
Deep Learning over Multi-field Categorical Data

– A Case Study on User Response Prediction

Weinan Zhang1(B), Tianming Du1,2, and Jun Wang1

1 University College London, London, UK
{w.zhang,j.wang}@cs.ucl.ac.uk

2 RayCloud Inc., Hangzhou, China
dutianming@quicloud.cn

Abstract. Predicting user responses, such as click-through rate and con-
version rate, are critical in many web applications including web search,
personalised recommendation, and online advertising. Different from con-
tinuous raw features thatwe usually found in the image and audio domains,
the input features in web space are always of multi-field and are mostly dis-
crete and categorical while their dependencies are little known. Major user
response prediction models have to either limit themselves to linear mod-
els or require manually building up high-order combination features. The
former loses the ability of exploring feature interactions, while the latter
results in a heavy computation in the large feature space. To tackle the
issue, we propose two novel models using deep neural networks (DNNs) to
automatically learn effective patterns from categorical feature interactions
and make predictions of users’ ad clicks. To get our DNNs efficiently work,
we propose to leverage three feature transformation methods, i.e., fac-
torisation machines (FMs), restricted Boltzmann machines (RBMs) and
denoising auto-encoders (DAEs). This paper presents the structure of our
models and their efficient training algorithms. The large-scale experiments
with real-world data demonstrate that our methods work better than
major state-of-the-art models.

1 Introduction

User response (e.g., click-through or conversion) prediction plays a critical part
in many web applications including web search, recommender systems, sponsored
search, and display advertising. In online advertising, for instance, the ability of
targeting individual users is the key advantage compared to traditional offline
advertising. All these targeting techniques, essentially, rely on the system func-
tion of predicting whether a specific user will think the potential ad is “relevant”,
i.e., the probability that the user in a certain context will click a given ad [6].
Sponsored search, contextual advertising, and the recently emerged real-time
bidding (RTB) display advertising all heavily rely on the ability of learned mod-
els to predict ad click-through rates (CTR) [32,41]. The applied CTR estimation
models today are mostly linear, ranging from logistic regression [32] and naive
Bayes [14] to FTRL logistic regression [28] and Bayesian probit regression [12],

c© Springer International Publishing Switzerland 2016
N. Ferro et al. (Eds.): ECIR 2016, LNCS 9626, pp. 45–57, 2016.
DOI: 10.1007/978-3-319-30671-1 4

46 W. Zhang et al.

all of which are based on a huge number of sparse features with one-hot encod-
ing [1]. Linear models have advantages of easy implementation, efficient learning
but relative low performance because of the failure of learning the non-trivial
patterns to catch the interactions between the assumed (conditionally) inde-
pendent raw features [12]. Non-linear models, on the other hand, are able to
utilise different feature combinations and thus could potentially improve esti-
mation performance. For example, factorisation machines (FMs) [29] map the
user and item binary features into a low dimensional continuous space. And the
feature interaction is automatically explored via vector inner product. Gradient
boosting trees [38] automatically learn feature combinations while growing each
decision/regression tree. However, these models cannot make use of all possible
combinations of different features [20]. In addition, many models require feature
engineering that manually designs what the inputs should be. Another problem
of the mainstream ad CTR estimation models is that most prediction models
have shallow structures and have limited expression to model the underlying
patterns from complex and massive data [15]. As a result, their data modelling
and generalisation ability is still restricted.

Deep learning [25] has become successful in computer vision [22], speech
recognition [13], and natural language processing (NLP) [19,33] during recent
five years. As visual, aural, and textual signals are known to be spatially and/or
temporally correlated, the newly introduced unsupervised training on deep struc-
tures [18] would be able to explore such local dependency and establish a dense
representation of the feature space, making neural network models effective in
learning high-order features directly from the raw feature input. With such
learning ability, deep learning would be a good candidate to estimate online
user response rate such as ad CTR. However, most input features in CTR esti-
mation are of multi-field and are discrete categorical features, e.g., the user
location city (London, Paris), device type (PC, Mobile), ad category (Sports,
Electronics) etc., and their local dependencies (thus the sparsity in the feature
space) are unknown. Therefore, it is of great interest to see how deep learning
improves the CTR estimation via learning feature representation on such large-
scale multi-field discrete categorical features. To our best knowledge, there is
no previous literature of ad CTR estimation using deep learning methods thus
far1. In addition, training deep neural networks (DNNs) on a large input feature
space requires tuning a huge number of parameters, which is computationally
expensive. For instance, unlike image and audio cases, we have about 1 million
binary input features and 100 hidden units in the first layer; then it requires 100
million links to build the first layer neural network.

