserve, r∗SINGLE , the center’s ex-ante expected

revenue given the optimal response of the intermediary is:

revenueSINGLE(ρ, r∗SINGLE) = ρ[1− FK(r∗SINGLE)] =

= [r∗SINGLE −
1− F (r∗SINGLE)

f(r∗SINGLE)
][1− FK(r∗SINGLE)] (5.5)

This is maximized by setting drevenueSINGLE
dr∗SINGLE

= 0:

drevenueSINGLE
dr∗SINGLE

= [2 +
(1− F (r∗SINGLE))f ′(r∗SINGLE)

f2(r∗SINGLE)
][1− FK(r∗SINGLE)]−

− [r∗SINGLE −
1− F (r∗SINGLE)

f(r∗SINGLE)
]Kf(r∗SINGLE)FK−1(r∗SINGLE) = 0

(5.6)

Also, the ex-ante expected surplus for a buyer is:

E[ΠSINGLE(r)] =

∫ 1

r

∫ x

r
FK−1(y)dyf(x)dx =

∫ 1

r
FK−1(y)(1− F (y))dy (5.7)

For illustration, we continue with the following example.

Example 5.1. Let us again consider the example with buyers whose valuations are drawn

from a uniform distribution U(0, 1). Then, equations (5.2), (5.4) and (5.7) become:

profitSINGLE(r, ρ) = − 2K

K + 1
rK+1 + (1 + ρ)rK +

K − 1

K + 1
− ρ (5.8)

revenue(ρ, r) = ρ(1− rK) (5.9)
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E[ΠSINGLE(r)] =
1− rK(K + 1−Kr)

K(K + 1)
(5.10)

The first-order condition for the intermediary’s expected profit yields r∗SINGLE = 0 or

r∗SINGLE = 1+ρ
2 . However, d2profit

dr2
= KrK−2[(K − 1)(1 + ρ) − 2Kr]. The function

is increasing for r ∈ [0, 1+ρ
2 ], decreasing otherwise, and is convex for r ∈ [0, K−1

K
1+ρ

2 ],

concave otherwise. Since K−1
K

1+ρ
2 < 1+ρ

2 , the maximum occurs at r∗SINGLE = 1+ρ
2 .

Also, taking the first-order condition for the revenue gives
drevenueSINGLE(r∗SINGLE)

dr∗SINGLE
=

−2(K+1)r∗SINGLE
K+Kr∗SINGLE

K−1+2 = 0. The second-order derivative of the revenue

yields
d2revenueSINGLE(r∗SINGLE)

d(r∗SINGLE)2
= Kr∗SINGLE

K−2[K − 1 − 2(K + 1)r∗SINGLE ], so the

revenue function is concave as long as1 r∗SINGLE ≥
K−1

2(K+1) . Given this, we can write the

conditions for the intermediary’s and center’s optimal reserve prices, ρ∗SINGLE , r
∗
SINGLE:

− 2(K + 1)r∗SINGLE
K +Kr∗SINGLE

K−1 + 2 = 0 (5.11)

ρ∗SINGLE = 2r∗SINGLE − 1 (5.12)

Then, the intermediary’s ex-ante expected profit can be expressed as:

profitSINGLE(r∗SINGLE) =
2

K + 1
r∗SINGLE

K+1 − 2r∗SINGLE +
2K

K + 1
(5.13)

The center’s ex-ante expected revenue will be:

revenueSINGLE(r∗SINGLE) = (2r∗SINGLE − 1)(1− r∗SINGLE
K) (5.14)

Finally, a buyer’s ex-ante expected surplus will be:

E[ΠSINGLE(r)] =
1

K(K + 1)
[1− (K + 1−Kr∗SINGLE)(r∗SINGLE)K)] (5.15)

Figures 5.1 - 5.4 illustrate the intermediary’s ex-ante expected profit, buyers’ ex-ante

expected surplus, center’s ex-ante expected revenue and the social welfare with and with-

out the intermediary, who may or may not set an optimal reserve price, r∗SINGLE, when

the center sets its optimal reserve price, ρ∗SINGLE, as the number of buyers increases.

Again, we can see that the social welfare is lower when the intermediary is present and

that the latter’s expected profit decreases as the number of buyers increases. However,

compared to the setting without an intermediary’s reserve price in Figure 4.1, we can

see that the incorporation of the intermediary’s reserve price increases his expected profit

and further decreases social welfare. The latter effect is due to the inefficiency caused

by the increase in the reserve price for the buyers, as Figure 5.5 shows. As can be seen,

1 K−1
2(K+1)

< 1
2
, so this should hold for sure as long as the intermediary’s optimal price in equilibrium

is greater than or equal to half.
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the center’s optimal reserve price increases both with the intermediary setting a reserve

price and not, however the intermediary’s reserve price is always higher than the cen-

ter’s reserve price in the latter scenario. Also, reserve prices are always higher than the

center’s optimal reserve price when the intermediary is not present.
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Figure 5.1: Intermediary’s ex-ante expected profit with and without a reserve price
as a function of the number of buyers whose private valuations are i.i.d. drawn from

U(0, 1).
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Figure 5.2: Buyers’ ex-ante expected surplus with and without a single intermediary
who sets or does not set a reserve price as a function of the number of buyers whose

private valuations are i.i.d. drawn from U(0, 1).

Although this example is only valid for one distribution, some of the results generalize

to other distributions. Specifically, the center’s optimal reserve price is expected to
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Figure 5.3: Center’s ex-ante expected revenue with and without a single intermediary
who sets or does not set a reserve price as a function of the number of buyers whose

private valuations are i.i.d. drawn from U(0, 1).
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Figure 5.4: Social welfare with and without a single intermediary who sets or does
not set a reserve price as a function of the number of buyers whose private valuations

are i.i.d. drawn from U(0, 1).
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Figure 5.5: Center’s optimal reserve price with and without an intermediary along
with the intermediary’s optimal reserve price as a function of the number of buyers

whose private valuations are i.i.d. drawn from U(0, 1).

increase with the number of buyers, as was the case without an intermediary’s reserve

price in Section 4.1, since the latter price is a constant markup on the center’s reserve

price; so the results from the bidding rings literature (cf. Theorem 4.1) will also hold in

this setting. For the same reason, this will also be true for the intermediary’s optimal

reserve price. The center’s optimal reserve price will be lower (higher) for positively

(negatively respectively) skewed distributions compared to symmetric distributions of

private valuations such as a truncated Gaussian or symmetric Beta distribution and

the same ordering will hold for the center’s expected revenue. Finally, regarding the

intermediary’s expected profit, this should also exhibit a similar pattern to that of

Figure 5.1, increasing up to a critical point where the number of buyers is large enough

for his reserve price to have a smaller impact and the difference between their expected

highest valuation and the center’s (high) reserve price gradually decreasing with an

increasing population of buyers.

5.2 Multiple Intermediaries

Having analyzed the impact of a reserve price for the intermediary in a monopoly setting,

we now move to the more interesting case of competition between intermediaries. It

has been previously observed (Feldman et al., 2010) that finding equilibrium reserve-

price setting strategies in this setting is nontrivial. Hence, in what follows, we limit

our analysis to a duopoly homogeneous intermediary setting, i.e. an environment with

two intermediaries. Specifically, we assume that each intermediary imposes the same

mechanism with a reserve price, keeping the assumption of symmetry for the number
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and distribution of buyers’ private valuations in each intermediary’s market. We also

analyze a duopoly heterogeneous setting with one PRE and one POST intermediary, but do

not compare FPSB auctions with their other counterparts, given that one needs to derive

the resulting equilibrium bidding functions which is technically challenging. As it will be

shown, even in this simple scenario, intermediaries, in general, follow mixed-equilibrium

reserve-price-setting strategies. The intuition behind this is that intermediaries have an

incentive to increase their reserve price, since this increases their chance of obtaining

the good, but at the same time decreases the probability of having a buyer that is able

to pay that high. Hence, in contrast to classical models of competition, where prices

are driven downwards, in this setting, the opposite happens: reserve prices being driven

upwards up to a critical point, where competition from other intermediaries and buyers’

strategies drive reserve prices to the other direction, leading to cycles which in turn

lead to mixed-equilibrium strategies. For this reason, we employ numerical techniques

to find the resulting reserve-price-setting Nash equilibria in specific instances. This

will shed some light in the reserve-price-setting problem of the intermediaries and its

impact in their profit, the center’s revenue and the buyers’ surplus. In more detail,

we run the fictitious play algorithm for k = 1, 2 and 5 buyers per intermediary whose

private valuations are i.i.d. drawn from the uniform distribution U(0, 1). We begin our

discussion by describing the fictitious play setup we have used for our experiments.

5.2.1 Fictitious Play Setup

In this subsection, we describe the setup of the fictitious play (see Section 2.1.2) ex-

periments that were used to calculate ε-NE for the intermediaries’ reserve-price-setting

strategies. Other techniques can be used to solve for Nash equilibria (McKelvey and

McLennan, 1996), such as the Lemke-Howson algorithm, which might take exponential

time to converge. We have tried the latter algorithm using the well-known game theory

software called Gambit2, but it failed to find NE. Another reason that such techniques

might not work is that in some cases, such as the case with competing FPSB auctioneers

(Section 5.2.4) or non-captive buyers (Chapter 6), the payoff matrix consists of sample

averages that are only approximations of the actual expected utilities, so only what are

known as empirical game-theoretic techniques can be used in such cases (Jordan et al.,

2008). However, it is required for consistency reasons to use the same technique for all

experiments and fictitious play is a natural technique to use in two-player games.

More specifically, in all cases, we have constructed, for each (discretized) center’s reserve

price, ρ, an |r| × |r| payoff matrix with the intermediaries’ expected profits (or average

profits when these cannot be expressed in a closed form) for each combination of (dis-

cretized) intermediary reserve prices (of size |r|2) in [ρ, 1]. This is a natural range since

profit-maximizing intermediaries are expected to set a reserve price that is at least ρ. For

2http://gambit.sourceforge.net/
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FPSB intermediaries or settings with non-captive buyers (next chapter), where, as will

be seen, closed-form formulas are not available for the intermediaries’ expected profits,

the numerical averages of their profits for 500, 000 repetitions and for each combination

of intermediary reserve prices at each ρ were used instead.

In the fictitious play experiments, we have discretized the intermediaries’ reserve prices

using a step of 0.01 and the center’s reserve price using a step of 0.1 at [0, 1). Using

a higher discretization step (i.e. 0.01) for the center led to variations in the obtained

expected revenues that made the results more prone to numerical errors. Also, a higher

discretization step for the intermediaries would make the number of simulations and

corresponding time needed to obtain good estimates of the average profits prohibitive.

We ran one fictitious play experiment for each center’s reserve price ρ, each combination

of intermediary mechanisms and for each of three populations of k = 1, 2, 5 buyers per

intermediary respectively whose private valuations are i.i.d. drawn from the uniform

distribution U(0, 1). These values for k allow for utility comparisons of the three mech-

anisms as the number of buyers increases and are close to actual numbers of buyers per

intermediary that might be interested at a specific impression. Moreover, these were

deemed appropriate for comparison with the results of Chapter 6 taking into account

issues of computational tractability that arise there. Each fictitious play experiment was

conducted once for 500, 000 rounds in total where we have used a random tie-breaking

rule and we have also assumed uniform initial beliefs over [ρ, 1].

In accordance with Definition 2.19, we consider an additive approximation for ε-NE

where the value for ε at each round is calculated as the difference between the utility

produced by each player’s best response (pure strategy) and the utility of the current

mixed strategy produced by the fictitious play algorithm given the player’s current be-

liefs. Figures 5.6(a) - 5.6(c) illustrate the values for ε per round for all the cases consid-

ered with varying number of buyers at the optimal center’s reserve price, as these will

be illustrated in the following subsections. As can be seen, in all cases the algorithm

converges to very small values for ε. For this reason, Figures 5.6(a) - 5.6(c) depict these

values only for the first 50, 000 rounds.

As will be shown in the next section, we compared our fictitious play results with the

only available theoretical results of Feldman et al. (2010) for two PRE intermediaries

and k = 1 buyer each, where we have shown the convergence of the intermediaries’

fictitious beliefs to the expected distributions of actions. This is a good evidence of the

effectiveness of the technique and its configuration used.

In what follows, we start with the competition between two PRE intermediaries where

we validate fictitious play results for k = 1 and then extend these for the cases of k = 2

and k = 5 buyers per intermediary.
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(a) k = 1 buyer per intermediary.
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(b) k = 2 buyers per intermediary.
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(c) k = 5 buyers per intermediary.

Figure 5.6: ε values of the fictitious play experiments for duopoly PRE, POST, FPSB
and PRE-POST settings with intermediary reserve prices, where each intermediary has
k = 1 (left), k = 2 (right) or k = 5 (bottom) buyers whose private valuations are i.i.d.

drawn from U(0, 1) and the center impose its optimal reserve price.

5.2.2 Pre-Award Second-Price Sealed-Bid Auctions

We begin our analysis with a duopoly setting with PRE intermediaries that differ in their

reserve prices. We will call the intermediary with the higher (lower respectively) reserve

price, the high- (low- respectively) intermediary. Following this, we consider the same

setting for POST and FPSB intermediary auctioneers, and then study a setting with a

PRE and a POST intermediary auctioneer. We first characterize the expected utilities for

all the above-mentioned cases and then present our theoretical analysis along with our

numerical results for these four settings.

For the remainder of this thesis, we will denote the high- and low-reserve intermediaries

as sL` , s
H
` and their reserve prices as rL` ≤ rH` respectively, where ` = {PRE,POST, FPSB}.

Assume two intermediaries, sLPRE , sHPRE , each implementing a PRE mechanism with

reserve price rLPRE , rHPRE respectively and with an equal number of buyers, k = K
2 , in

their market. Feldman et al. (2010) have analyzed this problem and have analytically

derived the (mixed-) equilibrium reserve-price-setting strategies of the intermediaries in

a more general setting with n intermediaries but assuming that each intermediary has
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only a single buyer in his market. They have shown that a similar equilibrium will arise

in the general case where each intermediary has k > 1 buyers, providing the conditions

that should hold. However, they have not managed to explicitly characterize such an

equilibrium for issues of analytical tractability.

In this section, we characterize the center’s ex-ante expected revenue along with the

intermediaries’ ex-ante expected profits and the buyers’ expected surplus. We then

look at the intermediaries’ best responses in three examples with buyers whose private

valuations are i.i.d. drawn from the uniform distribution U(0, 1). Finally, we employ

the fictitious play algorithm to find the resulting ε-NE reserve prices, first validating its

good approximation for the case of k = 1 where the exact Nash equilibria are known.

We begin with the derivation of intermediaries’ expected profits.

The ex-ante expected profits of the low- and the high-reserve intermediary respectively

can be expressed as:

profitLPRE(rLPRE) = F k(rHPRE)[kF k−1(rLPRE)(1− F (rLPRE))(rLPRE − ρ)+

+

∫ 1

rLPRE

(y − ρ)f
(k)
2 (y)dy] + kF k−1(rHPRE)(1− F (rHPRE))

∫ 1

rHPRE

(y − rHPRE)f
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

(y − x)f
(k)
2 (x)dxdy (5.16)

and

profitHPRE(rHPRE) = F k(rLPRE)[kF k−1(rHPRE)(1− F (rHPRE))(rHPRE − ρ) +

∫ 1

rHPRE

(y − ρ)f
(k)
2 (y)dy]+

+ kF k−1(rLPRE)(1− F (rLPRE))[kF k−1(rHPRE)(1− F (rHPRE))(rHPRE − rLPRE)+

+

∫ 1

rHPRE

(y − rLPRE)f
(k)
2 (y)dy] + kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPRE

(rHPRE − y)f
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

(y − x)f
(k)
2 (x)dxdy (5.17)

That is, the low-reserve intermediary either receives the difference between the maximum

of his reserve price and his buyers’ second-highest bid, and the center’s reserve price, if all

opponent bids are above the high reserve (first term in (5.16)), or he gets the difference

between his local second-highest bid and the high reserve price if only one opponent

local bid is above the latter (second term in (5.16)). Otherwise, he receives the difference

between his buyers’ second-highest bid and the opponent intermediary buyers’ second-

highest bid (third term in (5.16)). Similarly, the high-reserve intermediary receives the

difference between the maximum of his reserve price and his buyers’ second-highest bid,

and the center’s reserve price, if all opponent bids are below his opponent’s low reserve

price (first term in (5.17)), or the difference between his reserve price and the opponent

intermediary’s reserve price, if there is only one valid bid submitted in the latter and, at
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the same time, there is at least one bid above his reserve price (second term in (5.17)).

He also receives the difference between his reserve price and the local second-highest

opponent bid, if the latter is below his reserve price (third term in (5.17)), as well as the

difference between his buyers’ second-highest bid and the opponent intermediary buyers’

second-highest bid (fourth term in (5.17)). After some manipulation (see Section A.1 in

the Appendix), these equations simplify to the following:

profitLPRE(rLPRE) = F k(rHPRE)[rHPRE − ρ− F k(rLPRE)(rLPRE − ρ)−
∫ rHPRE

rLPRE

F
(k)
2 (y)dy]+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

F
(k)
2 (x)dxdy (5.18)

profitHPRE(rHPRE) = F k(rLPRE)(1− F k(rHPRE))(rLPRE − ρ)+

+ kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPRE

F
(k)
2 (y)dy +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy

(5.19)

The center’s ex-ante expected revenue can be expressed as:

revenuePRE(ρ) = ρ[F k(rLPRE)(1− F k(rHPRE)) + F k(rHPRE)(1− F k(rLPRE)]+

+ rLPREkF
k−1(rLPRE)(1− F (rLPRE))(1− F k(rHPRE))+

+ rHPREkF
k−1(rHPRE)(1− F (rHPRE))(1− F (k)

2 (rHPRE))+

+

∫ 1

rHPRE

2y(1− F (k)
2 (y))f

(k)
2 (y)dy + (1− F k(rHPRE))

∫ rHPRE

rLPRE

yf
(k)
2 (y)dy (5.20)

That is, the center receives its reserve price if there is at least one bid above one in-

termediary’s reserve price but no eligible bids in the other intermediary’s market (first

term in (5.20)). It also receives the low reserve price if there is only a single eligible bid

submitted in the low-reserve intermediary, and at least one eligible bid submitted in the

high-reserve intermediary (second term in (5.20)). The center similarly receives the high

reserve price if there is only a single bid above the high reserve price submitted in the

high-reserve intermediary auction and, at the same time, the second-highest local bid

in the low-reserve intermediary is above the high reserve price (third term in (5.20)).

If none of the above holds, then the center receives the second-highest submitted bid

(fourth and fifth terms in (5.20)).
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Finally, a buyer with valuation υ expects the following surplus from the low- and high-

reserve intermediaries, when rLPRE < rHPRE :

ΠL
PRE(υ) =



0 if υ ∈ [0, rLPRE)

F k(rHPRE)
∫ υ
rLPRE

F k−1(y)dy if υ ∈ [rLPRE , r
H
PRE)

F k(rHPRE)[(υ − rLPRE)F k−1(rLPRE) +
∫ rHPRE
rLPRE

(υ − y)f
(k−1)
1 (y)dy]+

+
∫ υ
rHPRE

(υ − y)f
(k−1)
1 (y)F

(k)
2 (y)dy if υ ∈ [rHPRE , 1]

(5.21)

ΠH
PRE(υ) =


0 if υ ∈ [0, rHPRE)

(υ − rHPRE)F k−1(rHPRE)F
(k)
2 (rHPRE)+

+
∫ υ
rHPRE

(υ − y)f
(k−1)
1 (y)F

(k)
2 (y)dy if υ ∈ [rHPRE , 1]

(5.22)

In more detail, a buyer with valuation υ ∈ [rHPRE , 1] in the low-reserve intermediary wins

and pays him his reserve price, rLPRE , or the second-highest local bid if there is no eligible

bid submitted in the other intermediary (first and second terms in (5.21)). Otherwise,

the buyer pays the local second-highest bid, if this is above the high reserve price and,

at the same time, the local second-highest bid in the high-reserve intermediary is below

it (third term in (5.21)). Similarly, such a buyer in the high-reserve intermediary wins

and pays the high reserve price, rHPRE , if all other bids in this intermediary are below

this reserve price and, at the same time, the local second-highest bid in the low-reserve

intermediary is below rHPRE (first term in (5.22)). Finally, she wins and pays the local

second-highest bid in the high-reserve intermediary if this is lower than her bid and,

simultaneously, the opponent intermediary submitted bid at the center is also below her

bid (second term in (5.22)).

For the special case where both intermediaries set the same reserve price, i.e. rLPRE =

rHPRE = rPRE , a buyer’s ex-interim expected surplus will be:

Πeq
PRE(υ) =


0 if υ ∈ [0, rPRE)

(υ − rPRE)F k−1(rPRE)[F k(rPRE) + 1
2kF

k−1(rPRE)(1− F (rPRE))]+

+
∫ υ
rPRE

(υ − y)f
(k−1)
1 (y)F

(k)
2 (y)dy if υ ∈ [rPRE , 1]

(5.23)

The only essential difference compared to the non-equal reserve prices situation is that,

when both intermediaries submit their reserve prices, a random tie-breaking rule yields

a probability of 1
2 of winning (second term in (5.23)).

In what follows, we depict the resulting equilibrium for our duopoly setting with k = 1

buyer for each intermediary, assuming a uniform distribution, U(0, 1), for buyers’ private

valuations and compare this with a numerical approximation that we derive by using
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the fictitious play algorithm. We then repeat the same technique for the two examples

of k = 2 and k = 5 (i.e. greater than one) buyers.

To see why intermediaries in this case (k = 1) follow mixed-equilibrium strategies, let

us illustrate the best response function for our duopoly setting. In this case, the low-

reserve intermediary’s expected profit is the difference between his reserve price, rLPRE
and the center’s reserve price, ρ, given that his buyer’s private valuation is higher than

his reserve price and, at the same time, the other buyer’s private valuation is lower than

the high-reserve intermediary’s reserve price, rHPRE , i.e.

profitLPRE(rLPRE) = (1− F (rLPRE)F (rHPRE)(rLPRE − ρ) (5.24)

whereas the high-reserve intermediary additionally expects positive profit even if his

opponent submits his reserve price:

profitHPRE(rHPRE) = (1−F (rHPRE))[F (rLPRE)(rHPRE − ρ) + (1−F (rLPRE))(rHPRE − rLPRE)]

(5.25)

The best-response function for U(0, 1) and ρ = 0 is shown in Figure 5.7. As can be seen,

this function does not cross the 45 ◦ line, meaning that it is unlikely that there is a sym-

metric pure-strategy equilibrium3, which would naturally arise since both intermediaries

are ex-ante identical. What’s more, for low reserve prices, the opponent intermediary

best responds by setting a higher reserve price up to a point where it is best to set a

lower reserve price, creating a vicious cycle, leading to a mixed-equilibrium behavior for

the intermediaries’ reserve-price-setting strategies.

As Feldman et al. have shown, the resulting mixed-equilibrium reserve-price-setting

strategies of n intermediaries with k = 1 buyer each, involve each intermediary offering

a random take-it-or-leave-it price, r, in an interval [rmin, rmax] with density ξr(r), where

rmin, rmax, ξr(·) are found by solving the following system of equations (Feldman et al.,

2010):

rmin = ρ+
1− F (rmin)

f(rmin)
(5.26)∫ rmax

rmin

ζ ′(υ)

(n− 1)ζ
n−2
n−1 (υ)(1− F (υ))

dυ = (ζ(rmax))
1

n−1 (5.27)

ξr(r) = (
1

ζ(rmax)
)

1
n−1

ζ ′(r)

(n− 1)ζ
n−2
n−1 (r)(1− F (r))

(5.28)

3This happens regardless of the reserve price of the center and the granularity of the discretization.
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Figure 5.7: Best-response reserve price function for a duopoly PRE intermediary set-
ting with intermediary reserve prices, where each intermediary has exactly k = 1 buyer
whose private valuation is i.i.d. drawn from U(0, 1) and the center does not impose a

reserve price.

where ζ(r) = f(r)
(1−F (r))2

. Then the center’s reserve-price optimization problem is given

by (Feldman et al., 2010):

ρ∗PRE = arg max
ρ
{rmax −

1− F (rmax)

f(rmax)
− ρ(

ζ(rmin)

ζ(rmax)
)

n
n−1 − n− 1

ζ(rmax)
} (5.29)

subject to equations (5.26) - (5.28). For n = 2 intermediaries and buyers whose private

valuations are i.i.d. drawn from the uniform distribution U(0, 1), equations (5.26) -

(5.29) become:

rmin =
1 + ρ

2
(5.30)

1

(1− rmax)3
− 8

(1− ρ)3
=

3

2(1− rmax)2
(5.31)

ξr(r) =
2(1− rmax)2

(1− r)4
(5.32)

ρ∗PRE = arg max
ρ
{4rmax − (rmax)2 − 16ρ(

1− rmax
1− ρ

)4 − 2} (5.33)

For the uniform distribution, U(0, 1), the equations above yield ρ∗PRE = 0.5, rmin = 0.75,

rmax = 0.78.

We have used fictitious play in this setting to compare our results with the only available

theoretical results of Feldman et al.. Given the technical difficulties in characterizing

the exact equilibrium distribution for settings with more than one buyer per interme-

diary, we use these theoretical results as a benchmark for fictitious play. Specifically,
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the convergence of the intermediaries’ utilities to the theoretically derived ones in our

fictitious play experiments is good evidence of the effectiveness of fictitious play in the

remaining cases studied within this thesis, where there are no theoretical guarantees.

Figure 5.8 illustrates the intermediaries’ utilities for each round. The acquired utili-

ties are very close to the theoretical expected profits of 0.0479 in equilibrium that are

achieved according to the results of Feldman et al.. Moreover, Figure 5.9 illustrates the

resulting c.d.f. (black line) of the intermediaries’ reserve-price-setting strategies in our

approximate equilibrium compared to the theoretical c.d.f. (gray line). As can be seen,

the two functions are quite close, illustrating the effectiveness of our experiments in this

setting.
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Figure 5.8: Intermediary fictitious play utilities per round for a duopoly PRE inter-
mediary setting, where each intermediary has k = 1 buyer whose private valuation is

i.i.d. drawn from U(0, 1) and the center imposes its optimal reserve price (0.5).

Having shown the effectiveness of fictitious play in the k = 1 intermediary duopoly

setting, we now move to the more general case of k > 1 buyers per intermediary in the

same scenario with i.i.d. uniform U(0, 1) buyers’ private valuations. Feldman et al. have

shown that intermediaries in this case also implement mixed-strategy equilibrium reserve

prices but did not manage to analytically characterize the resulting equilibrium. The

best-response functions for two examples with k = 2, 5 buyers for each intermediary and

ρ = 0 in Figure 5.10 imply the same. As can be seen, the low best-response reserve price

remains fixed whereas the high best-response reserve price increases with the number of

buyers per intermediary.

We now depict the results of the fictitious play experiments for k = 2 and 5 buyers per

intermediary, where we vary the center’s reserve price. Figure 5.11 illustrates the center’s

ex-ante expected revenue for k = 2 (left) and k = 5 (right). As can be seen from these

examples, the center’s optimal reserve price increases with the number of buyers per

intermediary. Feldman et al. have shown that, for a single buyer per intermediary, the
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Figure 5.9: C.d.f. of the intermediaries’ equilibrium reserve-price-setting strategies
(gray) along with the corresponding empirical c.d.f. of the fictitious play run (black)
for a duopoly PRE intermediary setting, where each intermediary has k = 1 buyer whose
private valuation is i.i.d. drawn from U(0, 1) and the center imposes its optimal reserve

price (0.5).
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(a) k = 2 buyers per intermediary.
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(b) k = 5 buyers per intermediary.

Figure 5.10: Best-response reserve price functions for a duopoly PRE intermediary
setting with intermediary reserve prices, where each intermediary has k = 2 (left) or
k = 5 (right) buyers whose private valuations are i.i.d. drawn from U(0, 1) and the

center does not impose a reserve price.

latter optimal reserve price decreases with the number of intermediaries. Our example

depicts that their result is due to the increased competition of the intermediaries. Hence,

these two factors (number of intermediaries, number of buyers per intermediary) drive

the optimal reserve price for the center in opposite directions.

Figure 5.12 illustrates the c.d.f. of the resulting ε-NE reserve-price-setting strategies

from our experiments when the center implements its optimal reserve price (0.5 for

k = 2, 0.6 for k = 5). As shown, ε-NE reserve prices tend to increase with increasing

number of buyers and the support of this equilibrium increases as well.

We now move to the setting with two intermediaries both implementing POST mecha-

nisms.
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(a) k = 2 buyers per intermediary.
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(b) k = 5 buyers per intermediary.

Figure 5.11: Center’s ex-ante expected revenue when intermediaries follow the ficti-
tious play ε-NE reserve-price-setting strategies for a duopoly PRE intermediary setting,
where each intermediary has k = 2 (left) or k = 5 (right) buyers whose private valua-

tions are i.i.d. drawn from U(0, 1) and the center does not impose a reserve price.
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(a) k = 2 buyers per intermediary.
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Figure 5.12: Empirical c.d.f. of the fictitious play intermediaries’ ε-NE reserve-price-
setting strategies for a duopoly PRE intermediary setting, where each intermediary has
k = 2 (left) and k = 5 (right) buyers whose private valuations are i.i.d. drawn from

U(0, 1) and the center imposes its optimal reserve price.

5.2.3 Post-Award Second-Price Sealed-Bid Auctions

Let us consider the duopoly competition between two intermediaries implementing POST

mechanisms where both set a reserve price to increase their profit, so that a buyer wins

and pays the maximum of the local second-highest bid, the center’s second-highest bid

or its reserve price, and the intermediary’s reserve price. In this section, as before,

we first characterize the expected utilities for all agents and then analyze the resulting

equilibrium reserve-price-setting behavior of the intermediaries. In this setting, we show

the existence of a symmetric pure-strategy equilibrium in the intermediaries’ strategies

under some conditions. As will be seen, these conditions are met for our example with

the uniform distribution U(0, 1) for k = 1 and 2 buyers per intermediary. For this

reason, we will present our fictitious play results only for the case of k = 5 buyers per

intermediary.
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We assume that intermediaries set reserve prices rLPOST , r
H
POST such that rLPOST ≤

rHPOST . In this case, the low- and high-reserve intermediary expected profits can be

expressed as follows:

profitLPOST (rLPOST ) = F k(rHPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rLPOST − ρ)+

+

∫ 1

rLPOST

(y − ρ)f
(k)
2 (y)dy] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

(y − x)f
(k)
1 (x)dxdy (5.34)

and

profitHPOST (rHPOST ) = F k(rLPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rHPOST − ρ)+

+

∫ 1

rHPOST

(y − ρ)f
(k)
2 (y)dy] + kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPOST

(rHPOST − y)f
(k)
1 (y)dy+

+

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPOST

(y − x)f
(k)
1 (x)dxdy (5.35)

In more detail, the low-reserve intermediary receives the difference between the maxi-

mum of his buyers’ local second-highest bid and the center’s reserve price, if there is

at least one bid above his reserve price and, at the same time, all opponent bids are

below the high reserve price (first term in (5.34)). Otherwise, he receives the difference

between his local second-highest bid and the center’s second-highest bid if the former

is higher than the latter (second term in (5.34)). The high-reserve intermediary corre-

spondingly receives the difference between the maximum of his local second-highest bid

and his reserve price, and the center’s reserve price or the difference between his local

second-highest bid and the center’s second-highest bid in the same cases (first and third

terms in (5.35)), and additionally obtains the difference between his reserve price and

the opponent highest bid, if the latter is higher than the low reserve price but lower

than the high reserve price (second term in (5.35)). The above equations simplify to the

following:

profitLPOST (rLPOST ) = F k(rHPOST )[rHPOST − ρ− F k(rLPOST )(rLPOST − ρ)−

−
∫ rHPOST

rLPOST

F
(k)
2 (y)dy] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

F k(x)dxdy (5.36)

profitHPOST (rHPOST ) = F k(rLPOST )(1− F k(rHPOST ))(rLPOST − ρ)+

+ kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPOST

F k(y)dy +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPOST

F k(x)dxdy

(5.37)

Having expressed the intermediaries’ expected profits, we now characterize the center’s

ex-ante expected revenue; the center receives its reserve price, ρ, whenever there is at
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least one bid above this reserve in one intermediary but no such eligible bid in the other

intermediary’s local auction. Additionally, it receives the second-highest intermediaries’

bid if both intermediaries’ bids are above the high reserve price, rHPOST , or when the

high-reserve intermediary’s bid is above rHPOST and the low-reserve intermediary’s bid

is higher than rLPOST but lower than rHPOST . Hence, the center’s expected revenue can

be expressed as follows:

revenuePOST (ρ) = [F k(rHPOST )(1− F k(rLPOST )) + F k(rLPOST )(1− F k(rHPOST ))]ρ+

+

∫ 1

rHPOST

2y(1− F k(y))f
(k)
1 (y)dy + (1− F k(rHPOST ))

∫ rHPOST

rLPOST

yf
(k)
1 (y)dy (5.38)

Finally, a buyer with valuation υ expects surplus from the low- and high-reserve inter-

mediaries that can be expressed as follows:

ΠL
POST (υ) =



0 if υ ∈ [0, rLPOST )

F k(rHPOST )
∫ υ
rLPOST

F k−1(y)dy if υ ∈ [rLPOST , r
H
POST )

F k(rHPOST )[(υ − rLPOST )F k−1(rLPOST ) +
∫ rHPOST
rLPOST

(υ − y)f
(k−1)
1 (y)dy]+

+
∫ υ
rHPOST

(υ − y)f
(2k−1)
1 (y)dy if υ ∈ [rHPOST , 1]

(5.39)

and

ΠH
POST (υ) =

0 if υ ∈ [0, rHPOST )

(υ − rHPOST )F 2k−1(rHPOST ) +
∫ υ
rHPOST

(υ − y)f
(2k−1)
1 (y)dy if υ ∈ [rHPOST , 1]

(5.40)

Thus, a buyer with valuation υ ≥ rHPOST in the low-reserve intermediary wins and pays

the low reserve price, rLPOST , or the highest opponent local bid in this intermediary’s

auction if no other eligible bid is submitted in the high-reserve intermediary (first and

second terms in (5.39)). Otherwise, she pays the second-highest opponent bid overall

(third term in (5.39)). On the other hand, if the buyer is in the high-reserve intermediary,

she pays the high reserve price, rHPOST , if all other bids are less than this reserve price

(first term in (5.40)). Otherwise, she wins and pays the highest opponent bid overall,

given that the latter is higher than rHPOST but lower than her bid (second term in (5.40)).

Again, we start with the motivating scenario where each intermediary has only one buyer

participating in his auction. In this case, the expected profits of the two intermediaries

can be expressed as:

profitLPOST (rLPOST ) = (1− F (rLPOST ))F (rHPOST )(rLPOST − ρ) (5.41)
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profitHPOST (rHPOST ) = (1− F (rHPOST ))[(rHPOST − ρ)F (rLPOST ) +

∫ rHPOST

rLPOST

(rHPOST − y)f(y)dy] =

= (1− F (rHPOST ))[

∫ rHPOST

rLPOST

F (x)dx+ (rLPOST − ρ)F (rLPOST )] (5.42)

Looking at the intermediaries’ reserve-price-setting strategies in this setting, surpris-

ingly, in this case we find that, under some conditions on the distribution of buyers’

private valuations, there is a symmetric pure-strategy Nash equilibrium where both

intermediaries set the same reserve price as in the monopoly intermediary setting.

Specifically, the low-reserve intermediary’s optimal reserve price solves the first-order

condition of (5.41):

∂profitLPOST (rLPOST )

∂rLPOST
= −f(rLPOST )(rLPOST − ρ) + 1− F (rLPOST ) = 0 (5.43)

that gives:

r∗POST = ρ+
1− F (r∗POST )

f(r∗POST )
(5.44)

Then, taking first-order condition for the high-reserve intermediary yields:

∂profitHPOST (rHPOST )

∂rHPOST
= −f(rHPOST )[

∫ rHPOST

rLPOST

F (y)dy + F (rLPOST )(rLPOST − ρ)]+

+ (1− F (rHPOST ))F (rHPOST ) = 0 (5.45)

which is satisfied for rLPOST = rHPOST = r∗POST . For this to be a pure-strategy Nash

equilibrium, the second-order derivative at r∗POST has to be negative. Taking the second-

order derivative yields:

∂2profitHPOST (rHPOST )

∂(rHPOST )2
= −f ′(rHPOST )[

∫ rHPOST

rLPOST

F (y)dy + F (rLPOST )(rLPOST − ρ)]+

+ f(rHPOST )[1− 3F (rHPOST )] (5.46)

which at rLPOST = rHPOST = r∗POST yields:

∂2profitHPOST (rHPOST )

∂(rHPOST )2
|r∗POST = −f ′(r∗POST )

F (r∗POST )(1− F (r∗POST ))

f(r∗POST )
+

+ f(r∗POST )[1− 3F (r∗POST )] (5.47)

Setting
∂2profitHPOST (rHPOST )

∂(rHPOST )2
|r∗POST < 0 yields the necessary condition for the existence of

a pure-strategy Nash equilibrium.
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It is easy to see that such a symmetric pure-strategy Nash equilibrium will always exist

for the example of the uniform distribution U(0, 1), with each intermediary setting a

reserve price equal to 1+ρ
2 .

Given this equilibrium behavior of the intermediaries, the center’s ex-ante expected

revenue will be:

revenuePOST (ρ) =

∫ 1

r∗POST

yf
(2)
2 (y)dy + 2F (r∗POST )(1− F (r∗POST ))ρ (5.48)

Substituting the intermediaries’ equilibrium reserve prices in the equation above yields:

revenuePOST (r∗POST ) =

∫ 1

r∗POST
yf

(2)
2 (y)dy+2F (r∗POST )(1−F (r∗POST ))[r∗POST−

1− F (r∗POST
f(r∗POST

]

(5.49)

Taking the first-order derivative of this w.r.t. r∗POST yields:

2{F (r∗POST )[3(1−F (r∗POST ))−r∗POST f(r∗POST )]−(1−F (r∗POST ))2[1−F (r∗POST )
f ′(r∗POST )

f2(r∗POST )
]}

(5.50)

Setting this equal to zero then yields the optimal reserve price of the center. For the

case of the uniform distribution, we obtain r∗POST = 0.7236 and the optimal center’s

reserve then will be ρ∗POST = 2r∗POST − 1 = 0.4472.

We now show that the above-mentioned result for the existence of a symmetric pure-

strategy Nash equilibrium in the duopoly POST intermediary reserve-price-setting prob-

lem generalizes to settings with more than one buyer per intermediary.

Theorem 5.1. There exists a symmetric pure-strategy Nash equilibrium in the duopoly

POST - POST intermediary reserve-price-setting game with intermediaries having k ∈ N+

captive buyers each, where each intermediary sets a reserve price, r∗POST , that solves:

r∗POST = ρ+
1− F (r∗POST )

f(r∗POST )
(5.51)

if

f ′(r∗POST ) >
[k − (k + 2)F (r∗POST )]f2(r∗POST )

kF (r∗POST )(1− F (r∗POST )
(5.52)

Proof. Taking the first- and second-order derivatives of the high-reserve intermediary

expected profit (equation (5.37)) w.r.t. rHPOST yields:

∂profitHPOST (rHPOST )

∂rHPOST
= −kF k−1(rHPOST )f(rHPOST )[F k(rLPOST )(rLPOST − ρ)+

+

∫ rHPOST

rLPOST

F k(y)dy] + kF 2k−1(rHPOST )(1− F (rHPOST )) (5.53)
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∂2profitHPOST (rHPOST )

∂(rHPOST )2
= k(2k − 1)F 2k−2(rHPOST )(1− F (rHPOST ))f(rHPOST )−

− 2kF 2k−1(rHPOST )f(rHPOST )− [k(k − 1)F k−2(rHPOST )f2(rHPOST )+

+ kF k−1(rHPOST )f ′(rHPOST )][F k(rLPOST )(rLPOST − ρ) +

∫ rHPOST

rLPOST

F k(y)dy]−

− kF k−1(rHPOST )f(rHPOST )F k(rHPOST ) (5.54)

It is easy to see that setting rHPOST as in (5.51) satisfies the first-order condition of (5.53).

However, it still remains to be shown whether this maximizes the expected profit of the

high-reserve intermediary. For this to happen, the second-order derivative of this profit

expression should be negative:

∂2profitHPOST (rHPOST )

∂(rHPOST )2
|rPOSTL =rHPOST=r∗POST

= kF 2k−2(r∗POST )[k(1− F (r∗POST ))f(r∗POST )−

− 2F (r∗POST )f(r∗POST )− kF (r∗POST )f ′(r∗POST )
1− F (r∗POST )

f(r∗POST )
] (5.55)

yielding the condition of (5.52).

For the uniform distribution U(0, 1) the condition for the existence of such a pure-

strategy Nash equilibrium becomes r∗POST >
k
k+1 or, equivalently for the center’s reserve

price, ρ, ρ > k−2
k+1 , since r∗POST = 1+ρ

2 . This will be always satisfied for k ≤ 2 when ρ > 0,

however for the remaining cases we need to derive the center’s optimal reserve price under

this equilibrium and study the feasibility of such an optimal reserve price.

If both intermediaries set the same reserve price, r∗POST , the center’s expected revenue

(equation (5.38)) becomes:

revenue(r∗POST ) = 2F k(r∗POST )(1− F k(r∗POST ))[r∗POST −
1− F (r∗POST )

f(r∗POST )
]+

+

∫ 1

r∗POST

2y(1− F k(y))kF k−1(y)f(y)dy (5.56)

Taking the first-order derivative w.r.t. r∗POST then yields:

∂revenue(r∗POST )

∂r∗POST
= 2F k−1(r∗POST ){kF k(r∗POST )[1− F (r∗POST )− r∗POST f(r∗POST )]−

− (1− F k(r∗POST ))[k − (k + 2)F (r∗POST )− F (r∗POST )(1− F (r∗POST ))
f ′(r∗POST )

f2(r∗POST )
]}

(5.57)
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The optimal reserve price for the intermediaries, ρ∗POST , solves the first-order condition

of this equation subject to the constraint of (5.52). For the case of the uniform distribu-

tion U(0, 1), such an equilibrium exists only for the case of k = 2, where r∗POST = 0.7071

and hence ρ∗POST = 0.4142.

For k > 2 buyers per intermediary, intermediaries are likely to follow mixed equilib-

rium reserve-price setting strategies, as the example for the best response function of

Figure 5.13 illustrates for k = 5 and ρ = 0. For this reason, we run the fictitious play

algorithm for this setting, varying as before the center’s reserve price from 0 to 1 with

a step of 0.1.
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Figure 5.13: Best-response reserve price function for a duopoly POST intermediary
setting with intermediary reserve prices, where each intermediary has k = 5 buyers
whose private valuations are i.i.d. drawn from U(0, 1) and the center does not impose

a reserve price.

Figure 5.14 (left) illustrates the center’s expected revenue in the ε-NE of the fictitious

play experiments, as a function of the reserve price. As can be seen, the optimal reserve

price is 0.3, further decreasing compared to the cases of k = 1, and k = 2 analyzed

above. This is due to the fact that, since intermediaries submit their highest-local bid,

as the number of buyers increases, the impact of a higher reserve price is offset by the

probability of setting these too high and hence missing a trade. This drives the center’s

optimal reserve price downwards. Figure 5.14 (right) shows the resulting ε-NE reserve-

price-setting strategy. As can be seen, equilibrium reserve prices are concentrated on

[0.65, 0.71], hence are generally smaller compared to the cases of k = 1 and k = 2.

Next, we analyze an FPSB duopoly intermediary setting. As will be seen, the BNE bid-

ding functions are complex, so the derivation of the expected utilities for all stakeholders

becomes technically challenging.
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(a) Center’s expected revenue.
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(b) Intermediaries’ empirical c.d.f. of reserve prices
in ε-NE.

Figure 5.14: Center’s ex-ante expected revenue (left) and empirical c.d.f. at the
center’s optimal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-
price-setting strategies for a duopoly POST intermediary setting, where each intermedi-

ary has k = 5 buyers whose private valuations are i.i.d. drawn from U(0, 1).

5.2.4 First-Price Sealed-Bid Auctions

When intermediaries implement FPSB auctions, the analytical derivations of the expected

utilities for all parties become more cumbersome, since one has to derive the equilib-

rium bidding functions of the buyers. Kotowski (2014) has considered such equilibrium

functions for a different problem that perfectly fits our setting. This is the problem of

an auctioneer who separates bidders in two groups and discriminates in favor of one of

the groups by setting different reserve prices for each group. Among others, the author

shows that, when the auctioneer uses a first-price sealed-bid auction with different re-

serve prices for each group, the bidders’ equilibrium bidding functions are nontrivial to

derive and might depict discontinuities. We make use of the author’s results to numeri-

cally calculate the center’s average revenue and intermediaries’ average profits so as to

compare those with the other two auction mechanisms studied. We now illustrate the

author’s results for the equilibrium bidding functions of the bidders.

Kotowski shows that, when the reserve prices are not very different, bidders’ equilib-

rium strategies are identical for some interval in the support of the valuations, and the

bids’ profile is called semi-separating. Otherwise, the bids of the two groups are disjoint

sets and their profile is called separating. In the limiting case where both reserve prices

are the same, the bids’ profile is called pooling and coincides with the equilibrium bid-

ding function of buyers when intermediaries do not impose any reserve prices (equation

(4.24)). In our terminology, for the existence of a corresponding semi-separating equilib-

rium, the reserve prices of the two groups (i.e. intermediaries), rLFPSB ≤ rHFPSB, should

satisfy the following condition:

F k(rHFPSB)

∫ 1

rLFPSB

F k−1(y)dy ≤
∫ 1

rHFPSB

F k−1(y)dy (5.58)
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In this case, there is a cut-off point, υ̂, in the support of the valuations where the

equilibrium bidding function changes. This cut-off point is the unique solution of:

F k(rHFPSB)

∫ υ̂

rLFPSB

F k−1(y)dy = F k(υ̂)

∫ υ̂

rHFPSB

F k−1(y)dy (5.59)

Then, if:

b`(υ) = υ −

∫ υ
r`FPSB

F k−1(y)dy

F k−1(υ)
(5.60)

b̂(υ) = υ −
F k(υ̂)

∫ υ̂
rHFPSB

F k−1(y)dy

F 2k−1(υ)
−
∫ υ
υ̂ F

2k−1(y)dy

F 2k−1(υ)
(5.61)

for ` = {L,H}, the semi-separating equilibrium bidding strategies of the buyers in the

low- and high-reserve intermediaries, βL(·), βH(·) respectively will be:

β`(υ) =

b`(υ) if υ ∈ [r`FPSB, υ̂]

b̂(υ) if υ ∈ (υ̂, 1]
(5.62)

On the other hand, when the reserve prices are very different, i.e. when

F k(rHFPSB)

∫ 1

rLFPSB

F k−1(y)dy >

∫ 1

rHFPSB

F k−1(y)dy (5.63)

then buyers follow the following separating equilibrium bidding strategies:

βs` (υ) = υ −

∫ υ
r`FPSB

F k−1(y)dy

F k−1(υ)
(5.64)

Finally, if both intermediaries set the same reserve price, rFPSB, then all buyers follow

the same equilibrium bidding strategy:

βL(υ) = βH(υ) = β(υ) = υ −
∫ υ
rFPSB

F 2k−1(y)dy

F 2k−1(υ)
(5.65)

An example of the equilibrium bidding functions when the reserve prices are different

are shown in Figure 5.15 where each intermediary has 2 buyers whose private valuations

are i.i.d. drawn from the uniform distribution U(0, 1). Given the complexity of the

resulting equilibrium function, we do not provide any closed form expressions for the

expected revenue and profits for the center and the intermediary.

We now analyze the equilibrium reserve-price-setting strategies of the two FPSB inter-

mediaries for the examples of k = 1, 2 and 5 buyers per intermediary whose private

valuations are i.i.d. drawn from U(0, 1). Our fictitious play results are shown in Figures
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(a) rLFPSB=0 and rHFPSB=0.5.
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(b) rLFPSB=0 and rHFPSB=0.8.

Figure 5.15: Two examples of semi-separating (left) and separating (right) equi-
librium first-price sealed-bid bidding strategies when there are k = 2 buyers in each
intermediary whose valuations are i.i.d. drawn from U(0, 1). The bidding functions of
buyers in the low-and high-reserve intermediaries are shown with red and blue colour

respectively.

5.16 - 5.18. As can be seen, the center’s optimal reserve price increases with the number

of buyers per intermediary and that also leads to an increase of the reserve prices of

the intermediaries. Moreover, this reserve price is also higher compared to all previous

scenarios. In all cases, intermediaries in our approximate equilibria follow strictly mixed

strategies.
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(a) Center’s average revenue.
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(b) Intermediaries’ empirical c.d.f. of reserve prices
in ε-NE.

Figure 5.16: Center’s average revenue (left) and empirical c.d.f. at the center’s opti-
mal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-price-setting
strategies for a duopoly FPSB intermediary setting, where each intermediary has k = 1

buyer whose private valuation is i.i.d. drawn from U(0, 1).

In what follows, we study a heterogeneous Vickrey setting, where one intermediary

implements a PRE and the other a POST mechanism.

5.2.5 Pre- versus Post-Award Second-Price Sealed-Bid Auctions

Let us now assume that intermediaries select different Vickrey mechanisms. We start

with the case where the low-reserve intermediary implements a POST mechanism with a
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(a) Center’s average revenue.
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(b) Intermediaries’ empirical c.d.f. of reserve prices
in ε-NE.

Figure 5.17: Center’s average revenue (left) and empirical c.d.f. at the center’s opti-
mal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-price-setting
strategies for a duopoly FPSB intermediary setting, where each intermediary has k = 2

buyers whose private valuations are i.i.d. drawn from U(0, 1).
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(a) Center’s average revenue.
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(b) Intermediaries’ empirical c.d.f. of reserve prices
in ε-NE.

Figure 5.18: Center’s average revenue (left) and empirical c.d.f. at the center’s opti-
mal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-price-setting
strategies for a duopoly FPSB intermediary setting, where each intermediary has k = 5

buyers whose private valuations are i.i.d. drawn from U(0, 1).

reserve price rLPOST whereas the high-reserve intermediary implements a PRE mechanism

with a reserve price rHPRE ≥ rLPOST . Then the intermediaries’ ex-ante expected profits

can be expressed as:

profitLPOST (rLPOST ) = F k(rHPRE)[kF k−1(rLPOST )(1− F (rLPOST ))(rLPOST − ρ)+

+

∫ 1

rLPOST

(y − ρ)f
(k)
2 (y)dy] + kF k−1(rHPRE)(1− F (rHPRE))

∫ 1

rHPRE

(y − rHPRE)f
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

(y − x)f
(k)
2 (x)dxdy (5.66)
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profitHPRE(rHPRE) = F k(rLPOST )[kF k−1(rHPRE)(1− F (rHPRE))(rHPRE − ρ)+

+

∫ 1

rHPRE

(y − ρ)f
(k)
2 (y)dy] + kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPOST

(rHPRE − y)f
(k)
1 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPOST

(y − x)f
(k)
1 (x)dxdy (5.67)

In more detail, the low-reserve POST intermediary receives the difference between his

reserve price or his local second-highest bid and the center’s reserve price, if the other

intermediary has no eligible bid and, at the same time, there is at least one bid above

his reserve price, rLPOST (first and second term in (5.66)). He also receives the difference

between his local second-highest bid and rHPRE , if there is only a single eligible bid

submitted in the other intermediary’s auction and, simultaneously, his local second-

highest bid is above his reserve price (third term in (5.66)). Finally, he obtains the

difference between his local second-highest bid and the other intermediary’s submitted

bid, if the latter is below the former and both are above the high reserve price (fourth

term in (5.66)).

Similarly, the high-reserve PRE intermediary obtains the difference between his reserve

price or his local second-highest bid and the center’s reserve price when there is at least

one bid above rHPRE and, at the same time, all bids in the other intermediary are below

the low reserve price (first and second terms in (5.67) respectively). He also obtains the

difference between his reserve price and the opponent’s highest local bid, if the latter is

above rLPOST but below rHPRE (third term in (5.67)). Finally, if the highest local bid in

the high-reserve intermediary is below his second-highest bid but above the low reserve

price, and his second-highest local bid is above rHPRE , then the intermediary receives the

difference between these two bids (fourth term in (5.67)).

The above equations simplify to the following:

profitLPOST (rLPOST ) = F k(rHPRE)[rHPRE − ρ− F k(rLPOST )(rLPOST − ρ)−

−
∫ rHPRE

rLPOST

F
(k)
2 (y)dy] +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

F
(k)
2 (x)dxdy (5.68)

profitHPRE(rHPRE) = F k(rLPOST )(1− F k(rHPRE))(rLPOST − ρ)+

+ kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPOST

F k(y)dy +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPOST

F k(x)dxdy

(5.69)
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Then the center’s ex-ante expected revenue will be:

revenuePOST−PRE(ρ) = ρ[F k(rLPOST )(1− F k(rHPRE)+

+ F k(rHPRE)(1− F k(rLPOST )] + krHPREF
k−1(rHPRE)(1− F (rHPRE))(1− F k(rHPRE)+

+

∫ 1

rHPRE

f
(k)
1 (y)

∫ y

rHPRE

xf
(k)
2 (x)dxdy + (1− F k(rHPRE))

∫ rHPRE

rLPOST

yf
(k)
1 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

xf
(k)
1 (x)dxdy (5.70)

Finally, a buyer with valuation υ expects surplus from the low- and high-reserve inter-

mediaries that can be expressed as follows:

ΠL
POST (υ) =



0 if υ ∈ [0, rLPOST )

F k(rHPRE)
∫ υ
rLPOST

F k−1(y)dy if υ ∈ [rLPOST , r
H
PRE)

F k(rHPRE)[(υ − rLPOST )F k−1(rLPOST ) +
∫ rHPRE
rLPOST

(υ − y)f
(k−1)
1 (y)dy]+

+F k−1(rHPRE)kF k−1(rHPRE)(1− F (rHPRE))(υ − rHPRE)+

+
∫ υ
rHPRE

(υ − y)f
(k−1)
1 (y)F

(k)
2 (y)dy+

+
∫ υ
rHPRE

(υ − y)f
(k)
2 (y)F k−1(y)dy if υ ∈ [rHPRE , 1]

(5.71)

ΠH
PRE(υ) =


0 if υ ∈ [0, rHPRE)

(υ − rHPRE)F 2k−1(rHPRE) +
∫ υ
rHPRE

(υ − y)f
(k−1)
1 (y)F k(y)dy

if υ ∈ [rHPRE , 1]

(5.72)

Specifically, a buyer with private valuation υ ≥ rHPRE in the low-reserve POST intermedi-

ary pays the low reserve price or the highest local bid in this intermediary if all bids in

the other intermediary are less than his reserve price and, at the same time, no eligible

bid is submitted in her intermediary or the highest local bid in her intermediary is also

below his reserve price (first and second terms in (5.71)). She also pays the high reserve

price if all bids in the same intermediary are less than his reserve price and there is

only a single eligible bid in the opponent intermediary (third term in (5.71)). She also

pays the highest local bid in her selected intermediary if this is above rHPRE , below her

valuation, and, at the same time, the highest opponent bid is below this bid (fourth

term in (5.71)). Otherwise, she pays the second-highest opponent intermediary’s local

bid if this is higher than rHPRE , below her bid, and, at the same time, the highest local

opponent bid in her intermediary’s auction is less than the former bid (fifth term in

(5.71)).

A buyer with private valuation υ ≥ rHPRE in the high-reserve PRE intermediary pays the

high reserve price if there is no other eligible bid in both intermediary auctions (first

term in (5.72)), otherwise she pays the highest opponent local bid in her intermediary’s
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auction if this is higher than rHPRE , lower than her valuation, and, at the same time, the

highest bid of the other intermediary is less than the former bid (second term in (5.72)).

On the other hand, when the low-reserve intermediary implements a PRE mechanism with

reserve price rLPRE and the high-reserve intermediary implements a POST mechanism with

reserve price rHPOST ≥ rLPRE , the intermediaries’ ex-ante expected profits will be:

profitLPRE(rLPRE) = F k(rHPOST )[kF k−1(rLPRE)(1− F (rLPRE))(rLPRE − ρ)+

+

∫ 1

rLPRE

(y − ρ)f
(k)
2 (y)dy] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

(y − x)f
(k)
1 (x)dxdy (5.73)

profitHPOST (rHPOST ) = F k(rLPRE)[kF k−1(rHPOST )(1− F (rHPOST ))(rHPOST − ρ)+

+

∫ 1

rHPOST

(y − ρ)f
(k)
2 (y)dy] + kF k−1(rLPRE)(1− F (rLPRE))[kF k−1(rHPOST )

(1− F (rHPOST ))(rHPOST − rLPRE) +

∫ 1

rHPOST

(y − rLPRE)f
(k)
2 (y)dy]+

+ kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPRE

(rHPOST − y)f
(k)
2 (y)dy+

+

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPRE

(y − x)f
(k)
2 (x)dxdy (5.74)

That is, the low-reserve PRE intermediary receives the difference between his reserve

price or his second-highest local bid and ρ when all opponent intermediary’s submitted

bids are below rHPOST and there is at least one bid in his auction that is higher than rLPRE
(first and second terms in (5.73)). Otherwise, this intermediary obtains the difference

between his local second-highest bid and the opponent intermediary’s highest submitted

bid if both are above the high reserve price, rHPOST (third term in (5.73)).

Similarly, the high-reserve POST intermediary receives the difference between his local

second-highest bid or his reserve price and ρ, if there is no bid submitted by the other

intermediary and, simultaneously, there is at least one eligible bid in his auction (first

and second terms in (5.74)). He also receives the difference between his local second-

highest bid or his reserve price and the low reserve price, rLPRE , if there is only a single

eligible bid in the opponent intermediary and, at the same time, there is at least one

eligible bid in his local auction (third and fourth terms in (5.74)). The intermediary

receives the difference between his reserve price and the opponent local highest bid

when the latter is in [rLPRE , r
H
POST ] and there is only a single eligible bid in his local

auction (fifth term in (5.74)). Finally, the intermediary receives the difference between

his local second-highest bid and the opponent second-highest bid locally if the former

is above rHPOST whereas the latter is above rLPRE but below the former (last term in

(5.74)).
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The equations above simplify to the following:

profitLPRE(rLPRE) = F k(rHPOST )[rHPOST − ρ− F k(rLPRE)(rLPRE − ρ)−

−
∫ rHPOST

rLPRE

F
(k)
2 (y)dy] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

F k(x)dxdy (5.75)

profitHPOST (rHPOST ) = F k(rLPRE)(1− F k(rHPOST ))(rLPRE − ρ)+

+ kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPRE

F
(k)
2 (y)dy +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy

(5.76)

In this case, the center’s ex-ante expected revenue will then be:

revenuePRE−POST (ρ) = ρ[F k(rLPRE)(1− F k(rHPOST ))+

+ F k(rHPOST )(1− F k(rLPRE)] + krLPREF
k−1(rLPRE)(1− F (rLPRE))(1− F k(rHPOST )+

+

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

xf
(k)
1 (x)dxdy +

∫ 1

rHPOST

f
(k)
1 (y)

∫ y

rLPRE

xf
(k)
2 (x)dxdy (5.77)

Finally, a buyer with valuation υ expects surplus from the low- and high-reserve inter-

mediaries that can be expressed as follows:

ΠL
PRE(υ) =



0 if υ ∈ [0, rLPRE)

F k(rHPOST )
∫ υ
rLPRE

F k−1(y)dy if υ ∈ [rLPRE , r
H
POST )

F k(rHPOST )[(υ − rLPRE)F k−1(rLPRE) +
∫ rHPOST
rLPRE

(υ − y)f
(k−1)
1 (y)dy]+

+
∫ υ
rHPOST

(υ − y)f
(k−1)
1 (y)F k(y)dy if υ ∈ [rHPOST , 1]

(5.78)

ΠH
POST (υ) =


0 if υ ∈ [0, rHPOST )

(υ − rHPOST )F k−1(rHPOST )F
(k)
2 (rHPOST ) +

∫ υ
rHPOST

(υ − y)f
(k−1)
1 (y)F

(k)
2 (y)dy+

+
∫ υ
rHPOST

(υ − y)f
(k)
2 (y)F k−1(y)dy if υ ∈ [rHPOST , 1]

(5.79)

Specifically, a buyer with private valuation υ ≥ rHPOST in the low-reserve PRE interme-

diary pays the low reserve price or the highest local bid in this intermediary if all bids

in the other intermediary are less than his reserve price and, at the same time, no eligi-

ble bid is submitted in her intermediary or the highest local bid in her intermediary is

also below his reserve price (first and second terms in (5.78)). Otherwise, she pays the

highest local bid in her intermediary if this is above rHPOST , below her valuation, and,

at the same time, the highest local bid in the other intermediary is less than this former

bid (third term in (5.78)).
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A buyer with private valuation υ ≥ rHPOST in the high-reserve POST intermediary pays

the high reserve price if there is no other eligible bid in her local auction and the second-

highest local bid in the high-reserve intermediary is also less than the high reserve

price (first term in (5.79)). Otherwise she pays the highest opponent local bid in her

intermediary’s auction if this is higher than rHPOST , lower than her valuation, and, at

the same time, the second-highest bid of the other intermediary is less than the former

bid (second term in (5.79)). Finally, she pays the second-highest opponent local bid if

this is higher than rHPOST , lower than her valuation, and, at the same time, the highest

opponent intermediary’s local bid is lower than the former bid (third term in (5.79)).

We now present our fictitious play results. In accordance with the previous cases, we

consider intermediaries with k = 1, 2 and 5 buyers each whose private valuations are

i.i.d. drawn from the uniform distribution U(0, 1). Our results for the center’s expected

revenue and the resulting intermediary ε-NE reserve-price-setting strategies when the

former sets its optimal reserve price are shown in Figures 5.19 - 5.21. With k = 1 buyer

per intermediary, fictitious play strategies converge to a single reserve price. However,

that does not necessarily mean that intermediaries should follow pure strategies if we

increase the level of discretization. The support of the mixed strategies followed by the

intermediaries also evidently increases with increasing number of buyers per intermedi-

ary.
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(b) Intermediaries’ empirical c.d.f. of reserve prices
in ε-NE.

Figure 5.19: Center’s ex-ante expected revenue (left) and empirical c.d.f. at the
center’s optimal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-
price-setting strategies for a duopoly PRE-POST intermediary setting, where each inter-

mediary has k = 1 buyer whose private valuation is i.i.d. drawn from U(0, 1).

In the following section, we compare the efficiency and revenue attained in all the afore-

mentioned settings for the numerical examples provided.

5.3 Comparison of the Three Intermediary Mechanisms

Having analyzed the (approximate) equilibrium behavior of the three mechanisms along

with the PRE - POST heterogeneous duopoly competition, in this section, we compare their
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(a) Center’s expected revenue.
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(b) Intermediaries’ empirical c.d.f. of reserve prices
in ε-NE.

Figure 5.20: Center’s ex-ante expected revenue (left) and empirical c.d.f. at the
center’s optimal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-
price-setting strategies for a duopoly PRE-POST intermediary setting, where each inter-

mediary has k = 2 buyers whose private valuations are i.i.d. drawn from U(0, 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k = 5

Center’s reserve price

E
xp

ec
te

d 
re

ve
nu

e

(a) Center’s expected revenue.
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(b) Intermediaries’ empirical c.d.f. of reserve prices
in ε-NE.

Figure 5.21: Center’s ex-ante expected revenue (left) and empirical c.d.f. at the
center’s optimal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-
price-setting strategies for a duopoly PRE-POST intermediary setting, where each inter-

mediary has k = 5 buyers whose private valuations are i.i.d. drawn from U(0, 1).

revenue and efficiency. Specifically, we combine the theoretical and numerical results for

the uniform distribution U(0, 1) and compare the center’s average revenue, intermediary

profits and the social welfare for these mechanisms as well as against the corresponding

results for the setting of Chapter 4 with no reserve prices.

Figure 5.22 (left) illustrates intermediaries’ profits for k = 1, 2 and 5 buyers per inter-

mediary. As can be seen, for k = 1 buyer per intermediary, all intermediaries obtain

similar profit on average, although FPSB and PRE auctions seem to perform slightly bet-

ter. For more buyers per intermediary, PRE auctioneers perform best with the notable

exception of the POST auction that seems to yield higher expected profit in homogeneous

settings with 2 buyers per intermediary. We contrast these with the results of Chapter 4

(Figure 5.22 (right)). As can be seen, reserve prices significantly benefit intermediaries

in all cases. It is important to note that the reserve prices change the ranking of the

mechanisms in terms of profits: when reserve prices are absent, FPSB seem to perform
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better, whereas, for the same examples, PRE intermediaries are superior when imposing

reserve prices. Finally, we see that the heterogeneous competition between the Vickrey

variations benefits the POST mechanism against its PRE counterpart.
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(a) With intermediary reserve prices.
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(b) No intermediary reserve prices.

Figure 5.22: Intermediaries’ ex-ante expected/average profits with (left) and without
(right) intermediary reserve prices for the three intermediary mechanisms for varying
number of buyers per intermediary whose private valuations are i.i.d. drawn from

U(0, 1).

Regarding the buyers’ expected surplus, as Figure 5.23 depicts, this is higher for POST

intermediaries (both in homogeneous settings and, especially, against a PRE auctioneer),

followed by that for homogeneous FPSB mechanisms. In all cases, intermediaries’ reserve

prices significantly decrease the surplus of buyers as expected.
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(a) With intermediary reserve prices.
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(b) No intermediary reserve prices.

Figure 5.23: Buyers’ ex-ante expected/average surplus with (left) and without (right)
intermediary reserve prices for the three intermediary mechanisms for varying number

of buyers per intermediary whose private valuations are i.i.d. drawn from U(0, 1).