In this paper, we take ad CTR estimation as a working example to study deep
learning over a large multi-field categorical feature space by using embedding
methods in both supervised and unsupervised fashions. We introduce two types
of deep learning models, called Factorisation Machine supported Neural Net-
work (FNN) and Sampling-based Neural Network (SNN). Specifically, FNN with

1 Although the leverage of deep learning models on ad CTR estimation has been
claimed in industry (e.g., [42]), there is no detail of the models or implementation.

Deep Learning over Multi-field Categorical Data 47

a supervised-learning embedding layer using factorisation machines [31] is pro-
posed to efficiently reduce the dimension from sparse features to dense contin-
uous features. The second model SNN is a deep neural network powered by a
sampling-based restricted Boltzmann machine (SNN-RBM) or a sampling-based
denoising auto-encoder (SNN-DAE) with a proposed negative sampling method.
Based on the embedding layer, we build multiple layers neural nets with full con-
nections to explore non-trivial data patterns. Our experiments on multiple real-
world advertisers’ ad click data have demonstrated the consistent improvement
of CTR estimation from our proposed models over the state-of-the-art ones.

2 Related Work

Click-through rate, defined as the probability of the ad click from a specific
user on a displayed ad, is essential in online advertising [39]. In order to max-
imise revenue and user satisfaction, online advertising platforms must predict
the expected user behaviour for each displayed ad and maximise the expecta-
tion that users will click. The majority of current models use logistic regression
based on a set of sparse binary features converted from the original categorical
features via one-hot encoding [26,32]. Heavy engineering efforts are needed to
design features such as locations, top unigrams, combination features, etc. [15].

Embedding very large feature vector into low-dimensional vector spaces is
useful for prediction task as it reduces the data and model complexity and
improves both the effectiveness and the efficiency of the training and predic-
tion. Various methods of embedding architectures have been proposed [23,37].
Factorisation machine (FM) [31], originally proposed for collaborative filtering
recommendation, is regarded as one of the most successful embedding models.
FM naturally has the capability of estimating interactions between any two fea-
tures via mapping them into vectors in a low-rank latent space.

Deep Learning [2] is a branch of artificial intelligence research that attempts
to develop the techniques that will allow computers to handle complex tasks such
as recognition and prediction at high performance. Deep neural networks (DNNs)
are able to extract the hidden structures and intrinsic patterns at different lev-
els of abstractions from training data. DNNs have been successfully applied in
computer vision [40], speech recognition [8] and natural language processing
(NLP) [7,19,33]. Furthermore, with the help of unsupervised pre-training, we
can get good feature representation which guides the learning towards basins of
attraction of minima that support better generalisation from the training data
[10]. Usually, these deep models have two stages in learning [18]: the first stage
performs model initialisation via unsupervised learning (i.e., the restricted Boltz-
mann machine or stacked denoising auto-encoders) to make the model catch the
input data distribution; the second stage involves a fine tuning of the initialised
model via supervised learning with back-propagation. The novelty of our deep
learning models lies in the first layer initialisation, where the input raw features
are high dimensional and sparse binary features converted from the raw cate-
gorical features, which makes it hard to train traditional DNNs in large scale.

48 W. Zhang et al.

Compared with the word-embedding techniques used in NLP [19,33], our mod-
els deal with more general multi-field categorical features without any assumed
data structures such as word alignment and letter-n-gram etc.