Figure 5.24 illustrates the revenue effects of the intermediaries for the center. As can

be seen, the center, similar to the results of Chapter 4, benefits from intermediaries

adopting the POST mechanism. As illustrated, the center’s revenue is significantly smaller

compared to the setting with intermediaries that do not impose reserve prices. This is

more apparent as the number of buyers decreases.
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(a) With intermediary reserve prices.
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(b) No intermediary reserve prices.

Figure 5.24: Center’s ex-ante expected/average revenue with intermediaries imposing
reserve prices (left) or not (right) for the three intermediary mechanisms for varying
number of buyers per intermediary whose private valuations are i.i.d. drawn from

U(0, 1).

Finally, Figure 5.25 shows our results for the social welfare. Homogeneous POST mech-

anisms are not only beneficent to the center but to the system as a whole since setting

symmetric reserve prices as a fixed markup on the center’s reserve price lead to a smaller

center’s reserve price compared to the other settings. At this point we should note that

numerical and discretization errors in fictitious play against the theoretically derived

results for POST auctioneers with k = 1, 2 buyers might increase the observed differ-

ences. However, the higher social welfare is also apparent in the PRE - POST duopoly

setting where the introduction of the POST auction increases the social welfare compared

to a homogeneous PRE duopoly. On the other hand, in contrast to the setting with no

reserve prices, FPSB appear to be less efficient. This is because of the higher reserve

prices that the center imposes that increases the number of lost trades. Also, the so-

cial welfare of FPSB is now comparable to that of PRE auctioneers for k = 2, 5. This

is probably due to the fact that the lower center’s reserve prices for PRE intermediaries

partially compensates for the increased inefficiency due to misallocation against their

FPSB counterpart.

5.4 Summary

In this chapter, we studied the effects of the intermediary reserve prices for the center’s

revenue, the intermediaries’ profits and the buyers’ surplus. We have limited our anal-

ysis to settings with two intermediaries given the technical challenges that arise in the

imperfect competition between auctioneers (Section 2.5).

Specifically, we started with the case of a single intermediary where we depicted the

benefits of setting a reserve price for the intermediary. We then studied the duopoly

competition between homogeneous PRE, POST and FPSB intermediaries and also looked
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(b) No intermediary reserve prices.

Figure 5.25: Social welfare with intermediaries imposing reserve prices (left) or not
(right) for the three intermediary mechanisms for varying number of buyers per inter-

mediary whose private valuations are i.i.d. drawn from U(0, 1).

at the heterogeneous competition between the two Vickrey variations. Following this, we

characterized the expected utilities of all agents where this was possible. We also proved

the existence of a symmetric pure-strategy Nash equilibrium in the reserve-price-setting

problem of two POST intermediaries where they both set the monopolistic intermediary

reserve price, under some conditions on the distribution of private valuations and the

number of buyers.

Nevertheless, as the best-response functions for the example of the uniform distribu-

tion U(0, 1) depict, intermediaries, in general follow mixed-strategy equilibrium reserve

prices. The latter strategies are difficult to derive. For this reason, we turned our at-

tention to learning techniques to obtain ε-NE of these strategies. In more detail, we

used the fictitious play algorithm to derive approximate equilibria for three examples

of k = 1, 2 and 5 buyers per intermediary in all the remaining cases. To do this, we

first compared our numerical solution to the theoretical one, as was derived by Feldman

et al. (2010) for the case of k = 1 buyer per intermediary and PRE intermediaries.

Our numerical results show that PRE auctioneers are indeed profit-superior to the other

counterparts, at least in the examples studied. Nevertheless, they are less efficient than

their POST opponents, in agreement with the results of the previous chapter. Surprisingly,

FPSB intermediary auctions are also less efficient compared to the POST mechanisms as

well as to the setting without reserve prices. This is probably due to the higher optimal

reserve price for the center that increases the probability of non-allocation.

Up to now, we have assumed that buyers are non-strategic in their selection of inter-

mediary, being exogenously allocated to the available intermediaries. In the following

chapter, we remove this captivity assumption and let the intermediaries compete to

attract them by setting appropriate reserve prices.





Chapter 6

Intermediaries with Non-Captive

Buyers

In the previous chapter, we studied the revenue and efficiency effects of the competition

between intermediaries with captive buyers. In this chapter, we remove this limitation

and let the buyers simultaneously and strategically select one of the intermediaries,

albeit in a restrictive duopoly setting. Given the issues related to competition between

auctioneers, described in Section 2.5, as well as the analytical tractability problems of

calculating BNE bidding strategies in FPSB auctions (Kotowski, 2014), we only consider

PRE and POST intermediaries.

Specifically, in accordance to the model described in Section 3.3, in what follows, we

assume that both the center and the intermediaries have selected their mechanism in

advance and, in the setting studied within this chapter, that buyers strategically select

one of the intermediaries. First, the center announces a reserve price for the good to

be auctioned to the intermediaries who then, based on this information, strategically

select and announce their reserve prices to the population of buyers. Buyers then learn

their private valuations for the good and strategically choose one of the intermediaries

to submit a bid for the good. Intermediaries then run local auctions with their selected

buyers’ bids subject to the constraint imposed by their reserve price to determine a

winner, if any, and a payment contingent on winning the good at the central auction,

and then submit a single bid (if there was some qualified bid) to the center. The center

then runs its auction with intermediaries’ bids, determines a winning intermediary, if

any, and payment and allocates the good to this intermediary, if there is a winner, who

then allocates the good to his winning local buyer for the pre-determined price.

To this end, in Section 6.1, we study the intermediary selection problem that the buyers

face in a duopoly setting with homogeneous PRE and POST mechanisms and then extend

our analysis for a heterogeneous setting with one PRE and one POST mechanism. Then,

in Section 6.2, we study the intermediaries’ and center’s best responses given the buyers’

131
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selection of intermediary. However, for the last problem, we are only able to provide

numerical results for the case of buyers with private valuations i.i.d. drawn from the

uniform distribution U(0, 1). Finally, Section 6.3 concludes.

6.1 Buyers’ Duopoly Intermediary Selection Problem with

Vickrey Auctioneers

We begin our analysis with the buyers’ problem of selecting one of n = 2 intermediaries.

We assume that buyers single-home, i.e. can only select one intermediary. This is for

a variety of reasons. First, in the case of POST mechanisms, bidding in both auctions

means that the winner is likely to pay her bid, creating a number of complications for

the bidding strategies of the buyers. Second, in practice, advertisers tend to select one

intermediary for each type of campaign, since there is an underlying cost of managing

each campaign that we normalize to be zero here. Third, our aim is to study the

competition between intermediaries in finite markets where more than one intermediaries

are present and, advertisers cannot fully multi-home (i.e. select all intermediaries).

We begin our analysis for homogeneous intermediaries, starting with the case of two PRE

intermediaries and then moving to POST intermediaries. We then extend our analysis to

heterogeneous mechanisms, comparing PRE versus POST competition.

6.1.1 Pre-Award Second-Price Sealed-Bid Intermediary Auctions

In accordance with our model description in Chapter 3, we consider a setting with a

unique indivisible good and assume a population of K > n, buyers that compete for this

good, but are allowed to participate only via two qualified intermediaries, sLPRE , s
H
PRE ,

that both implement PRE mechanisms with reserve prices rLPRE ≤ rHPRE . In this subsec-

tion, we characterize the resulting Bayes-Nash equilibria of the intermediary selection

problem that the buyers face.

Since we are in a probabilistic environment, our equilibrium concept is symmetric Bayes-

Nash, assuming that buyers cannot coordinate, and act anonymously. Keeping the

notation of Chapter 3, we denote by θ : V 7→ [0, 1] the selection strategy of the buyers1,

which is a mapping from a buyer’s private valuation to the probability of selecting the

low-reserve intermediary, sLPRE . Thus, 1 − θ(υ) is the probability that a buyer with

private valuation υ selects intermediary sHPRE . In what follows, we start by providing a

closed-form expression for the surplus from each intermediary that the buyers expect.

1Since we consider symmetric selection strategies, we drop the index from the selection function for
notational convenience, i.e. θ(i)(·) = θ(·) for all i ∈ {1, · · · ,K}.
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The expected ex-interim surplus for a buyer with private valuation υ from selecting

the low- and high-reserve intermediary, ΠL
PRE(υ),ΠH

PRE(υ) respectively, when rLPRE <

rHPRE , can be written as:

ΠL
PRE(υ) =



0 if υ ∈ [0, rLPRE)∫ υ
rLPRE

F
(K−1)
1 (y)dy if υ ∈ [rLPRE , r

H
PRE)

(υ − rLPRE)F
(K−1)
1 (rLPRE) +

∫ rHPRE
rLPRE

(υ − y)f
(K−1)
1 (y)dy+

+
∫ υ
rHPRE

(υ − y)θ(y)f
(K−1)
1 (y)dy+

+
∫ υ
y2=rHPRE

∫ 1
y1=y2

(υ − y2)(1− θ(y1))θ(y2)f
(K−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [rHPRE , 1]

(6.1)

ΠH
PRE(υ) =



0 if υ ∈ [0, rHPRE)

(υ − rHPRE)F
(K−1)
1 (rHPRE) +

∫ υ
rHPRE

(υ − y)(1− θ(y))f
(K−1)
1 (y)dy+

+(υ − rHPRE)
∫ rHPRE
y2=0

∫ 1
y1=rHPRE

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
∫ υ
y2=rHPRE

∫ 1
y1=y2

(υ − y2)θ(y1)(1− θ(y2))f
(K−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [rHPRE , 1]

(6.2)

where F
(K−1)
1 (y) = FK−1(y), f

(K−1)
1 (y) = (K − 1)FK−2(y)f(y) are the cumulative

distribution and density functions of the first-order statistic, and f
(K−1)
1,2 (y1, y2) = (K −

1)(K−2)f(y1)f(y2)FK−3(y2) is the joint density of the first- and second-order statistics

among K − 1 bids.

In more detail, a buyer with valuation in [rHPRE , 1] expects positive surplus from the

low-reserve intermediary auction, sLPRE , when all opponent bids are less than or equal

to rLPRE (first term in (6.1)), or when the expected highest opponent bid over the pop-

ulation of buyers is higher than rLPRE , lower than her valuation, and is submitted in

the same auction (second and third terms in (6.1)), as this bid will always win at the

center. Finally, she expects positive surplus from sLPRE when the expected second high-

est opponent bid over the population of buyers is higher than rHPRE , lower than her

valuation, and is submitted in the same auction, and, at the same time, the expected

highest opponent bid is submitted in the high-reserve intermediary, sHPRE (fourth term

in (6.1)). This is because the local second-highest bids compete at the center, and hence

her local second-highest bid (which will be the third-highest global bid) is guaranteed

to win against the local second-highest bid in the other auction (which will be at most

the fourth-highest global bid or rHPRE).

Similarly, a buyer with valuation in [rHPRE , 1] expects positive surplus from the high-

reserve intermediary auction, sHPRE , when all opponent bids are less than or equal to

rHPRE (first term in (6.2)), or when the expected highest opponent bid over the population

of buyers is higher than rHPRE , lower than her valuation, and is submitted in the same
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auction (second term in (6.2)). She also expects positive surplus from sHPRE when the

expected second-highest opponent bid over the population of buyers is higher than rHPRE ,

lower than her valuation, and is submitted in the same auction, and, at the same time,

the expected highest opponent bid is submitted in the low-reserve intermediary auction,

sLPRE (fourth term in (6.2)). Finally, the third term in (6.2) corresponds to the case

where the expected highest opponent bid is higher than rHPRE and submitted in sLPRE ,

and, at the same time, the expected second-highest opponent bid is less than rHPRE .

Then, the buyer’s expected payment is rHPRE , as the forwarded bid by sLPRE (which will

be at most the third-highest global bid or rLPRE) will always be less than rHPRE in this

case.

In the special case where rLPRE = rHPRE = rPRE , assuming a fair tie-breaking rule by

the center, the expected ex-interim surplus for a buyer with valuation υ from the low-

and high-reserve intermediary, ΠLeq
PRE(υ),ΠHeq

PRE(υ) respectively, can be written as:

ΠLeq
PRE(υ) =



0 if υ ∈ [0, rPRE)

(υ − rPRE)F
(K−1)
1 (rPRE) +

∫ υ
rPRE

(υ − y)θ(y)f
(K−1)
1 (y)dy+

+1
2(υ − rPRE)

∫ rPRE
0

∫ 1
rPRE

(1− θ(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+
∫ υ
y2=rPRE

∫ 1
y1=y2

(υ − y2)(1− θ(y1))θ(y2)f
(K−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [rPRE , 1]

(6.3)

ΠHeq
PRE(υ) =



0 if υ ∈ [0, rPRE)

(υ − rPRE)F
(K−1)
1 (rPRE) +

∫ υ
rPRE

(υ − y)(1− θ(y))f
(K−1)
1 (y)dy+

+1
2(υ − rPRE)

∫ rPRE
y2=0

∫ 1
y1=rPRE

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
∫ υ
y2=rPRE

∫ 1
y1=y2

(υ − y2)θ(y1)(1− θ(y2))f
(K−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [rPRE , 1]

(6.4)

The third term in both equations above represents the expected surplus of a buyer when

the highest opponent bid is submitted in the other intermediary, whereas all remaining

bids are less than the reserve price set by the intermediaries. In this case, both inter-

mediaries will submit rPRE at the center, where a fair tie breaking rule yields the same

probability of winning the auction.

In the next theorem, we show that buyers in this case select each intermediary with

equal probability in equilibrium unless both reserve prices are 0 or 1. In the former,

more interesting case, if a buyer selects a different intermediary than all other opponent

buyers, he obtains zero surplus. This is because the intermediary submits zero at the

center that can never win against the other intermediary. Formally:

Theorem 6.1. Whenever rLPRE = rHPRE = rPRE, randomizing with equal probability is

a mixed-strategy Bayes-Nash equilibrium for the buyers in the buyer PRE - PRE duopoly
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intermediary selection problem. Moreover, whenever the reserve prices are such that

F (rPRE) = 0 or F (rPRE) = 1, there exists a pure-strategy Bayes-Nash equilibrium where

all buyers select either the low-reserve intermediary or the high-reserve intermediary

auction.

Proof. It is easy to see that the only mixed equilibrium strategy θ(υ) ∈ (0, 1) equals 1
2

for all υ ∈ [rPRE , 1], due to the symmetry of (6.3) and (6.4). For the pure-strategy BNE,

suppose without loss of generality that all (other) buyers select intermediary sLPRE , i.e.

θ(υ) = 1 for all υ ∈ [rPRE , 1]. Then, the surplus difference that a buyer with valuation

υ ∈ [rPRE , 1] expects will be:

ΠLeq
PRE(υ)−ΠHeq

PRE(υ) =

∫ υ

rPRE

F
(K−1)
1 (y)dy − (υ − rPRE)[

K − 1

2
FK−2(rPRE)−

− K − 3

2
FK−1(rPRE)] (6.5)

The second partial derivative of this function w.r.t. υ is:

∂2

∂υ2
(Πeq

1 (υ)−Πeq
2 (υ)) = (K − 1)FK−2(υ)f(υ) ≥ 0 (6.6)

This means that the function is convex, so its global minimum at a valuation we denote

υc will satisfy the FOC:

FK−1(υc) =
K − 1

2
FK−2(rPRE)− K − 3

2
FK−1(rPRE) (6.7)

For the existence of a pure-strategy BNE, we need to show that Πeq
1 (υc)−Πeq

2 (υc) ≥ 0.

Using (6.7), this means that
∫ υc
rPRE

FK−1(y)dy ≥ FK−1(υc)(υc − rPRE). However, from

the first mean value theorem for integration,
∫ υc
rPRE

FK−1(y)dy = FK−1(ω)(υc − rPRE),

where rPRE < ω < υc. So, we would have that FK−1(ω)(υc − rPRE) ≥ FK−1(υc)(υc −
rPRE), which can only happen for υc = rPRE , since f > 0⇒ F (ω) < F (υc). Using this

last fact in (6.7) yields:

FK−1(rPRE) =
K − 1

2
FK−2(rPRE)− K − 3

2
FK−1(rPRE) =⇒

=⇒ F (rPRE) = 0 or F (rPRE) = 1 (6.8)

Similarly, when all (other) buyers select intermediary sHPRE , i.e. θ(υ) = 0 for all υ ∈
[rPRE , 1], we reach at the same conclusion due to the symmetry in (6.3) and (6.4).

In what follows, we will consider the most interesting cases where rLPRE is strictly lower

than rHPRE . In more detail, in the next section we will show that, when the reserve prices

are sufficiently different, a unique pure-strategy BNE arises where all buyers select the

low-reserve intermediary.
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6.1.1.1 Pure-Strategy Bayes-Nash Equilibria

We start by proving the existence of a pure-strategy BNE in the PRE - PRE intermediary

selection problem where all buyers select sLPRE :

Theorem 6.2. There exists a pure-strategy Bayes-Nash equilibrium in the buyer PRE

- PRE duopoly intermediary selection problem where all buyers select the low-reserve

auction if the reserve price of the low-reserve intermediary, rLPRE, is lower or equal than

a critical value rc (rLPRE ≤ rc < rHPRE) satisfying:∫ υc

rc

F
(K−1)
1 (y)dy = F

(K−1)
1 (υc)(υc − rHPRE) (6.9)

where υc is such that:

F
(K−1)
1 (υc) = FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (6.10)

Proof. Consider the case that all (other) buyers select the low-reserve intermediary auc-

tion, that is θ(υ) = 1 for all υ ∈ [rLPRE , 1]. Then, using equations (6.1) and (6.2), we

can write the difference in surplus that a buyer with valuation υ ∈ [rHPRE , 1] expects as:

ΠL
PRE(υ)−ΠH

PRE(υ) =

∫ υ

rLPRE

F
(K−1)
1 (y)dy−

[F
(K−1)
1 (rHPRE) + (K − 1)(1− F (rHPRE))F

(K−2)
1 (rHPRE)](υ − rHPRE) (6.11)

We can derive the first- and second-order partial derivatives of this function with respect

to υ:

∂

∂υ
(ΠL

PRE(υ)−ΠH
PRE(υ)) = F

(K−1)
1 (υ)− [F

(K−1)
1 (rHPRE)+

+ (K − 1)(1− F (rHPRE))F
(K−2)
1 (rHPRE)] (6.12)

∂2

∂υ2
(ΠL

PRE(υ)−ΠH
PRE(υ)) = f

(K−1)
1 (υ) ≥ 0 (6.13)

This means that the function is convex, so its global minimum at a valuation we denote

υc will satisfy the condition:

∂

∂υ
(ΠL

PRE(υc)−ΠH
PRE(υc)) = 0 =⇒

=⇒ F
(K−1)
1 (υc) = F

(K−1)
1 (rHPRE) + (K − 1)(1− F (rHPRE))F

(K−2)
1 (rHPRE) (6.14)

For this to be a pure-strategy BNE, we require that ΠL
PRE(υc) − ΠH

PRE(υc) ≥ 0. The

equality ΠL
PRE(υc) − ΠH

PRE(υc) = 0 gives us an upper bound for rLPRE , which we call

the critical reserve price, rc. As can be seen from (6.14), υc is only dependent on
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rHPRE . Additionally, ΠL
PRE − ΠH

PRE is a decreasing function of rLPRE (see (6.11)). This

means that, for a given rHPRE , setting rLPRE = rc + ε, where ε > 0 is a strictly positive

quantity, ΠL
PRE(υc) − ΠH

PRE(υc) ≤ 0. This bound is strict if F (·) is strictly increasing.

On the other hand, setting rLPRE = rc − ε gives a non-negative surplus difference, i.e.

ΠL
PRE(υc)−ΠH

PRE(υc) ≥ 0. So, a pure-strategy BNE exists for any rLPRE ≤ rc.

To illustrate the above theorem, Figure 6.1 depicts the reserve-price combinations for

which the pure-strategy BNE exists for a uniform distribution F = U(0, 1), and for vary-

ing numbers of buyers, where equations (6.9) - (6.10) give us the following condition2:

(1−K)[rHPRE
K−1

+ (K − 1)(1− rHPRE)rHPRE
K−2

]
K
K−1 +KrHPRE [rHPRE

K−1
+

(K − 1)(1− rHPRE)rHPRE
K−2

]− rKc = 0 (6.15)

Here, the top frontier of each region corresponds to the critical reserve price, rc. As can

be seen, for the pure-strategy BNE where all buyers go to the low-reserve intermediary to

exist, the required difference between the reserve prices has to be quite large when rHPRE
is relatively low, but the required minimum difference rapidly becomes smaller as rHPRE
increases. Moreover, as the number of buyers increases, the minimum difference between

the reserve prices significantly increases, and the region where the pure-strategy BNE

exists shrinks. In what follows, we prove, through a number of steps, that the equilibria

of Theorem 6.2 are the only pure-strategy BNE of the intermediary selection problem.

First, we show that it is not a pure-strategy BNE for the buyers to always select the

high-reserve intermediary.

Theorem 6.3. There is no pure-strategy Bayes-Nash equilibrium in the buyer PRE - PRE

duopoly intermediary selection problem where all buyers always select the high-reserve

intermediary.

Proof. Similarly to the proof of Theorem 6.2, when other buyers select the high-reserve

intermediary auction, the difference in expected surplus for a buyer with valuation υ ∈
[rHPRE , 1] will be:

ΠH
PRE(υ)−ΠL

PRE(υ) =

∫ υ

rHPRE

F
(K−1)
1 (y)dy−

∫ rHPRE

rLPRE

F
(K−1)
1 (y)dy−(υ−rHPRE)F

(K−1)
1 (rHPRE)

(6.16)

By taking the first- and second-order derivative, we get:

∂

∂υ
(ΠH

PRE(υ)−ΠL
PRE(υ)) = F

(K−1)
1 (υ)− F (K−1)

1 (rHPRE) (6.17)

2Solving (6.10) for υc yields υc = [rHPRE
K−1

+(K−1)(1−rHPRE)rHPRE
K−2

]
1

K−1 . Then K(ΠL
PRE(υc)−

ΠH
PRE(υc)) = υKc −rKc −K[rHPRE

K−1
+(K−1)(1−rHPRE)rHPRE

K−2
]υc+KrHPRE [rHPRE

K−1
+(K−1)(1−

rHPRE)rHPRE
K−2

] = 0.
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Figure 6.1: Figure showing the existence of pure-strategy BNE for the buyers’ PRE
- PRE intermediary selection problem, for varying numbers of buyers whose private
valuations are i.i.d. drawn from U(0, 1). Each gray area indicates, for a given number
of buyers, the set of reserve price pairs for which all buyers select the low-reserve
intermediary in equilbrium. This is the unique equilibrium, and no pure-strategy BNE

exists outside of this set.

∂2

∂υ2
(ΠH

PRE(υ)−ΠL
PRE(υ)) = f

(K−1)
1 (υ) ≥ 0 (6.18)

This means that the function is convex, so there is a global minimum at υc where

F
(K−1)
1 (υc) = F

(K−1)
1 (rHPRE). But ΠH

PRE(υc) − ΠL
PRE(υc) ≤ 0 (in general ΠH

PRE(υc) −
ΠL
PRE(υc) < 0, unless there are no bidders with valuations in [rLPRE , r

H
PRE ]), so this can

never be a symmetric pure-strategy BNE.

The only remaining case to consider is a selection strategy θ(υ) consisting of a number of

intervals involving pure strategies, defined by cut-off points, so that the pure strategies

change between two successive intervals. Such cut-off strategies are commonly found in

the literature on competing auctions (see, for example, Burguet and Sákovics (1999);

Hernando-Veciana (2005); Virág (2010)). Suppose that there are m ≥ 1 points, wi, i =

1, ...,m, in V , which we call cut-off points, so that θ(υ) = θ1 for υ ∈ [rHPRE , w1), θ(υ) = θ2

for υ ∈ [w1, w2) and so on. Moreover, it has to hold that ΠL
PRE(wi) = ΠH

PRE(wi)∀i =

1, ...,m, i.e. a buyer with a valuation equal to a cut-off point has to be indifferent

between choosing either intermediary. The next theorem shows that, if θi ∈ {0, 1}, i.e.

buyers follow pure strategies in each interval, no pure-strategy BNE with such cut-off

points exists.

Theorem 6.4. Let w1, w2, ..., wk ∈ (rHPRE , 1], m ∈ N∗ denote cut-off points and let

θ : V 7→ [0, 1] be a strategy profile where θ(υi) = θ1 if rHPRE ≤ υi < w1, θ(υi) = θ2 if

w1 ≤ υi < w2 and so on, θ(υi) = θm+1 if wk ≤ υi ≤ 1, for each buyer i, i = 1, ...,K.

Then, θ(·) is not a pure Bayes-Nash equilibrium strategy profile of the buyer PRE - PRE

duopoly intermediary selection problem.
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Proof. We prove this statement by contradiction. Specifically, if such equilibrium strate-

gies existed, they should have the form θ(υ) = θλ+1 ∈ {0, 1}, for υ ∈ [wλ, wλ+1),

λ = 1, ...,m+ 1 such that ΠL
PRE(wλ) = ΠH

PRE(wλ) and θλ 6= θλ+1, so the wλ are points

where buyers change their selection strategies.

A buyer whose private valuation equals rHPRE expects positive surplus from the low-

reserve intermediary and zero surplus from the high-reserve intermediary. This means

that θ(rHPRE) = θ1 = 1. Given that ΠL
PRE ,Π

H
PRE are continuous functions of υ, it will be

true that θ1 = 1 for all υ ∈ [rHPRE , w1). This means that θλ+1 = 1 for even λ and θλ+1 = 0

for odd λ. For a pure-strategy BNE to exist, we require that ΠL
PRE(υ)− ΠH

PRE(υ) ≥ 0

when θλ+1 = 1, and ΠL
PRE(υ)−ΠH

PRE(υ) ≤ 0 otherwise. We have to consider two cases,

when m = 1 and m ≥ 2. This is because, as will be seen, for such equilibrium strategies

to exist, there should be discontinuities within the intervals defined by two successive

cut-off points. This cannot happen with only two cut-off points.

- Single cut-off point (m = 1).

Let us start with the case that m = 1, i.e. there exists a single cut-off point. Since

we are interested in pure-strategy BNE (θλ ∈ {0, 1}, λ = 1, 2), this means that θ2 = 0.

For this to be a pure-strategy BNE, we need that (ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w) ≥ 0

and (ΠH
PRE − ΠL

PRE)(w ≤ υ ≤ 1) ≥ 0. Then the difference in expected surplus for

υ ∈ [rHPRE , w) and υ ∈ [w, 1] can be written as:

Dl = (ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w) =

∫ υ

rLPRE

F
(K−1)
1 (y)dy − (υ − rHPRE)F

(K−1)
1 (rHPRE)−

− (K − 1)(υ − rHPRE)(1− F (rHPRE))F
(K−2)
1 (rHPRE) + (K − 1)(1− F (w))

∫ υ

rHPRE

F
(K−2)
1 (y)dy

(6.19)

Dh = (ΠH
PRE −ΠL

PRE)(υ ≥ w) = −
∫ w

rLPRE

F
(K−1)
1 (y)dy +

∫ υ

w
F

(K−1)
1 (y)dy+

+ (υ − rHPRE)F
(K−1)
1 (rHPRE)− 2(υ − w)F

(K−1)
1 (w)+

+ (K − 1)(υ − rHPRE)(F (w)− F (rHPRE))F
(K−2)
1 (rHPRE)−

− (K − 1)(1− F (w))[(υ − w)F
(K−2)
1 (w)− (υ − rHPRE)F

(K−2)
1 (rHPRE) +

∫ w

rHPRE

F
(K−2)
1 (y)dy]

(6.20)

Let us take the first- and second-order derivatives of equations (6.19) and (6.20) (the

second-order derivatives can only be defined for [r2, w) ∪ (w, 1]):

∂Dl

∂υ
= F

(K−1)
1 (υ)− F (K−1)

1 (rHPRE)− (K − 1)(1− F (rHPRE))F
(K−2)
1 (rHPRE)+

+ (K − 1)(1− F (w))F
(K−2)
1 (υ) (6.21)
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∂2Dl

∂υ2
= f

(K−1)
1 (υ) + (K − 1)(1− F (w))f

(K−2)
1 (υ) ≥ 0 (6.22)

∂Dh

∂υ
= F

(K−1)
1 (υ) + F

(K−1)
1 (rHPRE)− 2F

(K−1)
1 (w) + (K − 1)(F (w)− F (rHPRE))F

(K−2)
1 (rHPRE)−

− (K − 1)(1− F (w))[F
(K−2)
1 (w)− F (K−2)

1 (rHPRE)] (6.23)

∂2Dh

∂υ2
= f

(K−1)
1 (υ) ≥ 0 (6.24)

Given that both Dl, Dh are convex, for the existence of pure-strategy BNE, it will

be that ∂Dl
∂υ ≤ 0, ∀υ ∈ [rHPRE , w) and ∂Dh

∂υ ≥ 0,∀υ ∈ [w, 1]. Moreover, given that
∂Dl
∂υ |υ=w = ∂Dh

∂υ |υ=w, they should both be equal to zero. Since the surplus difference at

w should be zero, w must solve the following system of equations;

∂Dh

∂υ
|υ=w = 0 =⇒ F

(K−1)
1 (w)− F (K−1)

1 (rHPRE)− (K − 1)(1− F (rHPRE))F
(K−2)
1 (rHPRE)+

+ (K − 1)(1− F (w))F
(K−2)
1 (w) = 0 (6.25)

(ΠL
PRE −ΠH

PRE)(w) = 0 =⇒
∫ w

rLPRE

F
(K−1)
1 (y)dy − (w − rHPRE)F

(K−1)
1 (rHPRE)−

− (K − 1)(w − rHPRE)(1− F (rHPRE))F
(K−2)
1 (rHPRE)+

+ (K − 1)(1− F (w))

∫ w

rHPRE

F
(K−2)
1 (y)dy = 0 (6.26)

Equation (6.25) gives the following condition (w is a global minimum):

F
(K−1)
1 (w) + (K − 1)(1− F (w))F

(K−2)
1 (w) = F

(K−1)
1 (rHPRE)+

+ (K − 1)(1− F (rHPRE))F
(K−2)
1 (rHPRE) (6.27)

However, the function xK−1 + (K − 1)(1 − x)xK−2 is strictly increasing for 0 < x < 1,

so the only valid case is when F (w) = F (rHPRE), which means that w = rHPRE where

one can easily show that the difference is strictly positive for rLPRE < rHPRE . Hence, this

cannot constitute an equilibrium.

- Multiple cut-off points (m ≥ 2).

We now continue with the case of m ≥ 2 cut-off points. We can write again the difference

in expected surplus ΠL
PRE − ΠH

PRE for valuations υ ∈ [rHPRE , w1), υ ∈ [wλ, wλ+1), for

λ = 1, ...,m − 1, and υ ∈ [wk, 1], along with their first- and second-order derivatives3

(see Section B.1.1 in Appendix B for the derivation). Then, the second-order derivative

3For all double integrals, the outer part refers to y2 and the inner part to y1.
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of the expected surplus difference in every interval is:

∂2(ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w)

∂υ2
= f

(K−1)
1 (υ)+

+ (K − 1)[
m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+ (1− θm+1)(1− F (wk))]f

(K−2)
1 (υ) ≥ 0

(6.28)

∂2(ΠL
PRE −ΠH

PRE)(wλ ≤ υ < wλ+1)

∂υ2
= (2θλ+1 − 1)f

(K−1)
1 (υ)+

+ (K − 1)[
m−1∑
i=λ+1

{
(θλ+1 − θi+1)(F (wi+1)− F (wi))

}
+

+ (θλ+1 − θm+1)(1− F (wk))]f
(K−2)
1 (υ) (6.29)

∂2(ΠL
PRE −ΠH

PRE)(wk ≤ υ ≤ 1)

∂υ2
= (2θm+1 − 1)f

(K−1)
1 (υ) (6.30)

From equations (6.28), (6.29), (6.30), we can see that, when θλ+1 = 1, the difference in

expected surplus is a convex function, whereas when θλ+1 = 0 a concave function of υ.

For this to be an equilibrium, we should have ΠL
PRE−ΠH

PRE > 0 in the decreasing convex

interval [rHPRE , w1) followed by the concave interval [w1, w2) where ΠL
PRE − ΠH

PRE < 0,

then by the convex interval [w2, w3) where ΠL
PRE − ΠH

PRE > 0 and so on, as shown

in a sketch of the profit difference of Figure 6.2. For this to happen (i.e. concave

negative values followed by convex positive ones), given that we start from a positive

convex interval, the function should have discontinuities in the local optima in every

intermediate interval [wλ, wλ+1), λ = 1, ...,m − 1. However, one can easily see that

the function is differentiable everywhere inside each interval, contradicting the initial

statement. This means that there cannot be a pure-strategy BNE with m ≥ 2 cut-off

points, which ends our proof.

From theorems 6.3 and 6.4, we derive the following corollary.

Corollary 6.5. The equilibrium of Theorem 6.2 is the unique pure-strategy Bayes-Nash

equilibrium of the buyer PRE - PRE duopoly intermediary selection problem subject to

the conditions of equations (6.9) and (6.10) that the intermediaries’ reserve prices must

satisfy.

Proof. The nonexistence results of theorems 6.3 - 6.4 show the uniqueness of the pure-

strategy BNE attained by Theorem 6.2, where, additionally equations (6.9) and (6.10)

provide the necessary conditions for its existence.
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Figure 6.2: Figure showing the form of the difference of expected surplus, ΠL
PRE −

ΠH
PRE , under pure-strategy BNE involving multiple (here m = 3) cut-off points. As

shown, in this sketch of the surplus difference function, there should be discontinuities
at the local optima of this function.

This fact has serious implications for the buyers, who, in contrast to the complete-

information scenario (Stavrogiannis et al., 2013a), have an incentive to select the low-

reserve intermediary, given that the difference between the reserve prices is large enough.

However, as Figure 6.1 shows, the pure-strategy BNE of Theorem 6.2 are not the only

BNE of the intermediary selection problem. Since no pure-strategy equilibrium exists

when the condition of Theorem 6.2 does not hold, buyers should follow mixed strategies

in equilibrium. Given this observation, in the next section we will identify the mixed-

strategy BNE of the problem in question.

6.1.1.2 Mixed-Strategy Bayes-Nash Equilibria

As has been discussed in the previous section, when the reserve prices do not satisfy

the conditions of Theorem 6.2, buyers will follow a mixed strategy θm(υ) ∈ (0, 1) at an

appropriate interval in equilibrium. Buyers whose valuations are slightly higher than

rHPRE will always select the low-reserve intermediary where they expect strictly positive

surplus, in contrast to the high-reserve intermediary auction where their expected surplus

is arbitrarily close to zero. This means that there will be at least a single cut-off point,

w ∈ (rHPRE , 1], so that buyers with valuations in [rHPRE , w) always select sLPRE . We will

now show that their strategy will include a second, higher cut-off point a ∈ (w, 1] so that

buyers with valuations υ ∈ [w, a] randomize with a certain probability θm(υ) between

the intermediaries, whereas buyers with valuations υ ∈ (a, 1] follow pure strategies

θ∗(υ) ∈ {0, 1}. The following lemma provides the conditions that the mixed strategy,

θm(·), should satisfy.

Lemma 6.6. Let θ : V 7→ [0, 1] be a mixed-strategy Bayes-Nash equilibrium profile

involving an interval [w, a] ⊆ (rHPRE , 1], where θ(υi) = θm(υi) ∈ (0, 1) for each buyer i,



Chapter 6 Intermediaries with Non-Captive Buyers 143

i = 1, ...,K. Then θm(·) satisfies the condition:

[2F (υi) + (K − 2)(1− F (υi))]θm(υi) = (K − 2)[

∫ a

υi

θm(y)f(y)dy +

∫ 1

a
θ∗(y)dy] + F (υi)

(6.31)

Proof. Suppose that buyers follow a pure strategy θ(υ) = θp(υ) for all υ ∈ [rHPRE , w),

then follow a mixed strategy θ(υ) = θm(υ) ∈ (0, 1) for all υ ∈ [w, a] and then follow

again a pure strategy θ(υ) = θ∗(υ) for all υ ∈ (a, 1], i.e. the selection strategy involves an

interval [w, a] where buyers randomize between the two intermediary auctions. Then,

for the existence of a mixed-strategy BNE, ΠL
PRE(υ) − ΠH

PRE(υ) as well as all of its

higher-order derivatives should be zero4 for all υ ∈ [w, a]. Under this assumption, the

second-order derivative of the surplus difference for a buyer with valuation υ in [w, a]

can be written as (see Section B.1.2 in Appendix B):

∂2(ΠL
PRE(υ)−ΠH

PRE(υ))

∂υ2
= (K − 1)FK−3(υ)f(υ)

{
[2F (υ) + (K − 2)(1− F (υ)]θm(υ)−

− F (υ)− (K − 2)[

∫ a

υ
θm(y)f(y)dy +

∫ 1

a
θ∗(y)dy]

}
(6.32)

where setting
∂2(ΠLPRE(υ)−ΠHPRE(υ))

∂υ2
= 0 gives the condition of (6.31). We should note that

the form of (6.32) is independent of our assumptions on the form of the pure strategies

in [rHPRE , w) and (a, 1], i.e. as long as there is an interval where buyers will randomize,

(6.32) will always hold in this interval.

Equation (6.31) is a Volterra integral equation of the second kind (Corduneanu, 1991).

However, solving it requires, in general, knowledge of the distribution function. Hence,

the form of the selection function will depend on our assumption about the valuations,

parametrized by the values of a (and K). Nevertheless, when a = 1, (6.31) has a solution

θ(υ) = 1
2 for all υ ≥ w. This strategy is identical to the one proposed by Burguet and

Sákovics for two independent auctions (Burguet and Sákovics, 1999) (see Section 2.5).

Substituting the proposed θ(·), ΠL
PRE(υ)−ΠH

PRE(υ), when υ ≥ w, will have the following

form:

ΠL
PRE(υ)−ΠH

PRE(υ) =

∫ w

rLPRE

FK−1(y)dy +
K − 1

2
(1− F (w))

∫ w

rHPRE

FK−2(y)dy+

+ rHPRE [(K − 1)FK−2(rHPRE)− (K − 2)FK−1(rHPRE)] + w[
K − 3

2
FK−1(w)−

− K − 1

2
FK−2(w)] + υ[(K − 2)FK−1(rHPRE)− (K − 1)FK−2(rHPRE)−

− K − 3

2
FK−1(w) +

K − 1

2
FK−2(w)] (6.33)

4Setting all derivatives of the surplus difference equal to zero yields necessary but not sufficient
conditions for the existence of the equilibrium.
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For this to be a BNE for all υ ≥ w, w must make both the first-order and zero-order

coefficients of this polynomial zero. However, this cannot be true but for a single pair

of reserve prices at most: in the zero-order coefficient, w is uniquely defined by both

rLPRE , r
H
PRE , whereas in the first-order it only depends on rHPRE . So, given that the

system of equations is under-defined, w cannot be the solution of both equations for all

valid pairs of rLPRE , r
H
PRE . This means that there should be at least one more cut-off

point, a ≤ 1.

We have shown that there should be at least two cut-off points, w, a, so that buyers with

valuations in [rHPRE , w) and (a, 1] follow pure strategies. We continue by showing that

there can only be a single cut-off point, w ∈ (rHPRE , 1], before and at most a single cut-off

point, a ∈ (w, 1], after randomizing, where w, a are such that ΠL
PRE(w) = ΠH

PRE(w),

ΠL
PRE(a) = ΠH

PRE(a), and θ(rHPRE ≤ υ < w) = 1, θ(w ≤ υ ≤ a) = θm(υ) ∈ (0, 1),

θ(a < υ ≤ 1) ∈ {0, 1}.

Lemma 6.7. The PRE - PRE duopoly intermediary selection strategy of a buyer in a

mixed-strategy Bayes-Nash equilibrium involves at most three intervals in the support of

the buyers’ private valuations defined by two cut-off points, w ∈ (rHPRE , 1], a ∈ (w, 1]:

buyers with private valuations in [rHPRE , w) and (a, 1] follow strictly pure Bayes-Nash

equilibrium strategies whereas buyers with private valuations in [w, a] follow strictly

mixed Bayes-Nash equilibrium strategies.

Proof. As has been mentioned at the beginning of this section, there will be at least

a single cut-off point, w ∈ (rHPRE , 1], so that buyers with valuations in [rHPRE , w) will

always select the low-reserve intermediary, expecting surplus arbitrarily close to zero

from the high-reserve intermediary. This means that always θ1 = 1. Using a similar

reasoning as in Theorem 6.4, we can first show that there can only be one cut-off point,

w, before randomizing by taking the second-order derivative of the expected surplus

difference, ΠL
PRE(υ)−ΠH

PRE(υ), from the two intermediaries at any interval [wλ, wλ+1),

λ = 0, ..., σ′ − 1, where, for notational convenience, we denote rHPRE = w0, and showing

that the selection function θλ+1 controls the convexity of this difference. More specif-

ically, if we do not assume anything about the pure strategy after randomizing, i.e.

θ(υ) = θ∗(υ) for all υ ∈ (a, 1], the second-order derivative of this difference is (see

Section B.1.3 in Appendix B for the derivation):

∂2(ΠL
PRE −ΠH

PRE)(wλ ≤ υ < wλ+1)

∂υ2
= (K − 1)FK−3(υ)f(υ){(2θλ+1 − 1)F (υ)+

+ (K − 2)[
σ′−1∑
i=λ+1

{
(θλ+1 − θi+1)(F (wi+1)− F (wi))

}
+ θλ+1(1− F (wσ′))−

−
∫ a

wσ′

θm(y)f(y)dy −
∫ 1

a
θ∗(y)f(y)dy]} (6.34)
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This means that when θλ+1 = 1, the corresponding surplus difference is convex, whereas

when θλ+1 = 0, it is concave. This means that for the existence of a mixed-strategy

BNE with multiple (σ′ ≥ 2) cut-off points before randomizing, the surplus difference

for υ ∈ [rHPRE , w
′
σ) will consist of non-negative convex intervals followed by non-positive

concave intervals, which cannot happen unless there are discontinuities at the local op-

tima (Figure 6.2), a fact which is not supported by the well-defined first-order derivative,

so there can only be a single cut-off point w before randomizing.

Similarly, if there are m′ ≥ 2 cut-off points, ai, after randomizing so that θ(υ) = θ∗λ ∈
{0, 1} for valuations υ ∈ [aλ, aλ+1), λ = 1, ...,m′ (with am+1 = 1), and θ∗i 6= θ∗j for

|i− j| = 1, i, j = 1, ...,m′, then the second-order derivative of the difference in expected

surplus,
∂2(ΠLPRE−ΠHPRE)

∂υ2
, for υ ∈ [aλ, aλ+1) will be (see Section B.1.4 in Appendix B for

the derivation):

∂2(ΠL
PRE −ΠH

PRE)(aλ ≤ υ < aλ+1)

∂υ2
= (K − 1)FK−3(υ)f(υ)[(2θ∗λ − 1)F (υ)+

(K − 2)
m′∑

i=λ+1

(θ∗λ − θ∗i )(F (ai+1)− F (ai))] (6.35)

Again, the selection strategy controls the convexity of the surplus difference. More

specifically, if θ∗λ = 1 (θ∗λ = 0 respectively), the function in the corresponding interval is

convex (concave respectively) and we would then have a series of non-negative convex

surplus difference intervals followed by non-positive concave alternating intervals if θ∗1 =

1, or the opposite when θ∗1 = 0. This means that there should be discontinuities at the

local optima of the corresponding intervals, which is in contrast with the well defined

first-order derivative of ΠL
PRE − ΠH

PRE , and hence there can be at most a single cut-off

point a in (w, 1].

Lemma 6.7 thus implies that the mixed-strategy equilibrium selection of the buyers will

involve three intervals defined by two cut-off points: buyers with valuations in the first

interval always select the low-reserve intermediary, buyers with valuations in the middle

interval will randomize between the intermediary with a probability that is given by the

solution to (6.31), and buyers whose valuations lie in the third interval will also follow

a pure strategy. We formalize this finding in the following theorem where we also give

the conditions that w and a should satisfy.

Theorem 6.8. Let θ : V 7→ [0, 1] be a strategy profile where θ(υi) = 1 if rHPRE ≤ υi < w,

θ(υi) = θm(υi) if w ≤ υi ≤ a, and θ(υi) = θ∗ ∈ {0, 1} if a < υi ≤ 1, for each buyer i,

i = 1, ...,K, where θm(·) satisfies the condition:

[2F (υi) + (K − 2)(1−F (υi))]θm(υi) = (K − 2)[

∫ a

υi

θm(y)f(y)dy+ θ∗(1−F (a))] +F (υi)

(6.36)
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and w, a are given by:

FK−2(w)

∫ w

rLPRE

FK−1(y)dy − FK−1(w)

∫ w

rHPRE

FK−2(y)dy = [(w − rHPRE)FK−2(w)−

−
∫ w

rHPRE

FK−2(y)dy]FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (6.37)

FK−2(w)

{
F (w) + (K − 1)[1− F (w)−

∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))]

}
= FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (6.38)

Then, θ(·) is a unique mixed-strategy Bayes-Nash equilibrium profile of the buyer PRE -

PRE duopoly intermediary selection problem.

Proof. Equation (6.36) can be directly derived from Lemmas 6.6 and 6.7, where we have

used the fact that there can only be a single w and a. Given that this makes the surplus

difference a linear function of the valuation, for the existence of a mixed-strategy BNE,

both the surplus difference and its first-order derivative should be zero for all υ ∈ [w, a].

We will continue by writing the difference in expected surplus, ΠL
PRE(υ) - ΠH

PRE(υ),

as well as its first-order condition (
∂(ΠLPRE−ΠHPRE)(υ)

∂υ = 0), for a buyer with valuation

υ ∈ [w, a] (for the derivation see Section B.1.5 in Appendix B), and then use the fact

that ΠL
PRE(w) − ΠH

PRE(w) = 0 and
∂(ΠLPRE−ΠHPRE)(υ)

∂υ |υ=w = 0 to get the conditions for

w and a:

(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a) =

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy−

− (υ − rHPRE)FK−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))] + (υ − w)FK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]+

+ (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))]−

− (K − 1)θ∗(1− F (a))

∫ υ

w
FK−2(y)dy + (K − 1)(1− F (a))

∫ υ

w
(υ − y)θm(y)f

(K−2)
1 (y)dy+

+ 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy +

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2

(6.39)
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∂(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a)

∂υ
= 0 =⇒ FK−2(υ)[F (υ) + θ∗(K − 1)(1− F (a))] =

= FK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]−

− FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]+

+ 2

∫ υ

w
θm(y)f

(K−1)
1 (y)dy + (K − 1)(1− F (a))

∫ υ

w
θm(y)f

(K−2)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 (6.40)

This should also be true at w, where the last equation above yields:

FK−2(w)[F (w) + θ∗(K − 1)(1− F (a))] = FK−2(w)[2F (w) + (K − 1)(1− F (w)−

−
∫ a

w
θm(y)f(y)dy)]− FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (6.41)

Given this last condition, (6.39) becomes:

(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a) =

∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−

−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))] + rHPREF

K−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]−

− wFK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]−

∫ υ

w
FK−1(y)dy−

− (K − 1)θ∗(1− F (a))

∫ υ

w
FK−2(y)dy − 2

∫ υ

w
yθm(y)f

(K−1)
1 (y)dy−

− (K − 1)(1− F (a))

∫ υ

w
yθm(y)f

(K−2)
1 (y)dy−

−
∫ υ

w

∫ a

y2

y2(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+ υFK−2(υ)[F (υ) + (K − 1)θ∗(1− F (a))] (6.42)

Substituting for υ = w yields:

(ΠL
PRE −ΠH

PRE)(w) = 0 =⇒
∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−

−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))] =

= (w − rHPRE)FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (6.43)

The system of equations (6.41) and (6.43) provides the conditions that w and a should

jointly satisfy. However, we can eliminate a from these equations and get a solution for
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w that is independent of the former:

FK−2(w)

∫ w

rLPRE

FK−1(y)dy − FK−1(w)

∫ w

rHPRE

FK−2(y)dy = [(w − rHPRE)FK−2(w)−

−
∫ w

rHPRE

FK−2(y)dy]FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (6.44)

and then find a by substituting the w found in any of the equations (6.41) or (6.43).

We have reasoned about the existence of these cut-off points (due to Theorem 6.2 and

equation (6.33) respectively). To show that the w and a found are unique, we rearrange

(6.37) and (6.38):

Hw = FK−2(w)

∫ w

rLPRE

FK−1(y)dy − FK−1(w)

∫ w

rHPRE

FK−2(y)dy − [(w − rHPRE)FK−2(w)−

−
∫ w

rHPRE

FK−2(y)dy]FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (6.45)

Ha = FK−2(w)[F (w) + (K − 1)(1− F (w))]− FK−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))]− (K − 1)FK−2(w)[

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))] (6.46)

Taking the first-order derivative of (6.45) with respect to w yields:

∂Hw

∂w
= (K − 2)FK−3(w)f(w)

{∫ w

rLPRE

FK−1(y)dy − (w − rHPRE)FK−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))]

}
− (K − 1)FK−2(w)f(w)

∫ w

rHPRE

FK−2(y)dy (6.47)

which is strictly negative, given that
∫ w
rLPRE

FK−1(y)dy−(w−rHPRE)FK−2(rHPRE)[F (rHPRE)+

(K− 1)(1−F (rHPRE))] < 0 as can be directly derived from (6.43), which means that the

solution for w is unique.

Similarly, taking the first-order derivative of (6.46) with respect to a yields:

∂Ha

∂a
= −(K − 1)FK−2(w)f(a)[θm(a)− θ∗] (6.48)

which is either strictly positive when θ∗ = 1 or strictly negative when θ∗ = 0. Fi-

nally, uniqueness of solution to (6.36) is guaranteed because this integral equation can

be transformed to a first-order linear differential equation with continuous coefficients

(existence and uniqueness theorem5).

5According to this theorem, “if the functions h and g are continuous on an open interval, I, containing
the initial value point x = x0, then there exists a unique function y = φ(x) that satisfies the differential
equation y′ + h(x)y = g(x) for each x ∈ I, and that also satisfies the initial condition y(x0) = y0, where
y0 is an arbitrary prescribed initial value” (Theorem 2.4.1 in (Boyce and DiPrima, 2009)).
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6.1.1.3 Numerical Examples

To gain intuition, two examples of the equilibrium selection strategy of the buyers when

θ∗ = 0 and θ∗ = 1 for the uniform distribution U(0, 1) and K = 5 buyers are given in

Figures 6.3 and 6.4 respectively. In this case, the selection strategy θm(·) will have the

form (see Section B.1.6 in Appendix B for the derivation):

θm(υ) =


1
2 −

(1−2θ∗)(1−a)
2 exp(−a) exp(−υ) if K=4

1
2 + (K − 2) (1−2θ∗)(1−a)

2[(K−4)a−(K−2)]
K−2
K−4

[(K − 4)υ − (K − 2)]
2

K−4 otherwise

(6.49)

and w, a are given by the following equations respectively:

[wK−1 − rHPRE
K−1 − (K − 1)(w − rHPRE)wK−2]rHPRE

K−2
[rHPRE + (K − 1)(1− rHPRE)]+

+
K − 1

K
wK−2(wK − rLPRE

K
)− (wK−1 − rHPRE

K−1
)wK−1 = 0 (6.50)



w2{w + 3
2 [1− w + (1− 2θ∗)(1− a) exp(a− w)]} = rHPRE

2
[rHPRE + 3(1− rHPRE)]

if K=4

wK−2{w + K−1
2 [1− w + (1− 2θ∗)(1− a)( (K−4)w−(K−2)

(K−4)a−(K−2) )
K−2
K−4 ]} =

= rHPRE
K−2

[rHPRE + (K − 1)(1− rHPRE)]

otherwise

(6.51)
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Figure 6.3: Figure showing the equilibrium strategy, θ, (bottom) and the correspond-

ing surplus difference, ΠL
PRE − ΠH

PRE , (top) for the buyers’ PRE - PRE intermediary
selection problem when there are K = 5 buyers whose private valuations are i.i.d.
drawn from U(0, 1) and reserve prices are rLPRE = 0.2, rHPRE = 0.4. In this case, buyers

with high valuations select the high-reserve intermediary (θ∗ = 0).
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Figure 6.4: Figure showing the equilibrium strategy, θ, (bottom) and the correspond-

ing surplus difference, ΠL
PRE − ΠH

PRE , (top) for the buyers’ PRE - PRE intermediary
selection problem when there are K = 5 buyers whose private valuations are i.i.d.
drawn from U(0, 1) and reserve prices are rLPRE = 0.2, rHPRE = 0.7. In this case, buyers

with high valuations select the low-reserve intermediary (θ∗ = 1).

Figures 6.5 and 6.6 illustrate two examples for the reserve price combinations for which

BNE exist when valuations are i.i.d. drawn from a uniform distribution F = U(0, 1)

when K = 5 or K = 10 buyers are present respectively. As in Figure 6.1, there is a

region of pure-strategy BNEs where all buyers select sLPRE , followed by a region of mixed-

strategy BNEs where buyers with valuations υ ∈ (a, 1] always select sLPRE but buyers

with valuations in [w, a] follow mixed strategies. Finally, there is a region where buyers

with high valuations υ ∈ [w, a] randomize but buyers with higher valuations (υ > a)

in contrast always select the high-reserve intermediary. This means that intermediaries

have incentives to increase their reserve prices up to a point, in contrast with the classical

setting without intermediaries. Moreover, the regions where buyers select the low-reserve

intermediaries shrinks as the number of participating buyers increases.

6.1.2 Post-Award Second-Price Sealed-Bid Intermediary Auctions

Having studied the duopoly competition between two PRE intermediaries, we now study

the competition between two POST intermediary auctioneers. More specifically, we con-

sider a population of K buyers that can participate at the center’s auction only via

two intermediaries, sLPOST , s
H
POST , that implement POST auctions with reserve prices

rLPOST ≤ rHPOST respectively. As we show in this section, the buyers’ intermediary se-

lection problem in this setting is much simpler than that of selecting between two PRE

intermediaries: all buyers select the intermediary with the lowest reserve price, thus

driving the reserve prices down to the center’s reserve price, ρ.
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Figure 6.5: Figure showing BNE for the buyers’ PRE - PRE intermediary selection
problem when there are K = 5 buyers whose private valuations are i.i.d. drawn from
U(0, 1). There are three distinct regions for the reserve prices: (i) pure-strategy BNE:
buyers always select the low-reserve intermediary (right), (ii) mixed-strategy BNE:
buyers with valuations in [rHPRE , w) select the low-reserve intermediary, buyers with
valuations in [w, a] randomize between the intermediaries, and buyers with valuations
in (a, 1] either select the low-reserve intermediary (center) or select the high-reserve

intermediary (left).
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Figure 6.6: Figure showing BNE for the buyers’ PRE - PRE intermediary selection
problem when there are K = 10 buyers whose valuations are i.i.d. drawn from U(0, 1).
There are three distinct regions for the reserve prices: (i) pure-strategy BNE: buyers
always select the low-reserve intermediary (right), (ii) mixed-strategy BNE: buyers with
valuations in [rHPRE , w) select the low-reserve intermediary, buyers with valuations in
[w, a] randomize between the intermediaries, and buyers with valuations in (a, 1] either
select the low-reserve intermediary (center) or select the high-reserve intermediary (left).
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As before, let θ : V 7→ [0, 1] denote the selection strategy of the buyers, which is a

mapping from a buyer’s private valuation to the probability of selecting the low-reserve

intermediary, sLPOST , so 1 − θ(υ) is the probability that the buyer selects intermediary

sHPOST . Then, the expected ex-interim surplus for a buyer with private valuation υ

from selecting the low- and high-reserve intermediary, ΠL
POST (υ),ΠH

POST (υ) respectively,

when rLPOST ≤ rHPOST , can be written as:

ΠL
POST (υ) =

0 if υ ∈ [0, rLPOST )∫ υ
rLPOST

F
(K−1)
1 (y)dy if υ ∈ [rLPOST , 1]

(6.52)

ΠH
PRE(υ) =

0 if υ ∈ [0, rHPOST )∫ υ
rHPOST

F
(K−1)
1 (y)dy if υ ∈ [rHPOST , 1]

(6.53)

More specifically, a buyer in each intermediary’s auction expects to pay the intermedi-

ary’s reserve price, if all buyers have valuations below the latter reserve price, or pays

the highest opponent bid if this is not the case, irrespective of where this opponent bid

is placed. Hence, whenever rLPOST < rHPOST , the following proposition holds.

Proposition 6.9. Whenever rLPOST < rHPOST , it is a weakly dominant strategy for a

buyer to select the low-reserve intermediary in the buyer POST - POST duopoly interme-

diary selection problem.

In fact, the aforementioned result generalizes to any number of intermediaries:

Proposition 6.10. Whenever r1
POST < r2

POST < ... < rnPOST , it is a weakly dominant

strategy for a buyer to select the lowest-reserve intermediary in the n-POST intermediary

selection problem, n ∈ N+, n ≥ 2.

Given that the expected surplus of a buyer is independent of the decisions of her op-

ponent buyers, when rLPOST = rHPOST = rPOST , her ex-interim expected surplus from

the two intermediaries is the same, i.e. ΠLeq
POST (υ) = ΠHeq

POST (υ) =
∫ υ
r F

(K−1)
1 (y)dy. This

means that our model’s prediction of the buyers’ selection becomes limited.

Proposition 6.11. Whenever rLPOST = rHPOST , there are an infinite number of equilibria

in weakly dominant strategies of the buyer POST - POST duopoly intermediary selection

problem.

Similar to the previous results, Proposition 6.11 generalizes to the case of n POST inter-

mediaries.

Finally, we turn our attention to the intermediary selection problem of buyers when

one intermediary implements a PRE whereas the other implements a POST intermediary

mechanism.
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6.1.3 Pre-Award versus Post-Award Intermediary Auctions

We now consider the duopoly competition between two intermediaries with reserve

prices, one implementing a PRE and the other a POST mechanism. As before, we study

the more interesting case where a population of K > n buyers select one of two inter-

mediaries sPRE , sPOST that implement a PRE and POST mechanism respectively.

We first consider the special case where both intermediaries set the same reserve price

r. Then a buyer with private valuation υ ≥ r expects surplus from the PRE intermediary

that can be expressed as:

Πeq
PRE(υ) = (υ − r)FK−1(r) +

∫ υ

r
(υ − y)θ(y)f

(K−1)
1 (y)dy (6.54)

That is, the buyer expects positive surplus when all other buyers’ valuations are below

r (first term) or when the highest opponent bid is less than the buyer’s bid and is

submitted in the same intermediary auction (second term). On the other hand, the

expected surplus from the POST intermediary is:

Πeq
POST (υ) = (υ − r)FK−1(r) + (υ − r)

∫ r

0

∫ 1

r
θ(y1)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

r
(υ − y)(1− θ(y))f

(K−1)
1 (y)dy+

+

∫ υ

r

∫ 1

y2

(υ − y2)θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 (6.55)

That is, the buyer expects positive surplus when all other buyers’ valuations are below

r (first term) or when there is only one buyer with bid above r submitted in the other

intermediary auction (second term), paying the center’s reserve price, r. Moreover,

the buyer pays the highest opponent bid when it is below υ and submitted in the

same auction (third term) as well as the second-highest opponent bid, wherever this is

submitted, as long as it is above r, below υ, and, at the same time, the highest opponent

bid is submitted in the opponent intermediary. This leads to the following theorem.

Theorem 6.12. There exists a unique equilibrium in weakly dominant strategies in the

buyer PRE - POST duopoly intermediary selection problem where all buyers select the

intermediary implementing a POST auction, when the other intermediary implements a

PRE auction if both intermediaries set the same reserve price.
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Proof. Taking the difference of the expected surplus from both intermediaries yields:

Πeq
POST (υ)−Πeq

PRE(υ) = (K − 1)(υ − r)FK−2(r)

∫ 1

r
θ(y)f(y)dy+

+

∫ υ

r
(υ − y)(1− 2θ(y))f

(K−1)
1 (y)dy+

+

∫ υ

r

∫ 1

y2

(υ − y2)θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 (6.56)

The partial derivative of this difference w.r.t. υ is:

∂Πeq
POST (υ)−Πeq

PRE(υ)

∂υ
= (K − 1)FK−2(r)

∫ 1

r
θ(y)f(y)dy+

+

∫ υ

r
(1− 2θ(y))f

(K−1)
1 (y)dy +

∫ υ

r

∫ 1

y2

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 (6.57)

However, we can write:∫ υ

r

∫ 1

y2

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 =

∫ υ

r

∫ υ

y2

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

r

∫ 1

υ
θ(y1)f

(K−1)
1,2 (y1, y2)dy1dy2 =

= (K − 1)[FK−2(υ)

∫ 1

υ
θ(y)f(y)dy − FK−2(r)

∫ 1

r
θ(y)f(y)dy]+

+

∫ υ

r
θ(y)f

(K−1)
1 (y)dy (6.58)

Hence, equation (6.57) can be written as:

∂Πeq
POST (υ)−Πeq

PRE(υ)

∂υ
= (K − 1)FK−2(υ)

∫ 1

υ
θ(y)f(y)dy+

+

∫ υ

r
(1− θ(y))f

(K−1)
1 (y)dy ≥ 0 (6.59)

Hence, given that Πeq
POST (r) = Πeq

PRE(r) and Πeq
POST (·) grows faster than Πeq

PRE(·) for

every υ > r, it should always be Πeq
POST (υ) > Πeq

PRE(υ), so the only equilibrium strategy

is θ(y) = 0.

Having derived the equilibrium selection strategies of the buyers for equal intermediary

reserve prices, we now move to the more general case when one intermediary sets a lower

reserve price than the other. Let us start with the first case where the POST intermediary

sets a reserve price rLPOST < rHPRE , where rHPRE is the PRE intermediary’s reserve price.

In this case, the ex-interim expected surplus of a buyer with valuation υ from the POST
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and PRE intermediary, ΠL
POST ,Π

H
PRE respectively, can be expressed as:

ΠL
POST (υ) =



0 if υ ∈ [0, rLPOST )∫ υ
rLPOST

F
(K−1)
1 (y)dy if υ ∈ [rLPOST , r

H
PRE)

(υ − rLPOST )F
(K−1)
1 (rLPOST )+

+(υ − rHPRE)
∫ rHPRE
y2=0

∫ 1
y1=rHPRE

(1− θ(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+
∫ rHPRE
rLPOST

(υ − y)f
(K−1)
1 (y)dy +

∫ υ
rHPRE

(υ − y)θ(y)f
(K−1)
1 (y)dy+

+
∫ υ
y2=rHPRE

∫ 1
y1=y2

(υ − y2)(1− θ(y1))f
(K−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [rHPRE , 1]

(6.60)

ΠH
PRE(υ) =


0 if υ ∈ [0, rHPRE)

(υ − rHPRE)F
(K−1)
1 (rHPRE) +

∫ υ
rHPRE

(υ − y)(1− θ(y))f
(K−1)
1 (y)dy

if υ ∈ [rHPRE , 1]

(6.61)

That is, a buyer with valuation υ ≥ rHPRE that selects the low-reserve POST mechanism

pays the latter his reserve price, rLPOST , when all other bids are below this reserve price

(first term in (6.60)), while she pays the high reserve price, rHPRE , when the highest

opponent bid is higher than rHPRE and is submitted in the PRE intermediary and, at

the same time, the second-highest opponent bid, lower than rHPRE , is submitted in her

selected intermediary (second term in (6.60)). She also pays the highest opponent bid

if it is submitted in the POST mechanism (third and fourth terms in (6.60)) and the

second-highest opponent bid if it is higher than rHPRE , lower than her bid, and, at the

same time, the highest opponent bid is submitted in the PRE intermediary auction.

On the other hand, if she selects the high-reserve PRE mechanism, she pays the latter’s

reserve price if all opponent bids are below this reserve price (first term in (6.61)), and

pays the highest opponent bid, if it is higher than rHPRE , lower than her bid, and is

submitted in the same intermediary (second term in (6.61)).

Having expressed the expected ex-interim surplus of a buyer from the two intermediaries,

we can now derive the resulting equilibria of the intermediary selection problem in this

setting, namely that there is a unique equilibrium in weakly dominant strategies where

all buyers select the low-reserve POST intermediary:

Theorem 6.13. There exists a unique equilibrium in weakly dominant strategies in the

buyer PRE - POST duopoly intermediary selection problem where all buyers select the

intermediary implementing a POST auction with reserve price rLPOST , when the other

intermediary implements a PRE auction with reserve price rHPRE and rLPOST < rHPRE.
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Proof. Taking the difference of the expected surplus from both intermediaries yields:

ΠL
POST (υ)−ΠH

PRE(υ) = (K − 1)(υ − rHPRE)FK−2(rHPRE)

∫ 1

rHPRE

(1− θ(y))f(y)dy+

+

∫ υ

rHPRE

(υ − y)(2θ(y)− 1)f
(K−1)
1 (y)dy+

+

∫ υ

rHPRE

∫ 1

y2

(υ − y2)(1− θ(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 +

∫ rHPRE

rLPOST

FK−1(y)dy (6.62)

The partial derivative of this difference w.r.t. υ is:

∂ΠL
POST (υ)−ΠH

PRE(υ)

∂υ
= (K − 1)FK−2(rHPRE)

∫ 1

rHPRE

(1− θ(y))f(y)dy+

+

∫ υ

rHPRE

(2θ(y)− 1)f
(K−1)
1 (y)dy +

∫ υ

rHPRE

∫ 1

y2

(1− θ(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 (6.63)

Similar to equation (6.58), we can write:∫ υ

rHPRE

∫ 1

y2

(1− θ(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 =

= (K − 1)[FK−2(υ)

∫ 1

υ
(1− θ(y))f(y)dy − FK−2(rHPRE)

∫ 1

rHPRE

(1− θ(y))f(y)dy]+

+

∫ υ

rHPRE

(1− θ(y))f
(K−1)
1 (y)dy (6.64)

Hence, equation (6.63) can be written as:

∂ΠL
POST (υ)−ΠH

PRE(υ)

∂υ
= (K − 1)FK−2(υ)

∫ 1

υ
(1− θ(y))f(y)dy+

+

∫ υ

rHPRE

θ(y)f
(K−1)
1 (y)dy ≥ 0 (6.65)

Hence, given that ΠL
POST (rHPRE) > ΠH

PRE(rHPRE) and ΠL
POST (·) grows faster than ΠH

PRE(·)
for every υ > rHPRE , it should always be ΠL

POST (υ) > ΠH
PRE(υ), so the only equilibrium

strategy is θ(y) = 1.