3 DNNs for CTR Estimation Given Categorical Features

In this section, we discuss the two proposed DNN architectures in detail, namely
Factorisation-machine supported Neural Networks (FNN) and Sampling-based
Neural Networks (SNN). The input categorical features are field-wise one-hot
encoded. For each field, e.g., city, there are multiple units, each of which rep-
resents a specific value of this field, e.g., city=London, and there is only one
positive (1) unit, while all others are negative (0). The encoded features, denoted
as x, are the input of many CTR estimation models [26,32] as well as our DNN
models, as depicted at the bottom layer of Fig. 1.

Initialised by FM’s
Weights and Vectors.

Fully Connected within
each field

CTR

Fully Connected

Fully Connected

Fully Connected

Hiden Layer (l2)

Hiden Layer (l1)

Dense Real Layer (z)

Sparse Binary
Feactures (x)

Field iGlobal Field j

Fig. 1. A 4-layer FNN model structure.

3.1 Factorisation-Machine Supported Neural Networks (FNN)

Our first model FNN is based on the factorisation machine as the bottom layer.
The network structure is shown in Fig. 1. With a top-down description, the
output unit is a real number ŷ ∈ (0, 1) as predicted CTR, i.e., the probability of
a specific user clicking a given ad in a certain context:

ŷ = sigmoid(W 3l2 + b3), (1)

where sigmoid(x) = 1/(1 + e−x) is the logistic activation function, W 3 ∈ R
1×L,

b3 ∈ R and l2 ∈ R
L as input for this layer. The calculation of l2 is

l2 = tanh(W 2l1 + b2), (2)

Deep Learning over Multi-field Categorical Data 49

where tanh(x) = (1 − e−2x)/(1 + e−2x), W 2 ∈ R
L×M , b2 ∈ R

L and l1 ∈ R
M .

We choose tanh(·) as it has optimal empirical learning performance than other
activation functions, as will be discussed in Sect. 4.3. Similarly,

l1 = tanh(W 1z + b1), (3)

where W 1 ∈ R
M×J , b1 ∈ R

M and z ∈ R
J .

z = (w0,z1,z2, ...zi, ...,zn), (4)

where w0 ∈ R is a global scalar parameter and n is the number of fields in total.
zi ∈ R

K+1 is a parameter vectors for the i-th field in factorisation machines:

zi = W i
0 · x[starti : endi] = (wi, v

1
i , v

2
i , . . . , v

K
i), (5)

where starti and endi are starting and ending feature indexes of the i-th field,
W i

0 ∈ R
(K+1)×(endi−starti+1) and x is the input vector as described at beginning.

All weights W i
0 are initialised with the bias term wi and vector vi respectively

(e.g., W i
0[0] is initialised by wi, W i

0[1] is initialised by v1
i , W

i
0[2] is initialised

by v2
i , etc.). In this way, z vector of the first layer is initialised as shown in Fig. 1

via training a factorisation machine (FM) [31]:

yFM(x) := sigmoid
(
w0 +

N∑
i=1

wixi +
N∑
i=1

N∑
j=i+1

〈vi,vj〉xixj

)
, (6)

where each feature i is assigned with a bias weight wi and a K-dimensional vector
vi and the feature interaction is modelled as their vectors’ inner product 〈vi,vj〉.
In this way, the above neural nets can learn more efficiently from factorisation
machine representation so that the computational complexity problem of the
high-dimensional binary inputs has been naturally bypassed. Different hidden
layers can be regarded as different internal functions capturing different forms
of representations of the data instance. For this reason, this model has more
abilities of catching intrinsic data patterns and leads to better performance.

The idea using FM in the bottom layer is ignited by Convolutional Neural
Networks (CNNs) [11], which exploit spatially local correlation by enforcing
a local connectivity pattern between neurons of adjacent layers. Similarly, the
inputs of hidden layer 1 are connected to the input units of a specific field. Also,
the bottom layer is not fully connected as FM performs a field-wise training
for one-hot sparse encoded input, allowing local sparsity, illustrated as the dash
lines in Fig. 1. FM learns good structural data representation in the latent space,
helpful for any further model to build on. A subtle difference, though, appears
between the product rule of FM and the sum rule of DNN for combination.
However, according to [21], if the observational discriminatory information is
highly ambiguous (which is true in our case for ad click behaviour), the posterior
weights (from DNN) will not deviate dramatically from the prior (FM).