Until now, we have shown that buyers always select the POST intermediary against a

PRE competing intermediary given that the former’s reserve price is lower or equal to

the latter’s. We complete our analysis with the scenario where the PRE intermediary

sets a reserve price, rLPRE , strictly lower than the POST mechanism’s, rHPOST . In this last

case, the ex-interim expected surplus of a buyer with private valuation υ from the two
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mechanisms will be:

ΠL
PRE(υ) =



0 if υ ∈ [0, rLPRE)∫ υ
rLPRE

F
(K−1)
1 (y)dy if υ ∈ [rLPRE , r

H
POST )

(υ − rLPRE)F
(K−1)
1 (rLPRE) +

∫ rHPOST
rLPRE

(υ − y)f
(K−1)
1 (y)dy+

+
∫ υ
rHPOST

(υ − y)θ(y)f
(K−1)
1 (y)dy if υ ∈ [rHPOST , 1]

(6.66)

ΠH
POST (υ) =



0 if υ ∈ [0, rHPOST )

(υ − rHPOST )
∫ rHPOST
y2=0

∫ 1
y1=y2

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
∫ υ
rHPOST

(υ − y)(1− θ(y))f
(K−1)
1 (y)dy+

+
∫ υ
y2=rHPOST

∫ 1
y1=y2

(υ − y2)θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2

if υ ∈ [rHPOST , 1]

(6.67)

More specifically, a buyer with valuation υ ≥ rHPOST that selects the low-reserve PRE

mechanism pays the latter his reserve price when all opponent bids are less than this

reserve price (first term in (6.66)), and pays the highest opponent bid if this is lower than

her bid and is submitted in the same intermediary (second and third terms in (6.66)).

On the other hand, if she selects the high-reserve POST intermediary, she pays his reserve

price, rHPOST , when the second-highest opponent bid is less than this reserve price and,

at the same time, the highest opponent bid is submitted in the other (PRE) intermediary

(first term in (6.67)). She also pays the highest opponent bid if it is higher than rHPOST ,

less than her bid, and is submitted in the same intermediary (second term in (6.67)).

Finally, she pays the second-highest opponent bid if it is also less than her bid, higher

than rHPOST , and, at the same time, the highest opponent bid is submitted in the other

(PRE) intermediary (third term in (6.67)).

As we will immediately show, there is a pure-strategy BNE where all buyers select the

PRE intermediary given that the intermediaries’ reserve prices satisfy a condition, similar

in concept to Section 6.1.1. Formally:

Theorem 6.14. There exists a pure-strategy Bayes-Nash equilibrium in the buyer PRE

- POST duopoly intermediary selection problem where all buyers select the low-reserve

intermediary implementing a PRE auction with reserve price rLPRE, when the other in-

termediary implements a POST auction with reserve price rHPOST and rLPRE < rHPOST , if

the intermediary reserve prices satisfy the condition:∫ rHPOST

rLPRE

FK−1(y)dy ≥ (K − 1)

∫ 1

rHPOST

[1− F (y)]FK−2(y)dy (6.68)
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Proof. Equation (6.67) for valuations υ ≥ rHPOST can be written as:

ΠL
PRE(υ) =

∫ rHPOST

rLPRE

FK−1(y)dy+(υ−rHPOST )FK−1(rHPOST )+

∫ υ

rHPOST

(υ − y)θ(y)f
(K−1)
1 (y)dy

(6.69)

Using equation (B.92), a buyer’s ex-interim expected surplus from the high-reserve, POST

intermediary, when her valuation is υ ≥ rHPOST will be:

ΠH
POST (υ) = (υ − rHPOST )FK−1(rHPOST ) +

∫ υ

rHPOST

(υ − y)f
(K−1)
1 (y)dy+

+ (K − 1)

∫ υ

rHPOST

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 (6.70)

Taking their difference yields:

ΠL
PRE(υ)−ΠH

POST (υ) =

∫ rHPOST

rLPRE

FK−1(y)dy −
∫ υ

rHPOST

(υ − y)(1− θ(y))f
(K−1)
1 (y)dy−

− (K − 1)

∫ υ

rHPOST

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 (6.71)

Consider the case that all (other) buyers select the low-reserve intermediary auction,

that is θ(υ) = 1 for all υ ∈ [rHPOST , 1]. Then equation (6.71) yields:

ΠL
PRE(υ)−ΠH

POST (υ) =

∫ rHPOST

rLPRE

FK−1(y)dy− (K − 1)

∫ υ

rHPOST

∫ 1

y2

f(y1)FK−2(y2)dy1dy2

(6.72)

Taking the first-order derivative of this difference w.r.t. υ yields:

∂

∂υ
(ΠL

PRE(υ)−ΠH
POST (υ)) = −(K − 1)FK−2(υ)[1− F (υ)] ≤ 0 (6.73)

i.e. the ex-interim expected surplus difference is decreasing and, since ΠL
PRE(rHPOST )−

ΠH
POST (rHPOST ) > 0, the only condition for θ(·) = 1 to be a pure-strategy BNE, is for

this difference to be non-negative for the maximum valuation, υ = 1:

ΠL
PRE(1)−ΠH

POST (1) =

∫ rHPOST

rLPRE

FK−1(y)dy − (K − 1)

∫ 1

rHPOST

[1− F (y)]FK−2(y)dy ≥ 0

(6.74)

thus yielding equation (6.68).

Similarly, it is easy to see that buyers will never all select the high-reserve POST inter-

mediary.
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Proposition 6.15. There is no pure-strategy Bayes-Nash equilibrium in the buyer PRE

- POST duopoly intermediary selection problem where all buyers always select the high-

reserve intermediary implementing a POST auction.

This is because ΠL
PRE(rHPOST ) − ΠH

POST (rHPOST ) =
∫ rHPOST
rLPRE

FK−1(y)dy > 0 irrespective

of the selection strategies of the other buyers.

As in Section 6.1.1, it still remains to show what are the resulting equilibrium interme-

diary selection strategies of the buyers when the condition of equation (6.68) does not

hold. Since ΠL
PRE(rHPOST ) − ΠH

POST (rHPOST ) > 0 and the first-order derivative of the

expected surplus difference for any strategy θ(·) is:

∂

∂υ
(ΠL

PRE(υ)−ΠH
POST (υ)) = −

∫ υ

rHPOST

(1− θ(y))f
(K−1)
1 (y)dy−

− (K − 1)FK−2(υ)

∫ 1

υ
θ(y)f(y)dy < 0 (6.75)

this means that there should be at least one cut-off point w ∈ (rHPOST , 1) so that

ΠL
PRE(w) = ΠH

POST (w) and where the intermediary selection strategy changes. The-

orem 6.16 shows that this is indeed the case.

Theorem 6.16. Let θ : V 7→ [0, 1] be a strategy profile where θ(υi) = 1 if rHPOST ≤ υi <
w, and θ(υi) = 0 if w ≤ υi ≤ 1, for each buyer i, i = 1, ...,K, where w ∈ (rHPOST , 1], a

cut-off value given by:∫ rHPOST

rLPRE

FK−1(y)dy = (K − 1)[F (w)

∫ w

rHPOST

FK−2(y)dy −
∫ w

rHPOST

FK−1(y)dy] (6.76)

Then, when the condition of Theorem 6.14 does not hold, θ(·) is a pure-strategy BNE

profile of the buyer PRE - POST duopoly intermediary selection problem where one inter-

mediary implements a PRE auction with a reserve price rLPRE and the other implements

a POST auction with a reserve price rHPOST > rLPRE.

Proof. θ(υ) = 1 when rHPOST ≤ υ < w, since a buyer expects a positive surplus from

the low-reserve PRE intermediary if her valuation is close to rHPOST from above, but

arbitrarily close to zero surplus from the POST intermediary. If θ(·) is the intermediary

selection strategy of the other buyers with valuations υ ≥ w, then the difference in
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expected surplus of a buyer with valuation υ ∈ [rHPOST , w) will be:

ΠL
PRE(υ)−ΠH

POST (υ) =

∫ rHPOST

rLPRE

FK−1(y)dy − (K − 1)[

∫ υ

rHPOST

∫ w

y2

f(y1)FK−2(y2)dy1dy2+

+

∫ υ

rHPOST

∫ 1

w
θ(y1)f(y1)FK−2(y2)dy1dy2] =

=

∫ rHPOST

rLPRE

FK−1(y)dy − (K − 1)[

∫ υ

rHPOST

[F (w)− F (y)]FK−2(y)dy+

+

∫ υ

rHPOST

∫ 1

w
θ(y1)f(y1)FK−2(y2)dy1dy2] (6.77)

At υ = w, the difference in expected surplus should be zero, i.e.:∫ rHPOST

rLPRE

FK−1(y)dy = (K − 1)[

∫ w

rHPOST

[F (w)− F (y)]FK−2(y)dy+

+

∫ w

rHPOST

∫ 1

w
θ(y1)f(y1)FK−2(y2)dy1dy2] (6.78)

Then, the corresponding difference in expected surplus for a buyer with private valuation

υ ∈ [w, 1] is:

ΠL
PRE(υ)−ΠH

POST (υ) =

∫ rHPOST

rLPRE

FK−1(y)dy −
∫ υ

w
(υ − y)(1− θ(y)f

(K−1)
1 (y)dy−

− (K − 1)[

∫ w

rHPOST

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 +

∫ υ

w

∫ 1

y2

f(y1)FK−2(y2)dy1dy2] =

=

∫ rHPOST

rLPRE

FK−1(y)dy −
∫ υ

w
(υ − y)(1− θ(y)f

(K−1)
1 (y)dy−

− (K − 1)[

∫ w

rHPOST

∫ w

y2

f(y1)FK−2(y2)dy1dy2 +

∫ w

rHPOST

∫ 1

w
θ(y1)f(y1)FK−2(y2)dy1dy2+

+

∫ υ

w

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2] (6.79)

Using equation (6.78), this can be written as:

ΠL
PRE(υ)−ΠH

POST (υ) = −
∫ υ

w
(υ − y)(1− θ(y)f

(K−1)
1 (y)dy−

− (K − 1)

∫ υ

w

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 (6.80)

which is negative for all θ(υ) ∈ [0, 1]. This means that a buyer with valuation υ ∈
[w, 1] will always select the high-reserve, POST intermediary irrespective of the selection
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strategy of the other buyers. Hence, θ(υ) = 0 for υ ∈ [w, 1] and then equation (6.78)

yields the condition of equation (6.76).

This concludes our analysis on the intermediary selection strategy of the buyers. In what

follows, we consider the intermediaries’ and center’s best responses to this selection.

6.2 Intermediaries’ and Center’s Best Responses

Having characterized the equilibrium intermediary selection strategy of the buyers, in

this section, we look at the equilibrium reserve-price-setting problem of the interme-

diaries and the center which take into account the selection strategies of the buyers

(and the expected behavior of the intermediaries for the center) when announcing their

reserve prices.

Given the non-trivial equilibrium selection strategies of the buyers, in the following

subsections, we numerically find ε-NE for the intermediaries’ reserve prices. As before,

we run the fictitious play algorithm for the example with buyers whose private valuations

are i.i.d. drawn from U(0, 1) for a population of K = 4 and K = 10 buyers. These

numbers allow us to compare the results of this chapter with those in Chapter 5 for

captive buyers. We start with the homogeneous PRE and POST intermediary duopoly

competitions in Sections 6.2.1 and 6.2.2, and then move to the heterogeneous PRE-POST

competition in Section 6.2.3.

6.2.1 Pre-Award Second-Price Sealed-Bid Intermediary Auctions

As has been shown, in this setting, the buyers’ intermediary selection strategy involves

three intervals in the support of their private valuations, unless the intermediary reserve

prices are sufficiently different. In the former unique equilibrium, buyers whose valua-

tions lie in the low-valuation interval always choose the low-reserve intermediary. Buyers

whose valuations lie in the middle interval follow a strictly mixed strategy. Finally, the

strategy of the buyers with valuations in the high-valuation interval is for all of them to

go to either the high-reserve intermediary, or the low-reserve one, but not both. Given

the complexity of this strategy, it seems unlikely that it is possible to analytically derive

the Nash equilibrium reserve-price-setting strategies of the intermediaries.

For this reason, in accordance with the methodology of Chapter 5, we run the fictitious

play algorithm in this setting to shed some light on the effects of the buyers’ non-

captivity to the generated profits and social welfare. Our results for K = 4 and K = 10

buyers with uniformly i.i.d. drawn private valuations in [0, 1] are shown in Figure 6.7

and Figure 6.8 respectively. As can be seen, the center best responds by setting a

higher reserve price compared to the setting with captive buyers. Furthermore, the
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center benefits from the competition of the intermediaries to attract buyers since its

average revenue is also higher compared to the captive buyers setting (cf. Figure 5.11).

Additionally, it can be seen that the support of the mixing of reserve prices shrinks as

the number of buyers increases.
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Figure 6.7: Center’s average revenue (left) and empirical c.d.f. at the center’s opti-
mal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-price-setting
strategies for a duopoly PRE intermediary setting with non-captive K = 4 buyers whose

private valuations are i.i.d. drawn from U(0, 1).

This concludes our exposition of the intermediaries equilibrium reserve prices in the

PRE duopoly non-captive intermediary setting. We continue with the case of two POST

intermediaries where it will be trivially shown that their reserve prices are driven towards

the center’s reserve price.
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Figure 6.8: Center’s average revenue (left) and empirical c.d.f. at the center’s opti-
mal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-price-setting
strategies for a duopoly PRE intermediary setting with non-captive K = 10 buyers whose

private valuations are i.i.d. drawn from U(0, 1).
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6.2.2 Post-Award Second-Price Sealed-Bid Intermediary Auctions

In Section 6.1.2, we have seen that buyers have a dominant strategy of selecting the

lowest-reserve intermediary. This creates zero demand for the remaining intermediaries

and naturally suppresses their reserve prices to the minimum level, i.e. the center’s

reserve price, ρ, yielding a positive profit only when the buyers with the highest and

the second-highest valuations select him or when the buyer with the highest valuation

is in his market but all opponent intermediary bids are less than ρ. We formalize this

observation in the following proposition.

Proposition 6.17. It is a pure-strategy equilibrium in the n-POST intermediary reserve-

price-setting problem, n ∈ N+, n ≥ 2, for all intermediaries to set a reserve price

riPOST = ρ, i = 1, ..., n.

Since the intermediary selection problem admits an infinite number of equilibria, there is

no sensible way for the center to optimize its reserve price unless it has knowledge of the

exact selection strategies of the buyers. This concludes our analysis of the competition

between POST intermediaries. In what follows, we remove the limitation of homogeneity

between intermediaries and let one intermediary implement a PRE auction and the other

a POST auction.

6.2.3 Pre- versus Post-Award Second-Price Sealed-Bid Intermediary

Auctions

As we have shown in Section 6.1.3, buyers always choose the POST intermediary against

a PRE one, as long as the latter sets a reserve price that is not less than that of the POST

intermediary. If this is not the case, then low-valuation buyers select the low-reserve PRE

intermediary, whereas high-valuation buyers select the high-reserve POST intermediary.

It is hence not clear whether the POST mechanism is better off by undercutting his

PRE opponent, obtaining all the available market-share and driving his reserve price

downwards, or he prefers setting a high-enough reserve price that increases his profit.

To shed some light on this, we conducted a number of numerical experiments, using

the fictitious play algorithm, for the examples of K = 4 and 10 buyers whose private

valuations are i.i.d. drawn from U(0, 1). Our results for these two cases are shown in

Figures 6.9 and 6.10 respectively. As can be seen, the supports of both intermediaries’

equilibrium strategies are very small. Moreover, it can be seen that the PRE intermediary

best responds by setting very high reserve prices in an effort to increase his profit against

the more efficient POST mechanism. Also, it can be observed that all reserve prices are

higher compared to the case with captive buyers.
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Figure 6.9: Center’s average revenue (left) and empirical c.d.f. at the center’s opti-
mal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-price-setting
strategies for a duopoly PRE-POST intermediary setting with non-captive K = 4 buyers

whose private valuations are i.i.d. drawn from U(0, 1).
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Figure 6.10: Center’s average revenue (left) and empirical c.d.f. at the center’s opti-
mal reserve price (right) of the fictitious play intermediaries’ ε-NE reserve-price-setting
strategies for a duopoly PRE-POST intermediary setting with non-captive K = 10 buyers

whose private valuations are i.i.d. drawn from U(0, 1).

Having illustrated the approximate equilibrium behavior of the intermediaries and the

center, in the following subsection, we compare the obtained profits and social welfare

for the two examples above.

6.2.4 Comparison of the Two Intermediary Mechanisms

In this subsection, we provide a comparison of the homogeneous PRE and heterogeneous

PRE - POST duopoly competitions. In more detail, Figures 6.11 - 6.14 depict the inter-

mediaries’ average profits, buyers’ average surplus, the center’s average revenue as well

as the social welfare respectively under the two settings.

In these two examples, intermediaries seem to benefit from their heterogeneity since they

are both better off compared to the case of two PRE mechanisms. One of the reasons for
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Figure 6.11: Intermediaries’ average profits with reserve prices for the three interme-
diary mechanisms for K = 4 and K = 10 captive and non-captive buyers whose private

valuations are i.i.d. drawn from U(0, 1).

this might be the fact that the center’s optimal reserve price in the heterogeneous setting

is smaller, thus increasing their probability of having a buyer whose bid is above their

reserve price. As can also be seen, the POST intermediary yields higher average profit

than his PRE opponent. This is in agreement with the results of Chapter 5 when buyers

are captive. In general, intermediaries’ average profits decrease as the number of buyers

increases for the two examples, with the notable exception of POST intermediaries that

benefit from competition against PRE auctioneers. This decrease can be attributed to the

disproportionate increase of the center’s reserve price (as Figure 6.15 shows) compared

to the profit that should increase because of the higher number of buyers. This decrease

is in accordance with the results for a single intermediary (cf. Figure 5.1), although,

in this latter, case this decrease is apparent for a higher number of buyers. What’s

more, numerical errors due to the discretization used might make this effect even more

apparent.

Regarding the buyers’ average surplus, this also decreases with the total number of

their population, as both the center’s reserve price and intermediaries’ support of ran-

domization for their reserve-price-setting strategies increase. As Figure 6.12 reveals,

buyers benefit more from the competition between two PRE intermediaries compared to

a heterogeneous PRE - POST competition. Also, the strategic selection of an intermediary

increases buyers’ average surplus for the duopoly PRE case, but not for the heterogeneous

PRE - POST scenario. However, these results are subject to numerical errors due to the

fact that the experiments for captive buyers correspond to expected surplus whereas the

experiments for non-captive buyers are averages over a number of simulations.

The center’s average revenue is also higher for homogeneous PRE intermediaries as well as
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Figure 6.12: Buyers’ average surplus with intermediaries imposing reserve prices for
the three intermediary mechanisms for K = 4 and K = 10 captive and non-captive

buyers whose private valuations are i.i.d. drawn from U(0, 1).

compared to the case where buyers are captive. In contrast, the center’s attained revenue

is smaller for the PRE - POST competition compared to the scenario with captive buyers.

Similarly, for non-captive buyers, the social welfare is higher for PRE intermediaries,

again due to the higher optimal center’s reserve price, compared to the PRE - POST

competition. Also the ad exchange system seems to be worse off as a whole for PRE versus
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Figure 6.13: Center’s average revenue with intermediaries imposing reserve prices for
the three intermediary mechanisms for K = 4 and K = 10 captive and non-captive

buyers whose private valuations are i.i.d. drawn from U(0, 1).
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Figure 6.14: Social welfare with intermediaries imposing reserve prices for the three
intermediary mechanisms for K = 4 and K = 10 captive and non-captive buyers whose

private valuations are i.i.d. drawn from U(0, 1).

POST intermediaries whose buyers strategically select one of the two mechanisms. This

is expected since both the center’s average revenue and the buyers’ average surplus is

smaller in the latter case. This ends our analysis of the duopoly intermediary competition

with non-captive buyers.
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Figure 6.15: Center’s optimal reserve price with intermediaries imposing reserve prices
for the three intermediary mechanisms for K = 4 and K = 10 captive and non-captive

buyers whose private valuations are i.i.d. drawn from U(0, 1).
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6.3 Summary

In contrast to the previous chapters, where the focus was on the competition of in-

termediaries with captive buyers that are non-strategically allocated to the interme-

diaries, within this chapter we studied the imperfect intermediaries’ competition with

non-captive buyers. Since the intermediary selection problem of the buyers constitutes a

key research challenge of this thesis, we focused on deriving such Bayes-Nash equilibrium

intermediary selection strategies, albeit in a simple duopoly setting.

To this end, we first studied the intermediary selection problem of buyers in a set-

ting with two PRE intermediaries. We proved the existence of a unique pure-strategy

Bayes-Nash equilibrium under some defined conditions on the difference between the

intermediaries’ reserve prices. We then showed that, when these conditions are not met,

there is a unique mixed-strategy Nash equilibrium involving three intervals in the sup-

port of the buyers valuations: buyers with low valuations always select the low-reserve

intermediary, buyers whose valuations lie in the rightmost interval deterministically se-

lect one of the intermediaries, whereas buyers whose valuations lie in the middle interval

follow a strictly mixed strategy whose form will be different for different distributions of

private valuations and numbers of buyers. Our results for the duopoly PRE competition

are of interest to the general literature on competing auctions where, in the majority of

cases, bidders have been found to equally randomize between auctioneers in equilibrium

(see Section 2.5 for details). We then repeated our analysis for two POST intermediaries

where we showed that buyers always select the low-reserve intermediary but there are

an infinite number of Nash equilibria when the intermediaries’ reserve prices are equal.

Following this, we analyzed the heterogeneous competition between a PRE and a POST

intermediary, where we proved that buyers always choose the more efficient POST mech-

anism if his reserve price is not higher than that of the PRE. If, in contrast, this does

not hold, then buyers with private valuations above a cut-off point still select the POST

intermediary but buyers with lower valuations select the low-reserve PRE intermediary.

Given the intermediary selection strategies of the buyers, we looked at the equilibrium

reserve-price-setting problem of the intermediaries. Letting the buyers select an inter-

mediary makes the analysis too technical, since the derivations are involved even when

buyers are captive and symmetrically allocated to the intermediaries. For this reason,

we limited our analysis to numerical simulations for two examples with buyers whose

private valuations are i.i.d. drawn from the uniform distribution U(0, 1). These exam-

ples showed that both the center’s average revenue and the social welfare targets are

aligned, being higher for homogeneous PRE intermediaries, however intermediaries are

better off implementing heterogeneous mechanisms. In this last case, in accordance with

the results of Chapter 5, the POST intermediary obtains higher average profit.



Chapter 7

Conclusions and Future Work

In this final chapter, we conclude by reviewing the contributions of this work towards

the research objective of studying the impact of the auction design under competition

for demand-side intermediaries in online advertising exchanges. To this end, in Section

7.1, we summarize the main results within each chapter of this thesis and discuss their

implications for real-world ad exchanges. Thereafter, in Section 7.2, we shortly provide

a number of suggestions to the designers of DSPs based on our analysis in the previous

chapters. Finally, in Section 7.3, we identify promising lines of future work that could

be pursued continuing the research of this work.

7.1 Summary of Results

Advertising exchanges are becoming the de facto means of trading ads online. Real-

time bidding allows advertisers to achieve what has never been possible in the past,

that is to target their ads only to potentially interested users, reducing their cost and

simultaneously the number of annoying ads that people see on the web.

Two of the most important parties of ad exchanges are the demand- and supply-side

intermediaries that take the role of brokers on behalf of their customers. These inter-

mediaries are vital to the successful adoption of ad exchanges, since they provide all

the tools and infrastructure that allows medium and smaller advertisers to participate

in these exchanges. Our focus within this thesis has been the competition between the

demand-side intermediaries along with their effect on the exchange and the advertisers.

Modern such intermediaries, known as DSPs, typically run their own local auctions be-

fore the exchange’s central auction and submit (usually a single) bid at the exchange

on behalf of their (multiple) advertisers. Hence, demand-side intermediaries hide some

of the demand from the exchange and behave as bidding rings whose centers are profit

maximizing. This creates a number of complications for the revenue of the exchange

169
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and the ad exchange ecosystem as a whole. Hence, a careful study of some of the

currently-used mechanisms can provide guidance on the proper design and optimization

of all the auctions involved which will determine the prosperous operation of this new

marketplace.

We have seen that previous literature does not satisfy our research aims of studying

the imperfect competition between such intermediaries. Specifically, the literature on

bidding rings focuses on cases with a single ring and does not consider profit maximizing

ring centers, as is the case in the ad exchange setting. Furthermore, the literature

on competing auctioneers focuses on the more general case of independent competing

auctioneers which do not subsequently compete at another auction. Finally, the more

relevant work of Feldman et al. (2010) is only for the limiting case of one buyer per

intermediary and the paper by Mansour et al. (2012) does not fully take into account

the strategic actions of the intermediaries (such as setting appropriate reserve prices)

and the advertisers (such as selecting an intermediary).

For this reason, within this thesis, we looked at the intermediaries’ competition in a sim-

plified single-item IPV setting. Specifically, in Chapter 4 we studied three widely-used

mechanisms, two variations of the Vickrey auction, called the PRE and POST mechanisms,

and FPSB auctions, in a simple symmetric setting with intermediaries implementing the

same mechanism (i.e. homogeneous). We assumed that they do not impose any reserve

prices but instead make a profit by pocketing the difference between their local bids and

their payment at the exchange. We have shown that none of the three mechanisms yields

the highest profit in all settings but homogeneous POST auctions are the most efficient.

Moreover, our numerical results showed that FPSB intermediary auctions provide a good

trade-off between profit and efficiency, especially for small numbers of intermediaries

and buyers per intermediary, as is usually the case nowadays.

We then continued our analysis in Chapter 5 where we considered the duopoly compe-

tition between homogeneous mechanisms along with the competition between PRE and

POST intermediary auctioneers. This duopoly simplification was necessary for reasons

of analytical tractability, but even in this simple setting, a number of insights about

the effects of intermediary competition can be obtained. In this setting, we proved the

existence of a symmetric pure-strategy Nash equilibrium for the intermediaries’ reserve

prices in a POST duopoly competition subject to some constraints on the distribution of

private valuations and the number of buyers. In this equilibrium, both intermediaries

implement the optimal monopolistic intermediary reserve price, i.e. a fixed markup on

top of the center’s reserve price. For the remaining cases, we have reasoned why inter-

mediaries are likely to follow mixed strategies due to their competition and the double

marginalization effect, as Feldman et al. (2010) have shown for the PRE auctions. Given

the inherent difficulty in analytically expressing these strategies, after characterizing the

expected utilities of the stakeholders, wherever this was possible, we conducted a num-

ber of numerical experiments to shed some light on the revenue and efficiency effects
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of the intermediaries. In more detail, we used the fictitious play algorithm to obtain

approximate Nash equilibria of the intermediaries’ reserve-price-setting game, and com-

pared the resulting approximate equilibrium utilities of all the stakeholders as well as

the social welfare for the above-mentioned mechanisms. Our results depict the profit

superiority of the PRE mechanism for the intermediaries in this setting in accordance

with some of the results of Feldman et al. (2010). However, POST mechanisms are by far

better in terms of the efficiency attained, that might be more desirable in the long-term.

What’s more, buyers in total benefit from intermediaries using different mechanisms, as

our results for the setting with one PRE and one POST intermediary. In all cases, the

introduction of the reserve prices benefit only the intermediaries, since the utilities of

the other players as well as the total social welfare decrease compared to the setting of

Chapter 4.

Following this, in Chapter 6, we let buyers strategically select one of the intermedi-

aries again in a duopoly intermediary setting. The derivation of FPSB equilibrium

bidding strategies when taking into account both the participation decision of the other

advertisers becomes cumbersome. For this reason, we analyzed the homogeneous and

heterogeneous competition of the two Vickrey variations. Specifically, we first looked at

the intermediary selection problem of the buyers and derived their corresponding equi-

librium strategies. We found that, in the case of two PRE intermediaries, the resulting

equilibrium intermediary selection strategy of the buyers is rather complex; it is in mixed

strategies unless the reserve prices are very different, where, in the latter case, all buy-

ers select the low-reserve intermediary. We then continued our analysis with a duopoly

POST setting and have found in a straightforward manner that buyers always select the

low-reserve intermediary, thus driving the intermediaries’ reserve prices downwards, to-

wards the center’s reserve price. The intermediary selection strategies in a heterogeneous

Vickrey setting are also simpler to derive; buyers always select the POST auctioneer as

long as his reserve price is not above the one for the PRE mechanism, otherwise high-

valuation buyers still select the former mechanism but low-valuation buyers switch to

the PRE auctioneer. Finally, in most cases, given the mixed Bayes-Nash equilibrium

selection strategies of the buyers, the intermediaries’ equilibrium reserve prices become

too technical to derive. Hence, we repeated fictitious play in this setting in two examples

with advertisers whose private valuations are i.i.d. drawn from the uniform distribution

U(0, 1). We found that the center’s average revenue, the buyers’ average surplus and the

social welfare obtained are higher for the case of two PRE mechanisms but, in contrast,

intermediaries’ profit increases if they implement different Vickrey mechanisms, where

the POST intermediary benefits from this heterogeneity.

Our formulation is general enough to include other settings with intermediaries (as

described in Section 2.3) and is of relevance to the growing literature on bidding rings.

In the next section, we use our insights gained from the analysis within this thesis to
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make a suggestion on the intermediary mechanism that seems more suitable in each of

the studied environments.

7.2 Demand-Side Intermediary Policy Recommendations

The work within this thesis has combined theoretical insights and numerical simula-

tions to compare three natural choices for demand-side intermediary auctioneers that

make a profit by getting the difference of what they get paid by their advertisers and

what they pay at the exchange. Given the complexity of the ad exchange system, our

results are bounded by the limitations of such simulations, such as the distributions

of private valuations considered that might not always be representative of the actual

such distributions as well as the number of intermediaries considered in some scenar-

ios. Nevertheless, these results can qualitatively shed some light in the proper design of

demand-side intermediary auctions and give intuition on the issues of their competition.

Given that the vast majority of DSPs at this time do not impose reserve prices, our

results from Chapter 4 show that current DSPs should benefit from using FPSB local

auctions; currently, less than a handful of intermediaries participate at each individual

auction due to the vast number of available impressions, and each has a small number

of interested advertisers. Hence, as Figure 4.6 illustrates, the FPSB auction yields the

highest profit among the three mechanisms studied. What’s more, FPSB auctions are

more efficient than their closest-in-profit PRE competitors and efficiency is vastly impor-

tant for the future adoption of ad exchanges and real-time bidding. Another benefit of

FPSB auctions is their transparency, since there is no need to reveal the whole book of

bids. Nevertheless, advertisers will need to continuously adapt their bids and BNE bids

are less predictable from the auctioneer’s point of view. For this reason, PRE auctions

that are DSIC might also be a good option in this case due to their strategic simplicity,

although their smaller social welfare might be detrimental for the future adoption of

RTB.

As we have shown, a reserve price can increase an intermediary’s attained profit, so we

expect more and more DSPs to enforce such prices. Our analysis in this case suggests

that, when advertisers strategically select their DSP, they are more likely to select a

POST intermediary compared to a PRE intermediary. This means that all intermediaries

are likely to adopt the former mechanism. However, given that such a strategic selection

on behalf of the advertisers is likely to take place less often, the analysis of Chapter 5

becomes useful. Specifically, the results show that both POST intermediaries’ and the ad

exchange’s reserve prices are driven downwards, increasing the efficiency and advertisers’

surplus at the small expense of the intermediaries’ attained profit, compared to e.g. PRE

intermediaries. What’s more, POST auctions are more transparent and their operation

is more easy to explain to advertisers compared to their PRE counterpart.
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Finally, regarding the ad exchange’s (or publisher’s) reserve price optimization, we have

shown that this will generally depend both on the number of buyers and intermediaries,

in accordance with the results of Feldman et al. (2010), and that this reserve price will

be higher than a monopolist’s optimal reserve price without intermediaries, with the

notable exception of POST intermediaries setting reserve prices, where the exchange’s

reserve price is driven to zero as the number of buyers increases. Hence, knowledge of

the type of intermediary mechanisms participating in an ad exchange is helpful for the

exchange’s auction designer to effectively optimize its reserve price.

This concludes the analysis of the work done to date. A number of open challenges

remain to be tackled, as outlined in the following section.

7.3 Future Work

As has been summarized in Section 7.1, the contributions within this thesis have ad-

dressed, to the extent that this was possible, our initial research aims. Despite these

achievements, a number of open problems yet remain to be solved in this complex

marketplace. Indeed, our results show that different auction formats are not easily com-

parable and that one needs to perform a market analysis before selecting one mechanism

over the other. Moreover, our analysis constitutes only a first step in the analysis of

competition between demand-side intermediaries. For the sake of analytical tractability,

we had to make a number of simplifying assumptions at various places throughout the

thesis such as symmetry, homogeneity and duopoly markets for the intermediaries. Some

of these assumptions seem to be binding for an analysis using the tool set provided by

traditional auction theory. Hence, new solution concepts and methodologies need to be

derived. Some potential lines of investigation to extend the scope of this work include:

• Heterogeneous and asymmetric intermediary auctioneers. The first im-

mediate extension of our results is for the case of symmetric heterogeneous in-

termediaries, when first-price sealed-bid auctioneers compete against second-price

sealed-bid ones. Kotowski (2014) has derived the equilibrium bidding functions

for two first-price sealed-bid auctions in auctions with discrimination, so deriving

similar functions for our setting would nicely supplement the existing results in

this direction. The other direct extension is for intermediaries with different num-

ber of buyers each, a setting which is more likely to arise in practice; a study by

Nicholls et al. (2013) has shown that in the U.S., the top 3 DSPs accounted for

50-60% of the market share in 2013. Nevertheless, this creates asymmetries at the

central auction, which, along with the problems of competition between auctions

(see Section 2.5), would also limit the analytical tractability of the results.
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• Managed- versus self-service demand-side intermediaries. The work de-

scribed in the previous chapters deals with the competition of self-service inter-

mediaries which run local auctions, given the intermediaries’ lack of knowledge of

their advertisers’ valuations. Since, even today, most of the demand-side interme-

diaries still follow the managed-service model, it would be interesting to see what

is the cost or benefit of such intermediaries with full knowledge of advertisers’

valuations against the other type, taking also into account the cost of managing a

campaign that intermediaries of managed-service type undertake. This will shed

light in the future of online advertising and the future of traditional ad networks.

• Repeated setting. Throughout this thesis, we have considered the auction of

a single good that corresponds to an advertising slot. In reality, billions of such

auctions take place every day for different goods and with different participants,

each of which might enter and leave at any point and also has some budget. Hence,

it is important to study this more realistic setting. Given the insights gained from

our analysis, this seems to be technically challenging, hence new methodologies and

concepts need to be developed. We consider mean-field approximation methods

that have recently gained momentum and have also been used in the context

of advertising auctions (Balseiro et al., 2013; Gummadi et al., 2012; Iyer et al.,

2011; Athey and Nekipelov, 2010) a promising direction for research in this area.

Specifically, a study on the competition of DSPs which do not have full information

about their opponents and advertisers in such a context would fully complement

the analysis within this thesis.

We believe that these extensions could further increase the applicability and insights

of the analysis within this thesis, offering insightful guidance and contributing to the

successful operation of this new, complex marketplace.
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Supplement for Chapter 5

A.1 Derivations for Duopoly PRE - PRE Intermediaries with

Reserve Prices

When both intermediaries set reserve prices rLPRE ≤ rHPRE , each having exactly k > 1

buyers, the low-reserve intermediary’s expected profit can be written as:

profitLPRE(rLPRE) = F k(rHPRE)[kF k−1(rLPRE)(1− F (rLPRE))(rLPRE − ρ)+

+

∫ 1

rLPRE

(y − ρ)f
(k)
2 (y)dy] + kF k−1(rHPRE)(1− F (rHPRE))

∫ 1

rHPRE

(y − rHPRE)f
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

(y − x)f
(k)
2 (x)dxdy =

= F k(rHPRE)[kF k−1(rLPRE)(1− F (rLPRE))(rLPRE − ρ) +

∫ 1

rLPRE

(y − ρ)f
(k)
2 (y)dy]+

+ kF k−1(rHPRE)(1− F (rHPRE))

∫ 1

rHPRE

(y − rHPRE)f
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)[−(y − rHPRE)F

(k)
2 (rHPRE) +

∫ y

rHPRE

F
(k)
2 (x)dx]dy =

= F k(rHPRE)[kF k−1(rLPRE)(rLPRE − ρ)− kF k(rLPRE))(rLPRE − ρ) + 1− ρ−

− (rLPRE − ρ)F
(k)
2 (rLPRE)−

∫ 1

rLPRE

F
(k)
2 (y)dy] + [kF k−1(rHPRE)− kF k(rHPRE)− kF k−1(rHPRE)+

+ (k − 1)F k(rHPRE)]

∫ 1

rHPRE

(y − rHPRE)f
(k)
2 (y)dy +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

F
(k)
2 (x)dxdy =
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= F k(rHPRE)[−F k(rLPRE)(rLPRE − ρ) + 1− ρ−
∫ 1

rLPRE

F
(k)
2 (y)dy]−

− F k(rHPRE)

∫ 1

rHPRE

(y − rHPRE)f
(k)
2 (y)dy +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

F
(k)
2 (x)dxdy =

= F k(rHPRE)[−F k(rLPRE)(rLPRE − ρ) + 1− ρ−
∫ 1

rLPRE

F
(k)
2 (y)dy−

− (1− rHPRE −
∫ 1

rHPRE

F
(k)
2 (y)dy)] +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

F
(k)
2 (x)dxdy =

= F k(rHPRE)[rHPRE − ρ− F k(rLPRE)(rLPRE − ρ)−
∫ rHPRE

rLPRE

F
(k)
2 (y)dy]+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rHPRE

F
(k)
2 (x)dxdy (A.1)

The high-reserve intermediary’s ex-ante expected profit can be written as:

profitHPRE(rHPRE) = F k(rLPRE)[kF k−1(rHPRE)(1− F (rHPRE))(rHPRE − ρ) +

∫ 1

rHPRE

(y − ρ)f
(k)
2 (y)dy]+

+ kF k−1(rLPRE)(1− F (rLPRE))[kF k−1(rHPRE)(1− F (rHPRE))(rHPRE − rLPRE) +

∫ 1

rHPRE

(y − rLPRE)f
(k)
2 (y)dy]+

+ kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPRE

(rHPRE − y)f
(k)
2 (y)dy +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

(y − x)f
(k)
2 (x)dxdy =

= F k(rLPRE)[(kF k−1(rHPRE)− kF k(rHPRE))(rHPRE − ρ) + 1− ρ−

− (rHPRE − ρ)(kF k−1(rHPRE)− (k − 1)F k(rHPRE)−
∫ 1

rHPRE

F
(k)
2 (y)dy]+

+ kF k−1(rLPRE)(1− F (rLPRE))kF k−1(rHPRE)(1− F (rHPRE))(rHPRE − rLPRE)+

+ [kF k−1(rLPRE)− kF k(rLPRE − kF k−1(rLPRE) + (k − 1)F k(rLPRE)]

∫ 1

rHPRE

(y − rLPRE)f
(k)
2 (y)dy+

+ kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPRE

(rHPRE − y)f
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy =
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= F k(rLPRE)[1− ρ− F k(rHPRE)(rHPRE − ρ)−
∫ 1

rHPRE

F
(k)
2 (y)dy]+

+ kF k−1(rLPRE)(1− F (rLPRE))kF k−1(rHPRE)(1− F (rHPRE))(rHPRE − rLPRE)−

− F k(rLPRE)

∫ 1

rLPRE

(y − rLPRE)f
(k)
2 (y)dy+

+ kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPRE

(rHPRE − y)f
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy =

= F k(rLPRE)[1− ρ− F k(rHPRE)(rHPRE − ρ)−
∫ 1

rHPRE

F
(k)
2 (y)dy−

− (1− rLPRE − (rHPRE − rLPRE)F
(k)
2 (rHPRE)−

∫ 1

rHPRE

F
(k)
2 (y)dy)]+

+ kF k−1(rHPRE)(1− F (rHPRE))[kF k−1(rLPRE)(1− F (rLPRE))(rHPRE − rLPRE)−

− (rHPRE − rLPRE)F
(k)
2 (rLPRE) +

∫ rHPRE

rLPRE

F
(k)
2 (y)dy] +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy =

= F k(rLPRE)[rLPRE − ρ− F k(rHPRE)(rHPRE − ρ) + F k2 (rHPRE)(rHPRE − rLPRE)]+

+ kF k−1(rHPRE)(1− F (rHPRE))[(kF k−1(rLPRE)− kF k(rLPRE)− kF k−1(rLPRE)+

+ (k − 1)F k−1(rLPRE))(rHPRE − rLPRE) +

∫ rHPRE

rLPRE

F
(k)
2 (y)dy]+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy =

= F k(rLPRE)[rLPRE − ρ− F k(rHPRE)(rHPRE − ρ) + F k2 (rHPRE)(rHPRE − rLPRE)]+

+ kF k−1(rHPRE)(1− F (rHPRE))[

∫ rHPRE

rLPRE

F
(k)
2 (y)dy − F k(rLPRE(rHPRE − rLPRE)]+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy =

= F k(rLPRE)[rLPRE − ρ− F k(rHPRE)(rHPRE − ρ) + F k(rHPRE)(rHPRE − rLPRE)]+

+ kF k−1(rHPRE)(1− F (rHPRE)

∫ rHPRE

rLPRE

F
(k)
2 (y)dy +

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy =

= F k(rLPRE)(1− F k(rHPRE))(rLPRE − ρ) + kF k−1(rHPRE)(1− F (rHPRE))

∫ rHPRE

rLPRE

F
(k)
2 (y)dy+

+

∫ 1

rHPRE

f
(k)
2 (y)

∫ y

rLPRE

F
(k)
2 (x)dxdy (A.2)



178 Appendix A Supplement for Chapter 5

A.2 Derivations for Duopoly POST - POST Intermediaries

with Reserve Prices

When both intermediaries implement POST mechanisms with equilibrium reserve prices

rLPOST = rHPOST = r∗POST = ρ+
1−F (r∗POST )

f(r∗POST ) , the center’s ex-ante expected revenue is:

revenuePOST (r∗POST ) =

∫ 1

r∗POST
yf

(2)
2 (y)dy+2F (r∗POST )(1−F (r∗POST )[r∗POST−

1− F (r∗POST
f(r∗POST

]

(A.3)

Taking the first-order derivative of this w.r.t. r∗POST yields

∂revenuePOST (r∗POST )

∂r∗POST
= −2r∗POST (1− F (r∗POST ))f(r∗POST ) + 2[f(r∗POST )(1− F (r∗POST ))−

− f(r∗POST )F (r∗POST )][r∗POST −
1− F (r∗POST )

f(r∗POST )
]

+ 2F (r∗POST )(1− F (r∗POST ))[1−
−f2(r∗POST )− (1− F (r∗POST ))f ′(r∗POST )

f2(r∗POST )
] =

= 2{−r∗POST f(r∗POST )F (r∗POST )− (1− F (r∗POST ))(1− 2F (r∗POST ))+

+ F (r∗POST )(1− F (r∗POST ))(2 +
(1− F (r∗POST ))f ′(r∗POST )

f2(r∗POST )
)}

= 2{F (r∗POST )[3(1− F (r∗POST ))− r∗POST f(r∗POST )]− (1− F (r∗POST ))2[1− F (r∗POST )
f ′(r∗POST )

f2(r∗POST )
]}

(A.4)

When both intermediaries implement POST mechanisms with reserve prices rLPOST ≤
rHPOST with k > 1 buyers each, then their ex-ante expected profits will be:
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profitLPOST (rLPOST ) = F k(rHPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rLPOST − ρ)+

+

∫ 1

rLPOST

(y − ρ)f
(k)
2 (y)dy] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

(y − x)f
(k)
1 (x)dxdy =

= F k(rHPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rLPOST − ρ) +

∫ 1

rLPOST

(y − ρ)f
(k)
2 (y)dy−

−
∫ 1

rHPOST

(y − rHPOST )f
(k)
2 (y)dy] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

F k(x)dxdy =

= F k(rHPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rLPOST − ρ) + 1− ρ− F (k)
2 (rLPOST )(rLPOST − ρ)−

−
∫ 1

rLPOST

F
(k)
2 (y)dy − (1− rHPOST −

∫ 1

rHPOST

F
(k)
2 (y)dy)] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

F k(x)dxdy =

= F k(rHPOST )[rHPOST − ρ− F k(rLPOST )(rLPOST − ρ)−
∫ rHPOST

rLPOST

F
(k)
2 (y)dy]+

+

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rHPOST

F k(x)dxdy (A.5)

profitHPOST (rHPOST ) = F k(rLPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rHPOST − ρ)+

+

∫ 1

rHPOST

(y − ρ)f
(k)
2 (y)dy] + kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPOST

(rHPOST − y)f
(k)
1 (y)dy+

+

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPOST

(y − x)f
(k)
1 (x)dxdy =

= F k(rLPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rHPOST − ρ) +

∫ 1

rHPOST

(y − ρ)f
(k)
2 (y)dy−

−
∫ 1

rHPOST

(y − rLPOST )f
(k)
2 (y)dy] + kF k−1(rHPOST )(1− F (rHPOST ))[

∫ rHPOST

rLPOST

F k(y)dy−

− F k(rLPOST )(rHPOST − rLPOST )] +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPOST

F k(x)dxdy =
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= F k(rLPOST )[kF k−1(rHPOST )(1− F (rHPOST ))(rHPOST − ρ) + 1− ρ− F (k)
2 (rHPOST )(rHPOST − ρ)−

−
∫ 1

rHPOST

F
(k)
2 (y)dy − (1− rLPOST − F

(k)
2 (rHPOST )(rHPOST − rLPOST )−

∫ 1

rHPOST

F
(k)
2 (y)dy)−

− kF k−1(rHPOST )(1− F (rHPOST ))(rHPOST − rLPOST )]+

+ kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPOST

F k(y)dy +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPOST

F k(x)dxdy =

= F k(rLPOST )[rLPOST − ρ− F k(rHPOST )(rHPOST − ρ) + F k(rHPOST )(rHPOST − rLPOST )]+

+ kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPOST

F k(y)dy +

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPOST

F k(x)dxdy =

= F k(rLPOST )(1− F k(rHPOST ))(rLPOST − ρ) + kF k−1(rHPOST )(1− F (rHPOST ))

∫ rHPOST

rLPOST

F k(y)dy+

+

∫ 1

rHPOST

f
(k)
2 (y)

∫ y

rLPOST

F k(x)dxdy (A.6)

Taking the first-order derivatives w.r.t. the reserve prices of the above equations yields:

∂profitLPOST (rLPOST )

∂rLPOST
= F k(rHPOST )[−kF k−1(rLPOST )f(rLPOST )(rLPOST − ρ)−

− F k(rLPOST ) + F
(k)
2 (rLPOST )] = −F k(rHPOST )[kF k−1(rLPOST )f(rLPOST )(rLPOST − ρ)+

+ F k(rLPOST )− kF k−1(rLPOST ) + (k − 1)F k(rLPOST )] =

= −kF k−1(rLPOST )F k(rHPOST )[f(rLPOST )(rLPOST − ρ) + F (rLPOST )− 1] (A.7)

∂profitHPOST (rHPOST )

∂rHPOST
= −kF k−1(rHPOST )f(rHPOST )F k(rLPOST )(rLPOST − ρ)+

+ [k(k − 1)F k−2(rHPOST )f(rHPOST )(1− F (rHPOST ))− kF k−1(rHPOST )f(rHPOST )]

∫ rHPOST

rLPOST

F k(y)dy+

+ kF k−1(rHPOST )(1− F (rHPOST ))F k(rHPOST )− f (k)
2 (rHPOST )

∫ rHPOST

rLPOST

F k(y)dy =

= −kF k−1(rHPOST )f(rHPOST )[F k(rLPOST )(rLPOST − ρ) +

∫ rHPOST

rLPOST

F k(y)dy]+

+ kF 2k−1(rHPOST )(1− F (rHPOST )) (A.8)

Taking the first-order derivative of the last equation w.r.t. rHPOST above yields:
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∂2profitHPOST (rHPOST )

∂(rHPOST )2
= k(2k − 1)F 2k−2(rHPOST )f(rHPOST )(1− F (rHPOST ))−

− kF 2k−1(rHPOST )f(rHPOST )− [k(k − 1)F k−2(rHPOST )f2(rHPOST )+

+ kF k−1(rHPOST )f ′(rHPOST )][F k(rLPOST )(rLPOST − ρ) +

∫ rHPOST

rLPOST

F k(y)dy]−

− kF k−1(rHPOST )f(rHPOST )F k(rHPOST ) =

= k(2k − 1)F 2k−2(rHPOST )(1− F (rHPOST ))f(rHPOST )− 2kF 2k−1(rHPOST )f(rHPOST )−

− [k(k − 1)F k−2(rHPOST )f2(rHPOST ) + kF k−1(rHPOST )f ′(rHPOST )][F k(rLPOST )(rLPOST − ρ)+

+

∫ rHPOST

rLPOST

F k(y)dy]− kF k−1(rHPOST )f(rHPOST )F k(rHPOST ) (A.9)

For rPOSTL = rHPOST = r∗POST = ρ+
1−F (r∗POST )

f(r∗POST ) the last equation yields:

∂2profitHPOST (rHPOST )

∂(rHPOST )2
|rPOSTL =rHPOST=r∗POST

= k(2k − 1)F 2k−2(r∗POST )(1− F (r∗POST ))f(r∗POST )−

− 2kF 2k−1(r∗POST )f(r∗POST )− k(k − 1)F 2k−2(r∗POST )f2(r∗POST )(r∗POST − ρ)−

− kF 2k−1(r∗POST )f ′(r∗POST )(r∗POST − ρ) =

= kF 2k−2(r∗POST )[(2k − 1)(1− F (r∗POST ))f(r∗POST )− 2F (r∗POST )f(r∗POST )−

− (k − 1)(1− F (r∗POST ))f(r∗POST )− kF (r∗POST )f ′(r∗POST )
1− F (r∗POST )

f(r∗POST )
] =

= kF 2k−2(r∗POST )[k(1− F (r∗POST ))f(r∗POST )− 2F (r∗POST )f(r∗POST )−

− kF (r∗POST )f ′(r∗POST )
1− F (r∗POST )

f(r∗POST )
] (A.10)

When both intermediaries set this reserve price, the center’s ex-ante expected revenue

is:

revenue(r∗POST ) = 2F k(r∗POST )(1− F k(r∗POST ))[r∗POST −
1− F (r∗POST )

f(r∗POST )
]+

+

∫ 1

r∗POST

2y(1− F k(y))kF k−1(y)f(y)dy (A.11)

Taking the first-order derivative w.r.t. r∗POST yields:
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∂revenue(r∗POST )

∂r∗POST
= 2{[kF k−1(r∗POST )(1− F k(r∗POST ))− kF k−1(r∗POST )F k(r∗POST )]f(r∗POST )r∗POST−

− k(1− 2F k(r∗POST ))(1− F (r∗POST ))− k(1− F k(r∗POST ))F k−1(r∗POST )f(r∗POST )+

+ F k(r∗POST )(1− F k(r∗POST ))[2 +
(1− F (r∗POST ))f ′(r∗POST )

f2(r∗POST )
]} =

= 2F k−1(r∗POST ){−kF k(r∗POST )f(r∗POST )r∗POST − k(1− F (r∗POST ))(1− 2F k(r∗POST ))+

+ F (r∗POST )(1− F k(r∗POST ))[2 +
(1− F (r∗POST ))f ′(r∗POST )

f2(r∗POST )
]} =

= 2F k−1(r∗POST ){kF k(r∗POST )[1− F (r∗POST )− r∗POST f(r∗POST )] + (1− F k(r∗POST ))[2F (r∗POST )−

− k(1− F (r∗POST )) + F (r∗POST )(1− F (r∗POST ))
f ′(r∗POST )

f2(r∗POST )
]} =

= 2F k−1(r∗POST ){kF k(r∗POST )[1− F (r∗POST )− r∗POST f(r∗POST )]− (1− F k(r∗POST ))[k−

− (k + 2)F (r∗POST )− F (r∗POST )(1− F (r∗POST ))
f ′(r∗POST )

f2(r∗POST )
]} (A.12)
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B.1 Derivations for Buyer PRE - PRE Duopoly Intermediary

Selection

In this section, we will show all the derivations used in Section 6.1.1. Wherever needed,

we will use the relationships between the highest- and second-highest-order statistics1

among K − 1 draws from a distribution F with density f , F
(K−1)
1 (·) and F

(K−1)
2 (·)

respectively, as well as their joint density, f
(K−1)
1,2 (·) (Krishna, 2010):

F
(K−1)
1 (y) = FK−1(y) (B.1)

f
(K−1)
1 (y) = (K − 1)FK−2(y)f(y) (B.2)

F
(K−1)
2 (y) = (K − 1)FK−2(y)− (K − 2)FK−1(y) (B.3)

f
(K−1)
2 (y) = (K − 1)(K − 2)(1− F (y))FK−3(y)f(y) (B.4)

f
(K−1)
1,2 (y1, y2) = (K − 1)(K − 2)f(y1)f(y2)FK−3(y2) = (K − 1)f(y1)f

(K−2)
1 (y2) (B.5)

B.1.1 Pure-Strategy Bayes-Nash Equilibria with Multiple Cut-Off Points

We consider m cut-off points w1, w2, ..., wk,m ≥ 1, where ΠL
PRE(wi) = ΠH

PRE(wi) so that

buyers switch their strategies, θ1, θ2, ..., θm+1 ∈ {0, 1} in the sub-intervals [rHPRE , w1),

[w1, w2), ..., [wk, 1]. Given that at rHPRE , the expected utility from the high-reserve

intermediary is zero, whereas for the low-reserve is, in general, positive, θ1 = 1 always.

In what follows, we provide a closed form representation of the expected utility from

both intermediaries and then take their difference ΠL
PRE − ΠH

PRE , which we denote D.

1In classical statistics, these are the K- and (K − 1)-order statistics, however economists tend to
denote these as the first- and second-order statistics respectively (we refer the reader, for example, to
Appendix C of Krishna (2010)).
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So, there are three cases: (i) valuations in the interval [rHPRE , w1), (ii) valuations in a

random interval [wλ, wλ+1], λ ∈ {1, ...,m − 1}, and (iii) valuations greater or equal to

the last cut-off point up to 1. Then, we can write the expected utilities as 2:

ΠL
PRE(rHPRE ≤ υ < w1) =

∫ υ

rLPRE

F
(K−1)
1 (y)dy + (K − 1)

m−1∑
i=1

{
(1− θi+1)(F (wi+1)−

− F (wi))

∫ υ

rHPRE

(υ − y)f
(K−2)
1 (y)dy

}
+ (K − 1)(1− θm+1)(1− F (wk))

∫ υ

rHPRE

(υ − y)f
(K−2)
1 (y)dy

(B.6)

ΠH
PRE(rHPRE ≤ υ < w1) = (υ − rHPRE)F

(K−1)
1 (rHPRE) + (K − 1)(υ − rHPRE)F

(K−2)
1 (rHPRE)[F (w)−

− F (rHPRE) +
m−1∑
i=1

{
θi+1(F (wi+1)− F (wi))

}
+ θm+1(1− F (wk))]

(B.7)

D0 = (ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w1) =

∫ υ

rLPRE

F
(K−1)
1 (y)dy − (υ − rHPRE)F

(K−1)
1 (rHPRE)−

− (K − 1)(υ − rHPRE)F
(K−2)
1 (rHPRE)[1− F (rHPRE)] + (K − 1)[

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+

+ (1− θm+1)(1− F (wk))]

∫ υ

rHPRE

F
(K−2)
1 (y)dy (B.8)

∂D0

∂υ
= F

(K−1)
1 (υ)− F (K−1)

1 (rHPRE)− (K − 1)F
(K−2)
1 (rHPRE)(1− F (rHPRE))+

+ (K − 1)[
m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+ (1− θm+1)(1− F (wk))]F

(K−2)
1 (υ)

(B.9)

∂2D0

∂υ2
= f

(K−1)
1 (υ) + (K − 1)[

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+

+ (1− θm+1)(1− F (wk))]f
(K−2)
1 (υ) ≥ 0 (B.10)

2For all double integrals, the outer part refers to y2 (second highest valuation) and the inner part to
y1 (highest valuation).
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ΠL
PRE(wλ ≤ υ < wλ+1) =

∫ w1

rLPRE

F
(K−1)
1 (y)dy + (υ − w1)F

(K−1)
1 (w1)+

+
λ−1∑
i=1

{
θi+1(υ − wi+1)F

(K−1)
1 (wi+1)

}
−
λ−1∑
i=1

{
θi+1(υ − wi)F (K−1)

1 (wi)

}
−

− θλ+1(υ − wλ)F
(K−1)
1 (wλ)+

+

λ−1∑
i=1

{
θi+1

∫ wi+1

wi

F
(K−1)
1 (y)dy

}
+ θλ+1

∫ υ

wλ

F
(K−1)
1 (y)dy+

+ (K − 1)

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

∫ w1

rHPRE

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)(1− θm+1)(1− F (wk))

∫ w1

rHPRE

(υ − y)f
(K−2)
1 (y)dy+

+ (K − 1)

λ−1∑
j=1

{
θj+1(1− θj+1)

∫ wj+1

wj

(υ − y)(F (wj+1)− F (y))f
(K−2)
1 (y)dy

}
+

+ (K − 1)

λ−1∑
j=1

m−1∑
i=j+1

{
θj+1(1− θi+1)(F (wi+1)− F (wi))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)

λ−1∑
j=1

{
θj+1(1− θm+1)(1− F (wk))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)θλ+1(1− θλ+1)

∫ υ

wλ

(υ − y)(F (wλ+1)− F (y))f
(K−2)
1 (y)dy+

+ (K − 1)

m−1∑
i=λ+1

{
θλ+1(1− θi+1)(F (wi+1)− F (wi))

∫ υ

wλ

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)θλ+1(1− θm+1)(1− F (wk))

∫ υ

wλ

(υ − y)f
(K−2)
1 (y)dy (B.11)

ΠH
PRE(wλ ≤ υ < wλ+1) = (υ − rHPRE)F

(K−1)
1 (rHPRE) +

λ−1∑
i=1

(1− θi+1)(υ − wi+1)F
(K−1)
1 (wi+1)−

−
λ−1∑
i=1

(1− θi+1)(υ − wi)F (K−1)
1 (wi)− (1− θλ+1)(υ − wλ)F

(K−1)
1 (wλ)+

+ (K − 1)(υ − rHPRE)F
(K−2)
1 (rHPRE)[F (w1)− F (rHPRE) +

m−1∑
i=1

θi+1(F (wi+1)− F (wi))+

+ θm+1(1− F (wk))] +
λ−1∑
i=1

(1− θi+1)

∫ wi+1

wi

F
(K−1)
1 (y)dy + (1− θλ+1)

∫ υ

wλ

F
(K−1)
1 (y)dy+
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+ (K − 1)

λ−1∑
j=1

{
(1− θj+1)θj+1

∫ wj+1

wj

(υ − y)(F (wj+1)− F (y))f
(K−2)
1 (y)dy

}
+

+ (K − 1)

λ−1∑
j=1

m−1∑
i=j+1

{
(1− θj+1)θi+1(F (wi+1)− F (wi))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)

λ−1∑
j=1

{
(1− θj+1)θm+1(1− F (wk))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)(1− θλ+1)θλ+1

∫ υ

wλ

(υ − y)(F (wλ+1)− F (y))f
(K−2)
1 (y)dy+

+ (K − 1)

m−1∑
i=λ+1

{
(1− θλ+1)θi+1(F (wi+1)− F (wi))

∫ υ

wλ

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)(1− θλ+1)θm+1(1− F (wk))

∫ υ

wλ

(υ − y)f
(K−2)
1 (y)dy (B.12)

Dλ = (ΠL
PRE −ΠH

PRE)(wλ < υ ≤ wλ+1) =

∫ w1

rLPRE

F
(K−1)
1 (y)dy − (υ − rHPRE)F

(K−1)
1 (rHPRE)+

+ (υ − w1)F
(K−1)
1 (w1) +

λ−1∑
i=1

{
(2θi+1 − 1)[(υ − wi+1)F

(K−1)
1 (wi+1)− (υ − wi)F (K−1)

1 (wi)]

}
−

− (2θλ+1 − 1)(υ − wλ)F
(K−1)
1 (wλ)− (K − 1)(υ − rHPRE)F

(K−2)
1 (rHPRE)[1− F (rHPRE)]+

+
λ−1∑
i=1

{
(2θi+1 − 1)

∫ wi+1

wi

F
(K−1)
1 (y)dy

}
+ (2θλ+1 − 1)

∫ υ

wλ

F
(K−1)
1 (y)dy+

+ (K − 1)[(υ − w1)F
(K−2)
1 (w1) +

∫ w1

rHPRE

F
(K−2)
1 (y)dy][

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+

+ (1− θm+1)(1− F (wk))]+

+ (K − 1)
λ−1∑
j=1

m−1∑
i=j+1

{
(θj+1 − θi+1)(F (wi+1)− F (wi))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)

λ−1∑
j=1

{
(θj+1 − θm+1)(1− F (wk))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)
m−1∑
i=λ+1

{
(θλ+1 − θi+1)(F (wi+1)− F (wi))

∫ υ

wλ

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)(θλ+1 − θm+1)(1− F (wk))

∫ υ

wλ

(υ − y)f
(K−2)
1 (y)dy (B.13)
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∂Dλ

∂υ
= −F (K−1)

1 (rHPRE) + F
(K−1)
1 (w1) +

λ−1∑
i=1

{
(2θi+1 − 1)[F

(K−1)
1 (wi+1)− F (K−1)

1 (wi)]

}
−

− (2θλ+1 − 1)F
(K−1)
1 (wλ)− (K − 1)F

(K−2)
1 (rHPRE)(1− F (rHPRE)) + (2θλ+1 − 1)F

(K−1)
1 (υ)+

+ (K − 1)F
(K−2)
1 (w1)[

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+ (1− θm+1)(1− F (wk))]+

+ (K − 1)
λ−1∑
j=1

m−1∑
i=j+1

{
(θj+1 − θi+1)(F (wi+1)− F (wi))

∫ wj+1

wj

f
(K−2)
1 (y)dy

}
+

+ (K − 1)
λ−1∑
j=1

{
(θj+1 − θm+1)(1− F (wk))

∫ wj+1

wj

f
(K−2)
1 (y)dy

}
+

+ (K − 1)
m−1∑
i=λ+1

{
(θλ+1 − θi+1)(F (wi+1)− F (wi))

∫ υ

wλ

f
(K−2)
1 (y)dy

}
+

+ (K − 1)(θλ+1 − θm+1)(1− F (wk))

∫ υ

wλ

f
(K−2)
1 (y)dy (B.14)

∂2Dλ

∂υ2
= (2θλ+1 − 1)f

(K−1)
1 (υ) + (K − 1)[

m−1∑
i=λ+1

{
(θλ+1 − θi+1)(F (wi+1)− F (wi))

}
+

+ (θλ+1 − θm+1)(1− F (wk))]f
(K−2)
1 (υ) (B.15)

ΠL
PRE(υ ≥ wk) =

∫ w1

rLPRE

F
(K−1)
1 (y)dy + (υ − w1)F

(K−1)
1 (w1)+

+
m−1∑
i=1

{
θi+1(υ − wi+1)F

(K−1)
1 (wi+1)

}
−
m−1∑
i=1

{
θi+1(υ − wi)F (K−1)

1 (wi)

}
−

− θm+1(υ − wk)F
(K−1)
1 (wk) +

m−1∑
i=1

{
θi+1

∫ wi+1

wi

F
(K−1)
1 (y)dy

}
+ θm+1

∫ υ

wk

F
(K−1)
1 (y)dy+

+ (K − 1)

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

∫ w1

rHPRE

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)(1− θm+1)(1− F (wk))

∫ w1

rHPRE

(υ − y)f
(K−2)
1 (y)dy+

+ (K − 1)
m−1∑
j=1

{
θj+1(1− θj+1)

∫ wj+1

wj

(υ − y)(F (wj+1)− F (y))f
(K−2)
1 (y)dy

}
+

+ (K − 1)

m−1∑
j=1

m−1∑
i=j+1

{
θj+1(1− θi+1)(F (wi+1)− F (wi))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+
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+ (K − 1)
m−1∑
j=1

{
θj+1(1− θm+1)(1− F (wk))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+ (K − 1)θm+1(1− θm+1)

∫ υ

wk

(υ − y)(1− F (y))f
(K−2)
1 (y)dy (B.16)

ΠH
PRE(υ ≥ wk) = (υ − rHPRE)F

(K−1)
1 (rHPRE) +

m−1∑
i=1

(1− θi+1)(υ − wi+1)F
(K−1)
1 (wi+1)−

−
m−1∑
i=1

(1− θi+1)(υ − wi)F (K−1)
1 (wi)− (1− θm+1)(υ − wk)F

(K−1)
1 (wk)+

+ (K − 1)(υ − rHPRE)F
(K−2)
1 (rHPRE)[F (w1)− F (rHPRE) +

m−1∑
i=1

θi+1(F (wi+1)− F (wi))+

+ θm+1(1− F (wk))] +

m−1∑
i=1

(1− θi+1)