Furthermore, the weights in hidden layers (except the FM layer) are ini-
tialised by layer-wise RBM pre-training [3] using contrastive divergence [17],

50 W. Zhang et al.

which effectively preserves the information in input dataset as detailed in [16,18].
The initial weights for FMs are trained by stochastic gradient descent (SGD),
as detailed in [31]. Note that we only need to update weights which connect
to the positive input units, which largely reduces the computational complex-
ity. After pre-training of the FM and upper layers, supervised fine-tuning (back
propagation) is applied to minimise loss function of cross entropy:

L(y, ŷ) = −y log ŷ − (1 − y) log(1 − ŷ), (7)

where ŷ is the predicted CTR in Eq. (1) and y is the binary click ground-truth
label. Using the chain rule of back propagation, the FNN weights including FM
weights can be efficiently updated. For example, we update FM layer weights
via

∂L(y, ŷ)
∂W i

0

=
∂L(y, ŷ)

∂zi

∂zi

∂W i
0

=
∂L(y, ŷ)

∂zi
x[starti : endi] (8)

W i
0 ← W i

0 − η · ∂L(y, ŷ)
∂zi

x[starti : endi]. (9)

Due to the fact that the majority entries of x[starti : endi] are 0, we can accel-
erate fine-tuning by updating weights linking to positive units only.

Field 1

All hidden units connect
sampled units per field.

Opposite connection with
layer one

All hidden units connect
sampled units per field.

(a) SNN Architecture

(b) SNN First Layer Pre-Trained with Sampling-based RBM

(c) SNN First Layer Pre-Trained with Sampling-based DAE
Field 2

Fig. 2. A 4-layer SNN architecture and two first-layer pre-training methods.

3.2 Sampling-Based Neural Networks (SNN)

The structure of the second model SNN is shown in Fig. 2(a). The difference
between SNN and FNN lies in the structure and training method in the bottom
layer. SNN’s bottom layer is fully connected with sigmoid activation function:

z = sigmoid(W 0x + b0). (10)

Deep Learning over Multi-field Categorical Data 51

To initialise the weights of the bottom layer, we tried both restricted Boltz-
mann machine (RBM) [16] and denoising auto-encoder (DAE) [4] in the pre-
training stage. In order to deal with the computational problem of training large
sparse one-hot encoding data, we propose a sampling-based RBM (Fig. 2(b),
denoted as SNN-RBM) and a sampling-based DAE in (Fig. 2(c), denoted as
SNN-DAE) to efficiently calculate the initial weights of the bottom layer.

Instead of modelling the whole feature set for each training instance set,
for each feature field, e.g., city, there is only one positive value feature for
each training instance, e.g., city=London, we sample m negative units, e.g.,
city=Paris when m = 1, randomly with value 0. Black units in Fig. 2(b) and (c)
are unsampled and thus ignored when pre-training the data instance. With the
sampled units, we can train an RBM via contrastive divergence [17] and a DAE
via SGD with unsupervised approaches to largely reduce the data dimension
with high recovery performance. The real-value dense vector is used as the input
of the further layers in SNN.

In this way, computational complexity can be dramatically reduced and, in
turn, initial weights can be calculated quickly and back-propagation is then
performed to fine-tune SNN model.

3.3 Regularisation

To prevent overfitting, the widely used L2 regularisation term is added to the
loss function. For example, the L2 regularisation for FNN in Fig. 1 is

Ω(w) = ||W 0||22 +
3∑

l=1

(
||W l||22 + ||bl||22

)
. (11)

On the other hand, dropout [35] is a technique which becomes a popular and
effective regularisation technique for deep learning during the recent years. We
also implement this regularisation and compare them in our experiment.