∫ wi+1

wi

F
(K−1)
1 (y)dy + (1− θm+1)

∫ υ

wk

F
(K−1)
1 (y)dy+

+ (K − 1)

m−1∑
j=1

{
(1− θj+1)θj+1

∫ wj+1

wj

(υ − y)(F (wj+1)− F (y))f
(K−2)
1 (y)dy

}
+

+ (K − 1)
m−1∑
j=1

m−1∑
i=j+1

{
(1− θj+1)θi+1(F (wi+1)− F (wi))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)

m−1∑
j=1

{
(1− θj+1)θm+1(1− F (wk))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)(1− θm+1)θm+1

∫ υ

wk

(υ − y)(1− F (y))f
(K−2)
1 (y)dy (B.17)

Dk = (ΠL
PRE −ΠH

PRE)(υ > wk) =

∫ w1

rLPRE

F
(K−1)
1 (y)dy − (υ − rHPRE)F

(K−1)
1 (rHPRE)+

+ (υ − w1)F
(K−1)
1 (w1) +

m−1∑
i=1

{
(2θi+1 − 1)[(υ − wi+1)F

(K−1)
1 (wi+1)− (υ − wi)F (K−1)

1 (wi)]

}
−

− (2θm+1 − 1)(υ − wk)F
(K−1)
1 (wk)− (K − 1)(υ − rHPRE)F

(K−2)
1 (rHPRE)[1− F (rHPRE)]+

+
m−1∑
i=1

{
(2θi+1 − 1)

∫ wi+1

wi

F
(K−1)
1 (y)dy

}
+ (2θm+1 − 1)

∫ υ

wk

F
(K−1)
1 (y)dy+

+ (K − 1)[(υ − w1)F
(K−2)
1 (w1) +

∫ w1

rHPRE

F
(K−2)
1 (y)dy][

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+

+ (1− θm+1)(1− F (wk))]+
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+ (K − 1)
m−1∑
j=1

m−1∑
i=j+1

{
(θj+1 − θi+1)(F (wi+1)− F (wi))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
+

+ (K − 1)

m−1∑
j=1

{
(θj+1 − θm+1)(1− F (wk))

∫ wj+1

wj

(υ − y)f
(K−2)
1 (y)dy

}
(B.18)

∂Dk

∂υ
= −F (K−1)

1 (rHPRE) + F
(K−1)
1 (w1) +

m−1∑
i=1

{
(2θi+1 − 1)[F

(K−1)
1 (wi+1)− F (K−1)

1 (wi)]

}
−

− (2θm+1 − 1)F
(K−1)
1 (wk)− (K − 1)F

(K−2)
1 (rHPRE)(1− F (rHPRE)) + (2θm+1 − 1)F

(K−1)
1 (υ)+

+ (K − 1)F
(K−2)
1 (w1)[

m−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+ (1− θm+1)(1− F (wk))]+

+ (K − 1)

m−1∑
j=1

m−1∑
i=j+1

{
(θj+1 − θi+1)(F (wi+1)− F (wi))

∫ wj+1

wj

f
(K−2)
1 (y)dy

}
+

+ (K − 1)
m−1∑
j=1

{
(θj+1 − θm+1)(1− F (wk))

∫ wj+1

wj

f
(K−2)
1 (y)dy

}
(B.19)

∂2Dk

∂υ2
= (2θm+1 − 1)f

(K−1)
1 (υ) (B.20)

B.1.2 Mixed-Strategy Bayes-Nash Equilibria with Arbitrary Pure Strate-

gies Before and After Randomizing

Suppose that buyers follow a pure strategy θ(υ) = θp(υ) for valuations υ ∈ [rHPRE , w),

a mixed strategy θ(υ) = θm(υ) ∈ (0, 1) for valuations υ ∈ [w, a], and a pure strategy

θ(υ) = θ∗(υ) for all υ ∈ (a, 1]. Then, the expected utility of a buyer with valuation

υ ∈ [w, a] from the low- and high-reserve intermediary, ΠL
PRE and ΠH

PRE respectively,

will be:
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ΠL
PRE(w ≤ υ ≤ a) = (υ − rLPRE)FK−1(rLPRE) +

∫ rHPRE

rLPRE

(υ − y)f
(K−1)
1 (y)dy+

+

∫ w

rHPRE

(υ − y)θp(y)f
(K−1)
1 (y)dy +

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy+

+

∫ w

rHPRE

∫ w

y2

(υ − y2)(1− θp(y1))θp(y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ a

w
(υ − y2)(1− θm(y1))θp(y2)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)(1− θ∗(y1))θp(y2)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(1− θm(y1))θm(y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)(1− θ∗(y1))θm(y2)f

(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ rHPRE

rLPRE

FK−1(y)dy + (υ − rHPRE)FK−1(rHPRE)+

+

∫ w

rHPRE

(υ − y)θp(y)f
(K−1)
1 (y)dy +

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy+

+

∫ w

rHPRE

∫ w

y2

(υ − y2)(1− θp(y1))θp(y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ a

w
(υ − y2)(1− θm(y1))θp(y2)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)(1− θ∗(y1))θp(y2)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(1− θm(y1))θm(y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)(1− θ∗(y1))θm(y2)f

(K−1)
1,2 (y1, y2)dy1dy2 (B.21)
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ΠH
PRE(w ≤ υ ≤ a) = (υ − rHPRE)FK−1(rHPRE)+

+

∫ w

rHPRE

(υ − y)(1− θp(y))f
(K−1)
1 (y)dy +

∫ υ

w
(υ − y)(1− θm(y))f

(K−1)
1 (y)dy+

+ (K − 1)(υ − rHPRE)FK−2(rHPRE)[

∫ w

rHPRE

θp(y)f(y)dy +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]+

+

∫ w

rHPRE

∫ w

y2

(υ − y2)θp(y1)(1− θp(y2))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ a

w
(υ − y2)θm(y1)(1− θp(y2))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)θ∗(y1)(1− θp(y2))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)θm(y1)(1− θm(y2))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)θ∗(y1)(1− θm(y2))f

(K−1)
1,2 (y1, y2)dy1dy2 (B.22)

Hence, their difference will be:

(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a) =

∫ rHPRE

rLPRE

FK−1(y)dy+

+

∫ w

rHPRE

(υ − y)(2θp(y)− 1)f
(K−1)
1 (y)dy +

∫ υ

w
(υ − y)(2θm(y)− 1)f

(K−1)
1 (y)dy−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[

∫ w

rHPRE

θp(y)f(y)dy +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]+

+

∫ w

rHPRE

∫ w

y2

(υ − y2)(θp(y2)− θp(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ a

w
(υ − y2)(θp(y2)− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)(θp(y2)− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)(θm(y2)− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2 (B.23)
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Taking the first and second derivatives of the utility difference ΠL
PRE −ΠH

PRE yields the

following equations:

∂(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a)

∂υ
=

∫ w

rHPRE

(2θp(y)− 1)f
(K−1)
1 (y)dy +

∫ υ

w
(2θm(y)− 1)f

(K−1)
1 (y)dy−

− (K − 1)FK−2(rHPRE)[

∫ w

rHPRE

θp(y)f(y)dy +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]+

+

∫ w

rHPRE

∫ w

y2

(θp(y2)− θp(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ a

w
(θp(y2)− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(θp(y2)− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(θm(y2)− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2 (B.24)

∂2(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a)

∂υ2
= (2θm(υ)− 1)f

(K−1)
1 (υ)+

+

∫ a

υ
(θm(υ)− θm(y))f

(K−1)
1,2 (y, υ)dy +

∫ 1

a
(θm(υ)− θ∗(y))f

(K−1)
1,2 (y, υ)dy =

= (2θm(υ)− 1)f
(K−1)
1 (υ) + θm(υ)

∫ 1

υ
f

(K−1)
1,2 (y, υ)dy−

−
∫ a

υ
θm(y)f

(K−1)
1,2 (y, υ)dy −

∫ 1

a
θ∗(y)f

(K−1)
1,2 (y, υ)dy =

= (K − 1)(2θm(υ)− 1)FK−2(υ)f(υ) + (K − 1)(K − 2)θm(υ)f(υ)FK−3(υ)(1− F (υ))−

− (K − 1)(K − 2)f(υ)FK−3(υ)[

∫ a

υ
θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy] =

= (K − 1)f(υ)FK−3(υ){θm(υ)[2F (υ) + (K − 2)(1− F (υ))]− F (υ)−

− (K − 2)[

∫ a

υ
θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]} (B.25)

B.1.3 Mixed-Strategy Bayes-Nash Equilibria with Multiple Cut-Off

Points Before Randomizing

In what follows, we will analytically derive the closed-form expression of the expected

utilities from the low-reserve and high-reserve intermediary, ΠL
PRE and ΠH

PRE respec-

tively, when buyers follow a pure strategy θ(υ) = θ1 = 1 for all υ ∈ [rHPRE , w1), θ(υ) =

θ2 = 0 for all υ ∈ [w1, w2) and so on, θ(υ) = θσ′ ∈ {0, 1} for all υ ∈ [wσ′−1, wσ′), and

then a mixed strategy θ(υ) = θm(υ) ∈ (0, 1) for all υ ∈ [w, a], and θ(υ) = θ∗(υ) ∈ {0, 1}
if υ ∈ (a, 1].
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For a buyer whose valuation υ ∈ [wλ, wλ+1) for some λ = 1, ..., σ′ − 1, the expected

utilities from the low- and high-reserve intermediaries will be:

ΠL
PRE(wλ ≤ υ < wλ+1) = (υ − rLPRE)FK−1(rLPRE) +

∫ w1

rLPRE

(υ − y)f
(K−1)
1 (y)dy+

+
λ−1∑
i=1

θi+1

∫ wi+1

wi

(υ − y)f
(K−1)
1 (y)dy + θλ+1

∫ υ

wλ

(υ − y)f
(K−1)
1 (y)dy+

+

∫ w1

rHPRE

∫ w1

y2

(υ − y2)(1− 1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
σ′−1∑
i=1

{
(1− θi+1)

∫ w1

rHPRE

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ w1

rHPRE

∫ a

wσ′

(υ − y2)(1− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w1

rHPRE

∫ 1

a
(υ − y2)(1− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+
λ−1∑
j=1

{
(1− θj+1)θj+1

∫ wj+1

wj

∫ wj+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
σ′−1∑
i=j+1

{
(1− θi+1)θj+1

∫ wj+1

wj

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+ θj+1

∫ wj+1

wj

∫ a

wσ′

(υ − y2)(1− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+ θj+1

∫ wj+1

wj

∫ 1

a
(υ − y2)(1− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2

}
+

+ (1− θλ+1)θλ+1

∫ υ

wλ

∫ wλ+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

σ′−1∑
i=λ+1

{
(1− θi+1)θλ+1

∫ υ

wλ

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+ θλ+1

∫ υ

wλ

∫ a

wσ′

(υ − y2)(1− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+ θλ+1

∫ υ

wλ

∫ 1

a
(υ − y2)(1− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2 (B.26)
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ΠH
PRE(wλ ≤ υ < wλ+1) = (υ − rHPRE)FK−1(rHPRE) +

λ−1∑
i=1

{
(1− θi+1)

∫ wi+1

wi

(υ − y)f
(K−1)
1 (y)dy

}
+

+ (1− θλ+1)

∫ υ

wλ

(υ − y)f
(K−1)
1 (y)dy + (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w1)− F (rHPRE)+

+
σ′−1∑
i=1

{
θi+1(F (wi+1)− F (wi))

}
+

∫ a

w′σ

θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]+

+

∫ w1

rHPRE

∫ w1

y2

(υ − y2)(1− 1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
σ′−1∑
i=1

{
θi+1

∫ w1

rHPRE

∫ wi+1

wi

(υ − y2)(1− 1)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ w1

rHPRE

∫ a

wσ′

(υ − y2)θm(y1)(1− 1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w1

rHPRE

∫ 1

a
(υ − y2)θ∗(y1)(1− 1)f

(K−1)
1,2 (y1, y2)dy1dy2+

+
λ−1∑
j=1

{
θj+1(1− θj+1)

∫ wj+1

wj

∫ wj+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
σ′−1∑
i=j+1

{
θi+1(1− θj+1)

∫ wj+1

wj

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+ (1− θj+1)

∫ wj+1

wj

∫ a

wσ′

(υ − y2)θm(y1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+ (1− θj+1)

∫ wj+1

wj

∫ 1

a
(υ − y2)θ∗(y1)f

(K−1)
1,2 (y1, y2)dy1dy2

}
+

+ θλ+1(1− θλ+1)

∫ υ

wλ

∫ wλ+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
σ′−1∑
i=λ+1

{
θi+1(1− θλ+1)

∫ υ

wλ

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+ (1− θλ+1)

∫ υ

wλ

∫ a

w′σ

(υ − y2)θm(y1)f
(K−1)
1,2 (y1, y2)dy1dy2+

+ (1− θλ+1)

∫ υ

wλ

∫ 1

a
(υ − y2)θ∗(y1)f

(K−1)
1,2 (y1, y2)dy1dy2 (B.27)
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So, their difference will be:

(ΠL
PRE −ΠH

PRE)(wλ ≤ υ < wλ+1) =

∫ w1

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE)+

+ (υ − w1)FK−1(w1)− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w1)− F (rHPRE)+

+

σ′−1∑
i=1

{
θi+1(F (wi+1)− F (wi))

}
+

∫ a

w′σ

θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]+

+
λ−1∑
i=1

(2θi+1 − 1)

∫ wi+1

wi

(υ − y)f
(K−1)
1 (y)dy + (2θλ+1 − 1)

∫ υ

wλ

(υ − y)f
(K−1)
1 (y)dy+

+
σ′−1∑
i=1

{
(1− θi+1)

∫ w1

rHPRE

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ w1

rHPRE

∫ a

wσ′

(υ − y2)(1− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w1

rHPRE

∫ 1

a
(υ − y2)(1− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+
λ−1∑
j=1

{ σ′−1∑
i=j+1

{
(θj+1 − θi+1)

∫ wj+1

wj

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ wj+1

wj

∫ a

wσ′

(υ − y2)(θj+1 − θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ wj+1

wj

∫ 1

a
(υ − y2)(θj+1 − θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

σ′−1∑
i=λ+1

{
(θλ+1 − θi+1)

∫ υ

wλ

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ υ

wλ

∫ a

wσ′

(υ − y2)(θλ+1 − θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

wλ

∫ 1

a
(υ − y2)(θλ+1 − θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2 (B.28)
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Taking the first- and second-order derivatives of this utility difference then yields:

∂(ΠL
PRE −ΠH

PRE)(wλ ≤ υ < wλ+1)

∂υ
= −FK−1(rHPRE) + FK−1(w1)− (K − 1)FK−2(rHPRE)[F (w1)− F (rHPRE)+

+
σ′−1∑
i=1

{
θi+1(F (wi+1)− F (wi))

}
+

∫ a

w′σ

θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]+

+

λ−1∑
i=1

{
(2θi+1 − 1)

∫ wi+1

wi

f
(K−1)
1 (y)dy

}
+ (2θλ+1 − 1)

∫ υ

wλ

f
(K−1)
1 (y)dy+

+
σ′−1∑
i=1

{
(1− θi+1)

∫ w1

rHPRE

∫ wi+1

wi

f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ w1

rHPRE

∫ a

wσ′

(1− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w1

rHPRE

∫ 1

a
(1− θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

λ−1∑
j=1

{ σ′−1∑
i=j+1

{
(θj+1 − θi+1)

∫ wj+1

wj

∫ wi+1

wi

f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ wj+1

wj

∫ a

wσ′

(θj+1 − θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ wj+1

wj

∫ 1

a
(θj+1 − θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

σ′−1∑
i=λ+1

{
(θλ+1 − θi+1)

∫ υ

wλ

∫ wi+1

wi

f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ υ

wλ

∫ a

wσ′

(θλ+1 − θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

wλ

∫ 1

a
(θλ+1 − θ∗(y1))f

(K−1)
1,2 (y1, y2)dy1dy2 (B.29)

∂2(ΠL
PRE −ΠH

PRE)(wλ ≤ υ < wλ+1)

∂υ2
= (2θλ+1 − 1)f

(K−1)
1 (υ)+

+

σ′−1∑
i=λ+1

{
(θλ+1 − θi+1)

∫ wi+1

wi

f
(K−1)
1,2 (y, υ)dy

}
+

+

∫ a

wσ′

(θλ+1 − θm(y))f
(K−1)
1,2 (y, υ)dy +

∫ 1

a
(θλ+1 − θ∗(y))f

(K−1)
1,2 (y, υ)dy =

= (K − 1)FK−2(υ)f(υ)(2θλ+1 − 1)+

+ (K − 1)(K − 2)FK−3(υ)f(υ)
σ′−1∑
i=λ+1

{
(θλ+1 − θi+1)(F (wi+1)− F (wi))

}
+

+ (K − 1)(K − 2)FK−3(υ)f(υ)[θλ+1

∫ 1

wσ′

f(y)dy −
∫ a

wσ′

θm(y)f(y)dy −
∫ 1

a
θ∗(y)f(y)dy] =
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= (K − 1)FK−3(υ)f(υ){(2θλ+1 − 1)F (υ)+

+ (K − 2)[

σ′−1∑
i=λ+1

{
(θλ+1 − θi+1)(F (wi+1)− F (wi))

}
+ θλ+1(1− F (wσ′))−

−
∫ a

wσ′

θm(y)f(y)dy −
∫ 1

a
θ∗(y)f(y)dy]} (B.30)

This means that when θλ+1 = 1, the corresponding utility difference is convex, whereas

when θλ+1 = 0, it is concave.

Similarly, for the special case where υ ∈ [rHPRE , w1), the corresponding utility difference

and its second order derivative (given that θ1 = 1 always) will be:

(ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w1) =

∫ υ

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE)−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w1)− F (rHPRE) +
σ′−1∑
i=1

{
θi+1(F (wi+1)− F (wi))

}
+

+

∫ a

w′σ

θm(y)f(y)dy +

∫ 1

a
θ∗(y)f(y)dy]+

+
σ′−1∑
i=1

{
(1− θi+1)

∫ υ

rHPRE

∫ wi+1

wi

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ υ

rHPRE

∫ 1

wσ′

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2−

−
∫ υ

rHPRE

∫ a

wσ′

(υ − y2)θm(y1)f
(K−1)
1,2 (y1, y2)dy1dy2−

−
∫ υ

rHPRE

∫ 1

a
(υ − y2)θ∗(y1)f

(K−1)
1,2 (y1, y2)dy1dy2 (B.31)

∂2(ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w1)

∂υ2
= (K − 1)FK−3(υ)f(υ){F (υ)+

+ (K − 2)[

σ′−1∑
i=1

{
(1− θi+1)(F (wi+1)− F (wi))

}
+ 1− F (wσ′)−

−
∫ a

wσ′

θm(y)f(y)dy −
∫ 1

a
θ∗(y)f(y)dy]} ≥ 0 (B.32)

B.1.4 Mixed-Strategy Bayes-Nash Equilibria with Multiple Cut-Off

Points After Randomizing

In what follows, we will analytically derive the closed-form expression of the expected

utilities from the low-reserve and high-reserve intermediary, ΠL
PRE and ΠH

PRE respec-

tively, when buyers follow a pure strategy θ(υ) = 1 for all υ ∈ [rHPRE , w), a mixed
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strategy θ(υ) = θm(υ) ∈ (0, 1) for all υ ∈ [w, a1], and, in the general case, then fol-

low pure strategies θ(υ) = θ∗(υ) for all υ ∈ (a1, 1], so that θ∗(υ) = θ∗1 if υ ∈ (a1, a2),

θ∗(υ) = θ∗2 if υi ∈ [a2, a3) and so on, θ∗(υ) = θ∗m′ if υ ∈ [am′ , 1], where θ∗i ∈ {0, 1} and

θ∗i 6= θ∗i+1, ∀i ∈ {1, ...,m′}.

For a buyer whose valuation υ ∈ [aλ, aλ+1) for some λ = 1, ...,m′, the expected utilities

from the low- and high-reserve intermediaries will be (we use the convention that am′+1 =

1 for notational convenience):

ΠL
PRE(aλ ≤ υ < aλ+1) =

∫ w

rLPRE

FK−1(y)dy + (υ − w)FK−1(w)+

+

∫ a1

w
(υ − y)θm(y)f

(K−1)
1 (y)dy +

λ−1∑
i=1

{
θ∗i

∫ ai+1

ai

(υ − y)f
(K−1)
1 (y)dy

}
+

+ θ∗λ

∫ υ

aλ

(υ − y)f
(K−1)
1 (y)dy +

∫ w

rHPRE

∫ a1

w
(υ − y2)(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+
m′∑
i=1

{
(1− θ∗i )

∫ w

rHPRE

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ a1

w

∫ a1

y2

(υ − y2)(1− θm(y1))θm(y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+
m′∑
i=1

{
(1− θ∗i )

∫ a1

w

∫ ai+1

ai

(υ − y2)θm(y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+
λ−1∑
j=1

{
(1− θ∗j )θ∗j

∫ aj+1

aj

∫ aj+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+ θ∗j

m′∑
i=j+1

{
(1− θ∗i )

∫ aj+1

aj

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}}
+

+ (1− θ∗λ)θ∗λ

∫ υ

aλ

∫ aλ+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+ θ∗λ

m′∑
i=λ+1

{
(1− θ∗i )

∫ υ

aλ

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
(B.33)

ΠH
PRE(aλ ≤ υ < aλ+1) = (υ − rHPRE)FK−1(rHPRE) + (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE)+

+

∫ a1

w
θm(y)f(y)dy +

m′∑
i=1

{
θ∗i (F (ai+1)− F (ai))

}
] +

∫ a1

w
(υ − y)(1− θm(y))f

(K−1)
1 (y)dy+

+
λ−1∑
i=1

{
(1− θ∗i )

∫ ai+1

ai

(υ − y)f
(K−1)
1 (y)dy

}
+ (1− θ∗λ)

∫ υ

aλ

(υ − y)f
(K−1)
1 (y)dy+

+

∫ a1

w

∫ a1

y2

(υ − y2)θm(y1)(1− θm(y2))f
(K−1)
1,2 (y1, y2)dy1dy2+
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+

m′∑
i=1

{
θ∗i

∫ a1

w

∫ ai+1

ai

(υ − y2)(1− θm(y2))f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+
λ−1∑
j=1

{
θ∗j (1− θ∗j )

∫ aj+1

aj

∫ aj+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+ (1− θ∗j )
m′∑

i=j+1

{
θ∗i

∫ aj+1

aj

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}}
+

+ θ∗λ(1− θ∗λ)

∫ υ

aλ

∫ aλ+1

y2

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+ (1− θ∗λ)
m′∑

i=λ+1

{
θ∗i

∫ υ

aλ

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
(B.34)

So, their difference will be:

(ΠL
PRE −ΠH

PRE)(aλ ≤ υ < aλ+1) =

∫ w

rLPRE

FK−1(y)dy + (υ − w)FK−1(w)− (υ − rHPRE)FK−1(rHPRE)−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a1

w
θm(y)f(y)dy+

+
m′∑
i=1

{
θ∗i (F (ai+1)− F (ai))

}
] +

∫ a1

w
(υ − y)(2θm(y)− 1)f

(K−1)
1 (y)dy+

+
λ−1∑
i=1

{
(2θ∗i − 1)

∫ ai+1

ai

(υ − y)f
(K−1)
1 (y)dy

}
+ (2θ∗λ − 1)

∫ υ

aλ

(υ − y)f
(K−1)
1 (y)dy+

+

∫ w

rHPRE

∫ a1

w
(υ − y2)(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+
m′∑
i=1

{
(1− θ∗i )

∫ w

rHPRE

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ a1

w

∫ a1

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

m′∑
i=1

{∫ a1

w

∫ ai+1

ai

(υ − y2)(θm(y2)− θ∗i )f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

λ−1∑
j=1

m′∑
i=j+1

{
(θ∗j − θ∗i )

∫ aj+1

aj

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

m′∑
i=λ+1

{
(θ∗λ − θ∗i )

∫ υ

aλ

∫ ai+1

ai

(υ − y2)f
(K−1)
1,2 (y1, y2)dy1dy2

}
(B.35)
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and its first and second order derivatives will have the following form:

∂(ΠL
PRE −ΠH

PRE)(aλ ≤ υ < aλ+1)

∂υ
= FK−1(w)− FK−1(rHPRE)−

− (K − 1)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a1

w
θm(y)f(y)dy +

∫ 1

a1

θ∗(y)f(y)dy]+

+

∫ a1

w
(2θm(y)− 1)f

(K−1)
1 (y)dy +

λ−1∑
i=1

{
(2θ∗i − 1)

∫ ai+1

ai

f
(K−1)
1 (y)dy

}
+

+ (2θ∗λ − 1)

∫ υ

aλ

f
(K−1)
1 (y)dy+

+

∫ w

rHPRE

∫ a1

w
(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+
m′∑
i=1

{
(1− θ∗i )

∫ w

rHPRE

∫ ai+1

ai

f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

∫ a1

w

∫ a1

y2

(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

m′∑
i=1

{∫ a1

w

∫ ai+1

ai

(θm(y2)− θ∗i )f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+
λ−1∑
j=1

m′∑
i=j+1

{
(θ∗j − θ∗i )

∫ aj+1

aj

∫ ai+1

ai

f
(K−1)
1,2 (y1, y2)dy1dy2

}
+

+

m′∑
i=λ+1

{
(θ∗λ − θ∗i )

∫ υ

aλ

∫ ai+1

ai

f
(K−1)
1,2 (y1, y2)dy1dy2

}
(B.36)

∂2(ΠL
PRE −ΠH

PRE)(aλ ≤ υ < aλ+1)

∂υ2
= (2θ∗λ − 1)f

(K−1)
1 (υ)+

+ (K − 1)(K − 2)

m′∑
i=λ+1

(θ∗λ − θ∗i )
∫ ai+1

ai

f(y)f(υ)FK−3(υ)dy =

= (K − 1)FK−3(υ)f(υ)[(2θ∗λ − 1)F (υ) + (K − 2)
m′∑

i=λ+1

(θ∗λ − θ∗i )(F (ai+1)− F (ai))]

(B.37)

B.1.5 Mixed-Strategy Bayes-Nash Equilibria with Two Cut-Off Points

We will now derive the closed-form expression of the expected utilities from the low-

reserve and high-reserve intermediary, ΠL
PRE and ΠH

PRE respectively, when buyers follow

a pure strategy θ(υ) = 1 for all υ ∈ [rHPRE , w), a mixed strategy θ(υ) = θm(υ) ∈ (0, 1)

for all υ ∈ [w, a], and then follow pure strategies θ(υ) = θ∗ ∈ {0, 1} for all υ ∈ (a, 1].
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If υ ∈ [0, rLPRE ], the buyer can not participate in any of the two auctions, so in this case

ΠL
PRE(υ) = ΠH

PRE(υ) = 0.

If υ ∈ [rLPRE , r
H
PRE), then a buyer expects positive utility only from the low-reserve

intermediary, as this is the only possible auction to participate in. So, in this case:

ΠL
PRE(rLPRE ≤ υ < rHPRE) =

∫ υ

rLPRE

FK−1(y)dy (B.38)

and ΠH
PRE(rLPRE ≤ υ < rHPRE) = 0.

More specifically, when υ ∈ [rHPRE , w), then we can write the expected utility from the

two intermediaries as:

ΠL
PRE(rHPRE ≤ υ < w) =

∫ υ

rLPRE

FK−1(y)dy +

∫ υ

rHPRE

∫ a

w
(υ − y2)(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

rHPRE

∫ 1

a
(υ − y2)(1− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2 (B.39)

ΠH
PRE(rHPRE ≤ υ < w) = (υ − rHPRE)FK−1(rHPRE) + (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)−

− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy] (B.40)

So, their difference will be:

(ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w) =

∫ υ

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE)−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy]+

+

∫ υ

rHPRE

∫ a

w
(υ − y2)(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

rHPRE

∫ 1

a
(υ − y2)(1− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2 =

=

∫ υ

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE)− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)−

− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy] +

∫ υ

rHPRE

∫ 1

w
(υ − y2)f

(K−1)
1,2 (y1, y2)dy1dy2−

−
∫ υ

rHPRE

∫ a

w
(υ − y2)θm(y1)f

(K−1)
1,2 (y1, y2)dy1dy2 −

∫ υ

rHPRE

∫ 1

a
(υ − y2)θ∗f

(K−1)
1,2 (y1, y2)dy1dy2 =
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=

∫ υ

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE)− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)−

− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy] + (K − 1)[1− F (w)]

∫ υ

rHPRE

(υ − y)f
(K−2)
1 (y)dy−

− (K − 1)

∫ υ

rHPRE

(υ − y2)f
(K−2)
1 (y2)dy2[

∫ a

w
θm(y1)f(y1)dy1 +

∫ 1

a
θ∗f(y1)dy1] =

=

∫ υ

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE)− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)−

− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy] + (K − 1)[1− F (w)−

∫ a

w
θm(y)f(y)dy−

−
∫ 1

a
θ∗f(y)dy][−(υ − rHPRE)FK−2(rHPRE) +

∫ υ

rHPRE

FK−2(y)dy] =

=

∫ υ

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]+

+ (K − 1)

∫ υ

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))] (B.41)

Whenever υ ∈ [w, a], the expected utility from the low- and high-reserve intermediaries

will be:

ΠL
PRE(w ≤ υ ≤ a) = (υ − rLPRE)FK−1(rLPRE) +

∫ w

rLPRE

(υ − y)f
(K−1)
1 (y)dy+

+

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy +

∫ w

rHPRE

∫ a

w
(υ − y2)(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)(1− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(1− θm(y1))θm(y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)(1− θ∗)θm(y2)f

(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy + (υ − w)FK−1(w) +

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy+

+

∫ w

rHPRE

∫ a

w
(υ − y2)(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)(1− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(1− θm(y1))θm(y2)f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)(1− θ∗)θm(y2)f

(K−1)
1,2 (y1, y2)dy1dy2 (B.42)
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ΠH
PRE(w ≤ υ ≤ a) = (υ − rHPRE)FK−1(rHPRE) + (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)−

− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy] +

∫ υ

w
(υ − y)(1− θm(y))f

(K−1)
1 (y)dy+

− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy] +

∫ υ

w
(υ − y)(1− θm(y))f

(K−1)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(υ − y2)θm(y1)(1− θm(y2))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)θ∗(1− θm(y2))f

(K−1)
1,2 (y1, y2)dy1dy2 (B.43)

Hence, their difference is:

(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a) =

∫ w

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE)+

+ (υ − w)FK−1(w) +

∫ υ

w
(υ − y)(2θm(y)− 1)f

(K−1)
1 (y)dy−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy]+

+

∫ w

rHPRE

∫ a

w
(υ − y2)(1− θm(y1))f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)(1− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)(θm(y2)− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE) + (υ − w)FK−1(w)+

+ 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy −

∫ υ

w
(υ − y)f

(K−1)
1 (y)dy−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))]+

+

∫ w

rHPRE

∫ a

w
(υ − y2)f

(K−1)
1,2 (y1, y2)dy1dy2 −

∫ w

rHPRE

∫ a

w
(υ − y2)θm(y1)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ w

rHPRE

∫ 1

a
(υ − y2)f

(K−1)
1,2 (y1, y2)dy1dy2 − θ∗

∫ w

rHPRE

∫ 1

a
(υ − y2)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ 1

a
(υ − y2)θm(y2)f

(K−1)
1,2 (y1, y2)dy1dy2 − θ∗

∫ υ

w

∫ 1

a
(υ − y2)f

(K−1)
1,2 (y1, y2)dy1dy2 =
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=

∫ w

rLPRE

FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE) + (υ − w)FK−1(w)+

+ 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy + (υ − w)FK−1(w)−

∫ υ

w
FK−1(y)dy−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))]+

+

∫ w

rHPRE

∫ 1

w
(υ − y2)f

(K−1)
1,2 (y1, y2)dy1dy2 − θ∗

∫ υ

rHPRE

∫ 1

a
(υ − y2)f

(K−1)
1,2 (y1, y2)dy1dy2−

−
∫ w

rHPRE

∫ a

w
(υ − y2)θm(y1)f

(K−1)
1,2 (y1, y2)dy1dy2 +

∫ υ

w

∫ 1

a
(υ − y2)θm(y2)f

(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE) + 2(υ − w)FK−1(w)+

+ 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy − (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE)+

+

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))] + (K − 1)(1− F (w))

∫ w

rHPRE

(υ − y)f
(K−2)
1 (y)dy−

− θ∗(K − 1)(1− F (a))

∫ υ

rHPRE

(υ − y)f
(K−2)
1 (y)dy−

− (K − 1)

∫ w

rHPRE

(υ − y2)f
(K−2)
1 (y2)dy2

∫ a

w
θm(y1)f(y1)dy1+

+ (K − 1)(1− F (a))

∫ υ

w
(υ − y)θm(y)f

(K−2)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE) + 2(υ − w)FK−1(w)+

+ 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy − (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE)+

+

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))] + (K − 1)(1− F (w))[(υ − w)FK−2(w)−

− (υ − rHPRE)FK−2(rHPRE) +

∫ w

rHPRE

FK−2(y)dy]− θ∗(K − 1)(1− F (a))[−(υ − rHPRE)FK−2(rHPRE)+

+

∫ w

rHPRE

FK−2(y)dy +

∫ υ

w
FK−2(y)dy]− (K − 1)

∫ a

w
θm(y)f(y)dy[(υ − w)FK−2(w)−

− (υ − rHPRE)FK−2(rHPRE) +

∫ w

rHPRE

FK−2(y)dy] + (K − 1)(1− F (a))

∫ υ

w
(υ − y)θm(y)f

(K−2)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 =
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=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE) + 2(υ − w)FK−1(w)+

+ 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy − (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE)+

+

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))] + (K − 1)(1− F (w))(υ − w)FK−2(w)−

− (K − 1)(1− F (w))(υ − rHPRE)FK−2(rHPRE) + (K − 1)(1− F (w))

∫ w

rHPRE

FK−2(y)dy+

+ θ∗(K − 1)(1− F (a))(υ − rHPRE)FK−2(rHPRE)− θ∗(K − 1)(1− F (a))

∫ w

rHPRE

FK−2(y)dy−

− θ∗(K − 1)(1− F (a))

∫ υ

w
FK−2(y)dy − (K − 1)(υ − w)FK−2(w)

∫ a

w
θm(y)f(y)dy+

+ (K − 1)(υ − rHPRE)FK−2(rHPRE)

∫ a

w
θm(y)f(y)dy − (K − 1)

∫ w

rHPRE

FK−2(y)dy

∫ a

w
θm(y)f(y)dy+

+ (K − 1)(1− F (a))

∫ υ

w
(υ − y)θm(y)f

(K−2)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))] + 2(υ − w)FK−1(w) + 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy+

+ (K − 1)(1− F (a))

∫ υ

w
(υ − y)θm(y)f

(K−2)
1 (y)dy + (K − 1)(υ − w)FK−2(w)[1− F (w)−

−
∫ a

w
θm(y)f(y)dy] + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)− θ∗(1− F (a))−

−
∫ a

w
θm(y)f(y)dy]− (K − 1)θ∗(1− F (a))

∫ υ

w
FK−2(y)dy+

+

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))] + (υ − w)FK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]+

+ (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))]−

− (K − 1)θ∗(1− F (a))

∫ υ

w
FK−2(y)dy + (K − 1)(1− F (a))

∫ υ

w
(υ − y)θm(y)f

(K−2)
1 (y)dy+

+ 2

∫ υ

w
(υ − y)θm(y)f

(K−1)
1 (y)dy +

∫ υ

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2

(B.44)

Finally, using (B.35) for m′ = 1 and λ = 1, we get the equivalent utility difference for

buyers with valuations in (a, 1]:
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(ΠL
PRE −ΠH

PRE)(a < υ ≤ 1) =

∫ w

rLPRE

FK−1(y)dy + (υ − w)FK−1(w)− (υ − rHPRE)FK−1(rHPRE)−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy]+

+ 2[

∫ a

w
(υ − y)θm(y)f

(K−1)
1 (y)dy +

∫ υ

a
(υ − y)θ∗f

(K−1)
1 (y)dy]−

−
∫ υ

w
(υ − y)f

(K−1)
1 (y)dy + (K − 1)

∫ w

rHPRE

∫ 1

w
(υ − y2)f(y1)f

(K−2)
1 (y2)dy1dy2−

− (K − 1)

∫ w

rHPRE

∫ a

w
(υ − y2)f

(K−2)
1 (y2)θm(y1)f(y1)dy1dy2−

− (K − 1)

∫ w

rHPRE

∫ 1

a
(υ − y2)f

(K−2)
1 (y2)θ∗f(y1)dy1dy2+

+

∫ a

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ a

w

∫ 1

a
(υ − y2)(θm(y2)− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2+

+

∫ υ

a

∫ 1

y2

(υ − y2)(θ∗ − θ∗)f (K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE) + 2(υ − w)FK−1(w)−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[F (w)− F (rHPRE) +

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy]+

+ 2[

∫ a

w
(υ − y)θm(y)f

(K−1)
1 (y)dy +

∫ υ

a
(υ − y)θ∗f

(K−1)
1 (y)dy]+

+ (K − 1)[1− F (w)][(υ − w)FK−2(w)− (υ − rHPRE)FK−2(rHPRE) +

∫ w

rHPRE

FK−2(y)dy]−

− (K − 1)[(υ − w)FK−2(w)− (υ − rHPRE)FK−2(rHPRE) +

∫ w

rHPRE

FK−2(y)dy]

[

∫ a

w
θm(y)f(y)dy +

∫ 1

a
θ∗f(y)dy] +

∫ a

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ a

w

∫ 1

a
(υ − y2)(θm(y2)− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2 =

=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−1(rHPRE) + 2(υ − w)FK−1(w)−

− (K − 1)(υ − rHPRE)FK−2(rHPRE)[1− F (rHPRE)] + 2[

∫ a

w
(υ − y)θm(y)f

(K−1)
1 (y)dy+

+

∫ υ

a
(υ − y)θ∗f

(K−1)
1 (y)dy] + (K − 1)[(υ − w)FK−2(w)+

+

∫ w

rHPRE

FK−2(y)dy][1− F (w)−
∫ a

w
θm(y)f(y)dy −

∫ 1

a
θ∗f(y)dy]+

+

∫ a

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+

∫ a

w

∫ 1

a
(υ − y2)(θm(y2)− θ∗)f (K−1)

1,2 (y1, y2)dy1dy2 =
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=

∫ w

rLPRE

FK−1(y)dy −
∫ υ

w
FK−1(y)dy − (υ − rHPRE)FK−2(rHPRE)[F (rHPRE) + (K − 1)(1−

− F (rHPRE))] + 2(υ − w)FK−1(w) + 2

∫ a

w
(υ − y)θm(y)f

(K−1)
1 (y)dy − 2θ∗(υ − a)FK−1(a)+

+ 2θ∗
∫ υ

a
FK−1(y)dy + (K − 1)(υ − w)FK−2(w)[1− F (w)−

∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))] + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))] +

∫ a

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+ (K − 1)(1− F (a))

∫ a

w
(υ − y)θm(y)f

(K−2)
1 (y)dy−

− (K − 1)θ∗(1− F (a))[(υ − a)FK−2(a)− (υ − w)FK−2(w) +

∫ a

w
FK−2(y)dy] =

=

∫ w

rLPRE

FK−1(y)dy −
∫ a

w
FK−1(y)dy − (1− 2θ∗)

∫ υ

a
FK−1(y)dy−

− (υ − rHPRE)FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] + (υ − w)FK−2(w)[2F (w)+

+ (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]− θ∗(υ − a)FK−2(a)[F (a)+

+ (K − 1)(1− F (a))] + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))]− (K − 1)θ∗(1− F (a))

∫ a

w
FK−2(y)dy+

+ 2

∫ a

w
(υ − y)θm(y)f

(K−1)
1 (y)dy + (K − 1)(1− F (a))

∫ a

w
(υ − y)θm(y)f

(K−2)
1 (y)dy+

+

∫ a

w

∫ a

y2

(υ − y2)(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 (B.45)

As has been mentioned, it should also be that
∂(ΠLPRE−ΠHPRE)(υ)

∂υ = 0 for all υ ∈ [w, a].

Hence, using (B.44), the first-order derivative of the expected utility difference from the

two intermediaries in [w, a] will be:

∂(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a)

∂υ
= −FK−2(υ)[F (υ) + θ∗(K − 1)(1− F (a))]− FK−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))] + FK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]+

+ 2

∫ υ

w
θm(y)f

(K−1)
1 (y)dy + (K − 1)(1− F (a))

∫ υ

w
θm(y)f

(K−2)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 = 0 =⇒
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=⇒ FK−2(υ)[F (υ) + θ∗(K − 1)(1− F (a))] = FK−2(w)[2F (w) + (K − 1)(1− F (w)−

−
∫ a

w
θm(y)f(y)dy)]− FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]+

+ 2

∫ υ

w
θm(y)f

(K−1)
1 (y)dy + (K − 1)(1− F (a))

∫ υ

w
θm(y)f

(K−2)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2 (B.46)

This should also be true at w, where the equation above yields:

FK−2(w)[F (w) + θ∗(K − 1)(1− F (a))] = FK−2(w)[2F (w) + (K − 1)(1− F (w)−

−
∫ a

w
θm(y)f(y)dy)]− FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] (B.47)

After rearranging and using the condition of (B.46), the expected utility difference of

(B.44) gives the following equation:

(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a) =

∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−

−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))] + rHPREF

K−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]−

− wFK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]−

∫ υ

w
FK−1(y)dy−

− (K − 1)θ∗(1− F (a))

∫ υ

w
FK−2(y)dy − 2

∫ υ

w
yθm(y)f

(K−1)
1 (y)dy−

− (K − 1)(1− F (a))

∫ υ

w
yθm(y)f

(K−2)
1 (y)dy−

−
∫ υ

w

∫ a

y2

y2(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+ υ

{
FK−2(w)[2F (w) + (K − 1)(1− F (w)−

∫ a

w
θm(y)f(y)dy)]−

− FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] + 2

∫ υ

w
θm(y)f

(K−1)
1 (y)dy+

+ (K − 1)(1− F (a))

∫ υ

w
θm(y)f

(K−2)
1 (y)dy+

+

∫ υ

w

∫ a

y2

(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2

}
=
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=

∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))] + rHPREF
K−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]− wFK−2(w)[2F (w)+

+ (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]−

∫ υ

w
FK−1(y)dy−

− (K − 1)θ∗(1− F (a))

∫ υ

w
FK−2(y)dy − 2

∫ υ

w
yθm(y)f

(K−1)
1 (y)dy−

− (K − 1)(1− F (a))

∫ υ

w
yθm(y)f

(K−2)
1 (y)dy−

−
∫ υ

w

∫ a

y2

y2(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+ υFK−2(υ)[F (υ) + (K − 1)θ∗(1− F (a))] (B.48)

Substituting for υ = w in the equation above and using (B.47) yields:

(ΠL
PRE −ΠH

PRE)(w) =

∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))] + rHPREF
K−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]− wFK−2(w)[2F (w)+

+ (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)] + wFK−2(w)[F (w) + (K − 1)θ∗(1− F (a))] =

=

∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))] + rHPREF
K−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]−

− w[F (rHPRE) + (K − 1)(1− F (rHPRE))] = 0 =⇒

=⇒
∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−
∫ a

w
θm(y)f(y)dy−

− θ∗(1− F (a))] = (w − rHPRE)FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]

(B.49)

By using this last equation along with (B.47), equation (B.48) becomes:

(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a) = −
∫ υ

w
FK−1(y)dy + θ∗(K − 1)(1− F (a))

∫ υ

w
FK−2(y)dy−

− 2

∫ υ

w
yθm(y)f

(K−1)
1 (y)dy − (K − 1)(1− F (a))

∫ υ

w
yθm(y)f

(K−2)
1 (y)dy−

−
∫ υ

w

∫ a

y2

y2(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2+

+ υFK−2(υ)[F (υ) + (K − 1)θ∗(1− F (a))]− wFK−2(w)[F (w) + (K − 1)θ∗(1− F (a))] = 0

(B.50)

The system of equations (B.47) and (B.49) gives a solution for the two cut-off points,

w and a. However, we can eliminate a and find w directly. Then, we can use this
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solution to find the appropriate value for a using any of these two last equations. More

specifically, if we set xa = 1− F (w)−
∫ a
w θm(y)f(y)dy − θ∗(1− F (a)), (B.47) becomes:

FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] = FK−2(w)[F (w) + (K − 1)xa] =⇒

=⇒ (K − 1)FK−2(w)xa = FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]− FK−1(w)

(B.51)

Similarly, (B.49) becomes:

xa(K − 1)

∫ w

rHPRE

FK−2(y)dy = (w − rHPRE)FK−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))]−
∫ w

rLPRE

FK−1(y)dy (B.52)

Eliminating xa from these two last equations yields:

FK−2(w)

∫ w

rLPRE

FK−1(y)dy − FK−1(w)

∫ w

rHPRE

FK−2(y)dy =

= [(w − rHPRE)FK−2(w)−
∫ w

rHPRE

FK−2(y)dy]FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]

(B.53)

and then a can be found from (B.47) for the provided w.

Using equations (B.46), (B.47), (B.49) and B.50, (B.45) can be significantly simplified,

giving:

(ΠL
PRE −ΠH

PRE)(a < υ ≤ 1) =

∫ w

rLPRE

FK−1(y)dy + (K − 1)

∫ w

rHPRE

FK−2(y)dy[1− F (w)−

−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))] + rHPREF

K−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))]−

− wFK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]−

∫ a

w
FK−1(y)dy−

− θ∗(K − 1)(1− F (a))

∫ a

w
FK−2(y)dy − 2

∫ a

w
yθm(y)f

(K−1)
1 (y)dy−

− (K − 1)(1− F (a))

∫ a

w
yθm(y)f

(K−2)
1 (y)dy−

−
∫ a

w

∫ a

y2

y2(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2−

− (1− 2θ∗)

∫ υ

a
FK−1(y)dy + θ∗aFK−2(a)[2F (a) + (K − 1)(1− F (a))]+

+ υ

{
− FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] + FK−2(w)[2F (w)+

+ (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)] + 2

∫ a

w
θm(y)f

(K−1)
1 (y)dy+
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+ (K − 1)(1− F (a))

∫ a

w
θm(y)f

(K−2)
1 (y)dy+

+

∫ a

w

∫ a

y2

(θm(y2)− θm(y1))f
(K−1)
1,2 (y1, y2)dy1dy2−

− θ∗FK−2(a)[2F (a) + (K − 1)(1− F (a))]

}
=

= (w − rHPRE)FK−2(rHPRE)[F (rHPRE) + (K − 1)(1− F (rHPRE))] + r2F
K−2(rHPRE)[F (rHPRE)+

+ (K − 1)(1− F (rHPRE))]− wFK−2(w)[2F (w) + (K − 1)(1− F (w)−
∫ a

w
θm(y)f(y)dy)]+

+ wFK−2(w)[F (w) + (K − 1)θ∗(1− F (a))]− aFK−2(a)[F (a) + (K − 1)θ∗(1− F (a))]−

− (1− 2θ∗)

∫ υ

a
FK−1(y)dy + θ∗aFK−2(a)[2F (a) + (K − 1)(1− F (a))]+

+ υ

{
FK−2(a)[F (a) + (K − 1)θ∗(1− F (a))]− θ∗FK−2(a)[2F (a) + (K − 1)(1− F (a))]

}
=

= −wFK−2(w)[F (w) + (K − 1)θ∗(1− F (a))] + wFK−2(w)[F (w) + (K − 1)θ∗(1− F (a))]−

− aFK−2(a)[F (a) + (K − 1)θ∗(1− F (a))]− (1− 2θ∗)

∫ υ

a
FK−1(y)dy+

+ θ∗aFK−2(a)[2F (a) + (K − 1)(1− F (a))] + υ

{
FK−2(a)[F (a) + (K − 1)θ∗(1− F (a))]−

− θ∗FK−2(a)[2F (a) + (K − 1)(1− F (a))]

}
=

= −(1− 2θ∗)

∫ υ

a
FK−1(y)dy + (υ − a)FK−2(a)[F (a) + (K − 1)θ∗(1− F (a))]−

− θ∗(υ − a)FK−2(a)[2F (a) + (K − 1)(1− F (a))] =

= −(1− 2θ∗)[

∫ υ

a
FK−1(y)dy − (υ − a)FK−1(a)] (B.54)

After all derivations, the final expressions for the expected surplus of a buyer from the

two intermediaries in equilibrium will be:

ΠL
PRE(rLPRE ≤ υ < rHPRE) =

∫ υ

rLPRE

FK−1(y)dy (B.55)

ΠL
PRE(rHPRE ≤ υ < w) =

∫ υ

rLPRE

FK−1(y)dy + (K − 1)[

∫ υ

rHPRE

FK−2(y)dy−

− (υ − rHPRE)FK−2(rHPRE)][1− F (w)−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))] (B.56)

ΠH
PRE(rHPRE ≤ υ < w) = (υ − rHPRE)FK−2(rHPRE){F (rHPRE) + (K − 1)[F (w)− F (rHPRE)+

+

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))]} (B.57)
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ΠL
PRE(w ≤ υ ≤ a) =

∫ w

rLPRE

FK−1(y)dy + (υ − w)FK−1(w) + (K − 1)[

∫ w

rHPRE

FK−2(y)dy+

+ (υ − w)FK−2(w)− (υ − rHPRE)FK−2(rHPRE)][1− F (w)−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))]+

− (K − 1)(K − 3)

∫ υ

w
(υ − y)θm(y)FK−2(y)f(y)dy+

+ (K − 1)(K − 2)[1− θ∗(1− F (a))]

∫ υ

w
(υ − y)θm(y)FK−3(y)f(y)dy−

− (K − 1)(K − 2)

∫ υ

w
(υ − y2)θm(y2)FK−3(y2)f(y2)dy2

∫ a

y2

θm(y1)f(y1)dy1 (B.58)

ΠH
PRE(w ≤ υ ≤ a) = (υ − rHPRE)FK−2(rHPRE){F (rHPRE) + (K − 1)[F (w)− F (rHPRE)+

+

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))]}+

∫ υ

w
FK−1(y)dy − (υ − w)FK−1(w)+

+ (K − 1)θ∗[1− F (a)][

∫ υ

w
FK−2(y)dy − (υ − w)FK−2(w)]−

− (K − 1)

∫ υ

w
(υ − y)θm(y)FK−2(y)f(y)dy−

+ (K − 1)(K − 2)[−θ∗(1− F (a))

∫ υ

w
(υ − y)θm(y)FK−3(y)f(y)dy+

+

∫ υ

w
(υ − y2)FK−3(y2)f(y2)dy2

∫ a

y2

θm(y1)f(y1)dy1−

−
∫ υ

w
(υ − y2)θm(y2)FK−3(y2)f(y2)dy2

∫ a

y2

θm(y1)f(y1)dy1 (B.59)

ΠL
PRE(a < υ ≤ 1) =

∫ w

rLPRE

FK−1(y)dy + (υ − w)FK−1(w)+

+ (K − 1)[

∫ w

rHPRE

FK−2(y)dy + (υ − w)FK−2(w)− (υ − rHPRE)FK−2(rHPRE)]

[1− F (w)−
∫ a

w
θm(y)f(y)dy − θ∗(1− F (a))] + θ∗[

∫ υ

a
FK−1(y)dy − (υ − a)FK−1(a)]+

+ (K − 1)θ∗(1− θ∗)[
∫ υ

a
FK−2(y)dy − (υ − a)FK−2(a)]−

− (K − 2)θ∗(1− θ∗)[
∫ υ

a
FK−1(y)dy − (υ − a)FK−1(a)]+

+ (K − 1)(K − 3)

∫ a

w
(υ − y)θm(y)FK−2(y)f(y)dy+
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+ (K − 1)(K − 2){[1− θ∗(1− F (a))]

∫ a

w
(υ − y)θm(y)FK−3(y)f(y)dy−

−
∫ a

w
(υ − y2)θm(y2)FK−3(y2)f(y2)dy2

∫ a

y2

θm(y1)f(y1)dy1} (B.60)

ΠH
PRE(a < υ ≤ 1) = (υ − rHPRE)FK−2(rHPRE){F (rHPRE) + (K − 1)[F (w)− F (rHPRE)+

+

∫ a

w
θm(y)f(y)dy + θ∗(1− F (a))]}+

∫ υ

w
FK−1(y)dy − (υ − w)FK−1(w)+

+ (K − 1)θ∗(1− F (a))[

∫ a

w
FK−2(y)dy + (υ − a)FK−2(a)− (υ − w)FK−2(w)]−

− θ∗[
∫ υ

a
FK−1(y)dy − (υ − a)FK−1(a)]+

+ (K − 1)θ∗(1− θ∗)[
∫ υ

a
FK−2(y)dy − (υ − a)FK−2(a)]−

− (K − 2)θ∗(1− θ∗)[
∫ υ

a
FK−1(y)dy − (υ − a)FK−1(a)]−

− (K − 1)

∫ a

w
(υ − y)θm(y)FK−2(y)f(y)dy+

+ (K − 1)(K − 2)[−θ∗(1− F (a))

∫ a

w
(υ − y)θm(y)FK−3(y)f(y)dy+

+

∫ a

w
(υ − y2)FK−3(y2)f(y2)dy2

∫ a

y2

θm(y1)f(y1)dy1−

−
∫ a

w
(υ − y2)θm(y2)FK−3(y2)f(y2)dy2

∫ a

y2

θm(y1)f(y1)dy1] (B.61)

B.1.6 Mixed-Strategy Bayes-Nash Equilibrium Example: The Uni-

form Distribution U(0, 1)

In this case, F (υ) = υ, f(υ) = 1,∀υ ∈ [w, a]. Then the second-order derivative condition

becomes:

[2υ + (K − 2)(1− υ)]θm(υ) = (K − 2)

∫ a

υ
θm(y)dy + (K − 2)θ∗(1− a) + υ (B.62)

where θm(a) = (K−2)θ∗(1−a)+a
2a+(K−2)(1−a) . Equation (B.62) can be written as:

[2υ + (K − 2)(1− υ)]θm(υ) + (K − 2)

∫ υ

a
θm(y)dy = (K − 2)θ∗(1− a) + υ (B.63)
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We set:

Θm(υ) =

∫ υ

a
θm(y)dy = −

∫ a

υ
θm(y)dy = −[

∫ a

0
θm(y)dy −

∫ υ

0
θm(y)dy] =

=

∫ υ

0
θm(y)dy −

∫ a

0
θm(y)dy (B.64)

So, from the first fundamental theorem of calculus Θ′m(υ) = θm(υ). Equation (B.63)

can now be written in terms of Θm(·) as:

[2υ + (K − 2)(1− υ)]Θ′m(υ) + (K − 2)Θm(υ) = (K − 2)θ∗(1− a) + υ (B.65)

The form of the differential equation changes for K = 4 so we have to consider two

cases: i) K 6= 4 and ii) K = 4.

We start with the latter case (K = 4). Dividing by 2 and multiplying both sides with

exp(υ) yields:

exp(υ)Θ′m(υ) + exp(υ)Θm(υ) = − exp(υ)(−θ∗(1− a)− υ

2
) (B.66)

Then, we substitute with (exp(υ))′ = exp(υ) in the left-hand side gives:

exp(υ)Θ′m(υ) + (exp(υ))′Θm(υ) = − exp(υ)(−θ∗(1− a)− υ

2
) (B.67)

Applying the reverse product rule (f dgdx + df
dxg = d

dx(fg)) to the left-hand side yields:

(exp(υ)Θm(υ))′ = − exp(υ)(−θ∗(1− a)− υ

2
) (B.68)

where integrating both sides with respect to υ gives:

exp(υ)Θm(υ) =
1

2
exp(υ)[2θ∗(1− a) + υ − 1] + k4 (B.69)

where k4 is an arbitrary constant. Then, dividing both sides with exp(υ) yields:

Θm(υ) = k4 exp(−υ) + θ∗(1− a) +
υ − 1

2
(B.70)

So,

θm(υ) = Θ′m(υ) =
1

2
− k4 exp(−υ) (B.71)

where the initial condition θm(a) = 2θ∗(1−a)+a
2 gives k4 = (1−2θ∗)(1−a)

2 exp(−a) , hence:

θm(υ) =
1

2
− (1− 2θ∗)(1− a)

2 exp(−a)
exp(−υ) (B.72)
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Similarly, we will solve (B.65) for the general case (K 6= 4). Dividing by −[2υ + (K −
2)(1− υ)] = (K − 4)υ − (K − 2) and rearranging gives:

Θ′m(υ)− K − 2

(K − 4)υ − (K − 2)
Θm(υ) = −(K − 2)θ∗(1− a) + υ

(K − 4)υ − (K − 2)
(B.73)

Multiplying both sides by exp(
∫ −(K−2)

(K−4)υ−(K−2)dυ) = [(K − 4)υ − (K − 2)]−
K−2
K−4 gives:

[(K − 4)υ − (K − 2)]−
K−2
K−4 Θ′m(υ)− (K − 2)[(K − 4)υ − (K − 2)]−

K−2
K−4

−1Θm(υ) =

= −[(K − 2)θ∗(1− a) + υ][(K − 4)υ − (K − 2)]−
K−2
K−4

−1 (B.74)

We then substitute −(K−2)[(K−4)υ−(K−2)]−
K−2
K−4

−1 = d
dυ{[(K−4)υ−(K−2)]−

K−2
K−4 }:

[(K − 4)υ − (K − 2)]−
K−2
K−4 Θ′m(υ) +

d

dυ
{[(K − 4)υ − (K − 2)]−

K−2
K−4 }Θm(υ) =

= −[(K − 2)θ∗(1− a) + υ][(K − 4)υ − (K − 2)]−
K−2
K−4

−1 (B.75)

Applying the reverse product rule to the left-hand side yields:

d

dυ
{[(K−4)υ−(K−2)]−

K−2
K−4 Θm(υ)} = −[(K−2)θ∗(1−a)+υ][(K−4)υ−(K−2)]−

K−2
K−4

−1

(B.76)

and afterwards integrating both sides with respect to υ gives:

[(K−4)υ−(K−2)]−
K−2
K−4 Θm(υ) =

1

2
[2θ∗(1−a)+υ−1][(K−4)υ−(K−2)]−

K−2
K−4 +kn (B.77)

where kn is an arbitrary constant. Finally, dividing both sides by [(K−4)υ−(K−2)]−
K−2
K−4

produces the following solution for Θm(υ):

Θm(υ) = θ∗(1− a) +
υ − 1

2
+ kn[(K − 4)υ − (K − 2)]

K−2
K−4 (B.78)

and hence:

θm(υ) = Θ′m(υ) =
1

2
+ kn(K − 2)[(K − 4)υ − (K − 2)]

2
K−4 (B.79)

Finally, using the fact that θm(a) = (K−2)θ∗(1−a)+a
2a+(K−2)(1−a) , we get that kn = (1−2θ∗)(1−a)

2[(K−4)a−(K−2)]
K−2
K−4

,

so the final form of θm(υ) will be:

θm(υ) =
1

2
+

(K − 2)(1− 2θ∗)(1− a)

2[(K − 4)a− (K − 2)]
K−2
K−4

[(K − 4)υ − (K − 2)]
2

K−4 (B.80)

Then, equations (B.38), (B.41), (B.50) and (B.54) yield:

(ΠL
PRE −ΠH

PRE)(rLPRE ≤ υ < rHPRE) =
υK − rLPRE

K

K
(B.81)
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For K 6= 4:

(ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w) =
υK − rLPRE

K

K
− (υ − rHPRE)rHPRE

K−2
[rHPRE + (K − 1)(1− rHPRE)]+

+ (υK−1 − rHPRE
K−1

)[
1− w

2
+

(1− 2θ∗)(1− a)

2[(K − 4)a− (K − 2)]
K−2
K−4

[(K − 4)w − (K − 2)]
K−2
K−4 ]

(B.82)

For K = 4:

(ΠL
PRE −ΠH

PRE)(rHPRE ≤ υ < w) =
υ4 − rLPRE

4

4
− (υ − rHPRE)rHPRE

2
[rHPRE + 3(1− rHPRE)]+

+ (υ3 − rHPRE
3
)[

1− w
2

+
(1− 2θ∗)(1− a)

2 exp(−a)
exp(−w)] (B.83)

(ΠL
PRE −ΠH

PRE)(w ≤ υ ≤ a) = 0 (B.84)

(ΠL
PRE −ΠH

PRE)(a < υ ≤ 1) = −(1− 2θ∗)[
υK − aK

K
− (υ − a)aK−1] (B.85)

Moreover, the conditions of equations (B.53), (B.47) yield:

[wK−1 − rHPRE
K−1 − (K − 1)(w − rHPRE)wK−2]rHPRE

K−2
[rHPRE + (K − 1)(1− rHPRE)]+

+
K − 1

K
wK−2(wK − rLPRE

K
)− wK−1(wK−1 − rHPRE

K−1
) = 0 (B.86)

and for a, when K 6= 4:

wK−2{w + (K − 1)[
1− w

2
+

(1− 2θ∗)(1− a)

2[(K − 4)a− (K − 2)]
K−2
K−4

[(K − 4)w − (K − 2)]
K−2
K−4 ]}−

− rHPRE
K−2

[rHPRE + (K − 1)(1− rHPRE)] = 0 (B.87)

whereas when K = 4:

w2{w + 3[
1− w

2
+

(1− 2θ∗)(1− a)

2 exp(−a)
exp(−w)]}−

− rHPRE
2
[rHPRE + 3(1− rHPRE)] = 0 (B.88)
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B.2 Derivations for Buyer PRE - POST Duopoly Intermedi-

ary Selection

We can write:∫ rHPOST

y2=0

∫ 1

y1=y2

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ rHPOST

0

∫ rHPOST

y2

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 +

∫ rHPOST

0

∫ 1

rHPOST

θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ rHPOST

0

∫ y1

0
θ(y1)f

(K−1)
1,2 (y1, y2)dy2dy1 + (K − 1)FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy =

= (n− 1)

∫ rHPOST

0
θ(y)f(y)FK−2(y)dy + (K − 1)FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy =

(B.89)

=

∫ rHPOST

0
θ(y)f

(K−1)
1 (y)dy + (K − 1)FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy (B.90)

We can also write:∫ υ

y2=rHPOST

∫ 1

y1=y2

(υ − y2)θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ υ

rHPOST

∫ υ

y2

(υ − y2)θ(y1)f
(K−1)
1,2 (y1, y2)dy1dy2 +

∫ υ

rHPOST

∫ 1

υ
(υ − y2)θ(y1)f

(K−1)
1,2 (y1, y2)dy1dy2 =

=

∫ υ

rHPOST

∫ y1

rHPOST

(υ − y2)θ(y1)f
(K−1)
1,2 (y1, y2)dy2dy1 +

∫ υ

rHPOST

∫ 1

υ
(υ − y2)θ(y1)f

(K−1)
1,2 (y1, y2)dy1dy2 =

= (K − 1)

∫ υ

rHPOST

∫ y1

rHPOST

(υ − y2)θ(y1)f(y1)f
(K−2)
1 (y2)dy2dy1+

+ (K − 1)

∫ υ

rHPOST

∫ 1

υ
(υ − y2)θ(y1)f(y1)f

(K−2)
1 (y2)dy1dy2 =

= (K − 1)

∫ υ

rHPOST

θ(y1)f(y1)[(υ − y1)FK−2(y1)− (υ − rHPOST )FK−2(rHPOST ) +

∫ y1

rHPOST

FK−2(y2)dy2]dy1+

+ (K − 1)[−(υ − rHPOST )FK−2(rHPOST ) +

∫ υ

rHPOST

FK−2(y2)dy2]

∫ 1

υ
θ(y1)f(y1)dy1 =

=

∫ υ

rHPOST

(υ − y)θ(y)f
(K−1)
1 (y)dy − (K − 1)(υ − rHPOST )FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy+

+ (K − 1)

∫ υ

rHPOST

∫ y1

rHPOST

θ(y1)f(y1)FK−2(y2)dy2dy1+

+ (K − 1)

∫ υ

rHPOST

∫ 1

υ
θ(y1)f(y1)FK−2(y2)dy1dy2 =

=

∫ υ

rHPOST

(υ − y)θ(y)f
(K−1)
1 (y)dy − (K − 1)(υ − rHPOST )FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy+
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+ (K − 1)

∫ υ

rHPOST

∫ υ

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 + (K − 1)

∫ υ

rHPOST

∫ 1

υ
θ(y1)f(y1)FK−2(y2)dy1dy2 =

=

∫ υ

rHPOST

(υ − y)θ(y)f
(K−1)
1 (y)dy − (K − 1)(υ − rHPOST )FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy+

+ (K − 1)

∫ υ

rHPOST

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 (B.91)

This means that equation (6.67) can be written as:

ΠH
POST (υ) = (υ − rHPOST )[

∫ rHPOST

0
θ(y)f

(K−1)
1 (y)dy + (K − 1)FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy]+

+

∫ υ

rHPOST

(υ − y)(1− θ(y)f
(K−1)
1 (y)dy +

∫ υ

rHPOST

(υ − y)θ(y)f
(K−1)
1 (y)dy−

− (K − 1)(υ − rHPOST )FK−2(rHPOST )

∫ 1

rHPOST

θ(y)f(y)dy+

+ (K − 1)

∫ υ

rHPOST

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 =

= (υ − rHPOST )

∫ rHPOST

0
θ(y)f

(K−1)
1 (y)dy +

∫ υ

rHPOST

(υ − y)f
(K−1)
1 (y)dy+

+ (K − 1)

∫ υ

rHPOST

∫ 1

y2

θ(y1)f(y1)FK−2(y2)dy1dy2 (B.92)
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