4 Experiment

4.1 Experiment Setup

Data. We evaluate our models based on iPinYou dataset [27], a public real-
world display ad dataset with each ad display information and corresponding
user click feedback. The data logs are organised by different advertisers and in a
row-per-record format. There are 19.50 M data instances with 14.79 K positive
label (click) in total. The features for each data instance are all categorical. Fea-
ture examples in the ad log data are user agent, partially masked IP, region,
city, ad exchange, domain, URL, ad slot ID, ad slot visibility, ad slot
size, ad slot format, creative ID, user tags, etc. After one-hot encoding,
the number of binary features is 937.67 K in the whole dataset. We feed each
compared model with these binary-feature data instances and the user click (1)

52 W. Zhang et al.

and non-click (0) feedback as the ground-truth labels. In our experiments, we
use training data from advertiser 1458, 2259, 2261, 2997, 3386 and the whole
dataset, respectively.

Models. We compare the performance of the following CTR estimation models:

LR: Logistic Regression [32] is a linear model with simple implementation and
fast training speed, which is widely used in online advertising estimation.

FM: Factorisation Machine [31] is a non-linear model able to estimate feature
interactions even in problems with huge sparsity.

FNN: Factorisation-machine supported Neural Network is our proposed model
as described in Sect. 3.1.

SNN: Sampling-based Neural Network is also our proposed model with sampling-
based RBM and DAE pre-training methods for the first layer in Sect. 3.2,
denoted as SNN-RBM and SNN-DAE respectively.

Our experiment code2 of both FNN and SNN is implemented with Theano3.

Metric. To measure the CTR estimation performance of each model, we employ
the area under ROC curve (AUC)4. The AUC [12] metric is a widely used mea-
sure for evaluating the CTR performance.

4.2 Performance Comparison

Table 1 shows the results that compare LR, FM, FNN and SNN with RBM and
DAE on 5 different advertisers and the whole dataset. We observe that FM
is not significantly better than LR, which means 2-order combination features
might not be good enough to catch the underlying data patterns. The AUC
performance of the proposed FNN and SNN is better than the performance of

Table 1. Overall CTR estimation AUC performance.

LR FM FNN SNN-DAE SNN-RBM

1458 70.42 % 70.21 % 70.52% 70.46 % 70.49 %

2259 69.66 % 69.73 % 69.74% 68.08 % 68.34 %

2261 62.03 % 60.97 % 62.99 % 63.72% 63.72%

2997 60.77 % 60.87 % 61.41 % 61.58% 61.45 %

3386 80.30 % 79.05 % 80.56% 79.62 % 80.07 %

all 68.81 % 68.18 % 70.70% 69.15 % 69.15 %

2 The source code with demo data: https://github.com/wnzhang/deep-ctr.
3 Theano: http://deeplearning.net/software/theano/.
4 Besides AUC, root mean square error (RMSE) is also tested. However, posi-

tive/negative examples are largly unbalanced in ad click scenario, and the empirically
best regression model usually provides the predicted CTR close to 0, which results
in very small RMSE values and thus the improvement is not well captured.

https://github.com/wnzhang/deep-ctr
http://deeplearning.net/software/theano/

Deep Learning over Multi-field Categorical Data 53

LR and FM on all tested datasets. Based on the latent structure learned by
FM, FNN further learns effective patterns between these latent features and
provides a consistent improvement over FM. The performance of SNN-DAE and
SNN-RBM is generally consistent, i.e., the relative order of the results of the
SNN are almost the same.

4.3 Hyperparameter Tuning

Due to the fact that deep neural networks involve many implementation details
and need to tune a fairly large number of hyper-parameters, following details
show how we implement our models and tune hyperparameters in the models.

We use stochastic gradient descent to learn most of our parameters for all
proposed models. Regarding selecting the number of training epochs, we use
early stopping [30], i.e., the training stops when the validation error increases.
We try different learning rate from 1, 0.1, 0.01, 0.001 to 0.0001 and choose the
one with optimal performance on the validation dataset.

For negative unit sampling of SNN-RBM and SNN-DAE, we try the negative
sample number m = 1, 2 and 4 per field as described in Sect. 3.2, and find m = 2
produces the best results in most situations. For the activation functions in both
models on the hidden layers (as Eqs. (3) and (2)), we try linear function, sigmoid
function and tanh function, and find the result of tanh function is optimal. This
might be because the hyperbolic tangent often converges faster than the sigmoid
function.

Fig. 3. AUC Performance with different architectures.

4.4 Architecture Selection

In our models, we investigate architectures with 3, 4 and 5 hidden layers by fixing
all layer sizes and find the architecture with 3 hidden layers (i.e., 5 layers in total)
is the best in terms of AUC performance. However, the range of choosing their
layer sizes is exponential in the number of hidden layers. Suppose there is a deep
neural network with L hidden layers and each of the hidden layers is trained
with a range of hidden units from 100 to 500 with increments of 100, thus there
are 5L models in total to compare.

54 W. Zhang et al.

Instead of trying all combinations of hidden units, in our experiment we use
another strategy by starting tuning the different hidden layer sizes with the same
number of hidden units in all three hidden layers5 since the architecture with
equal-size hidden layers is empirically better than the architecture with increas-
ing width or decreasing width in [24]. For this reason, we start tuning layer sizes
with equal hidden layer sizes. In fact, apart from increasing, constant, decreasing
layer sizes, there is a more effective structure, which is the diamond shape of
neural networks, as shown in Fig. 3(a). We compare our diamond shape network
with other three shapes of networks and tune the total number of total hidden
units on two different datasets shown in Fig. 3(b) and (c). The diamond shape
architecture outperforms others in almost all layer size settings. The reason why
this diamond shape works might be because this special shape of neural network
has certain constraint to the capacity of the neural network, which provides bet-
ter generalisation on test sets. On the other hand, the performance of diamond
architecture picks at the total hidden unit size of 600, i.e., the combination of
(200, 300, 100). This depends on the training data observation numbers. Too
many hidden units against a limited dataset could cause overfitting.

4.5 Regularisation Comparison

Neural network training algorithms are very sensitive to the overfitting prob-
lem since deep networks have multiple non-linear layers, which makes them very
expressive models that can learn very complicated functions. For DNN models,
we compared L2 regularisation (Eq. (11)) and dropout [35] for preventing com-
plex co-adaptations on the training data. The dropout rate implemented in this
experiment refers to the probability of each unit being active.

Figure 4(a) shows the compared AUC performance of SNN-RBM regularised
by L2 norm and dropout. It is obvious that dropout outperforms L2 in all com-
pared settings. The reason why dropout is more effective is that when feeding
each training case, each hidden unit is stochastically excluded from the network
with a probability of dropout rate, i.e., each training case can be regarded as a
new model and these models are averaged as a special case of bagging [5], which
effectively improves the generalisation ability of DNN models.

4.6 Analysis of Parameters

As a summary of Sects. 4.4 and 4.5, for both FNN and SNN, there are two
important parameters which should be tuned to make the model more effective:
(i) the parameters of layer size decide the architecture of the neural network and
(ii) the parameter of dropout rate changes generalisation ability on all datasets
compared to neural networks just with L2 regularisation.

5 Some advanced Bayesian methods for hyperparameter tuning [34] are not considered
in this paper and may be investigated in the future work.

Deep Learning over Multi-field Categorical Data 55

(a) Dropout vs. L2 (b) FNN on 2997 dataset (c) SNN on 2997 dataset

Fig. 4. AUC performance w.r.t difference regularisation settings.

Figure 4(b) and (c) show how the AUC performance changes with the increas-
ing of dropout in both FNN and SNN. We can find that there is an upward trend
of performance in both models at the beginning and then drop sharply with con-
tinuous decreasing of dropout rate. The distinction between two models is the
different sensitivities of the dropout. From Fig. 4(c), we can see the model SNN is
sensitive to the dropout rate. This might be caused by the connectivities in the
bottom layer. The bottom layer of the SNN is fully connected with the input vec-
tor while the bottom layer for FNN is partially connected and thus the FNN is
more robust when some hidden units are dropped out. Furthermore, the sigmoid
activation function tend to more effective than the linear activation function
in terms of dropout. Therefore, the dropout rates at the best performance of
FNN and SNN are quite different. For FNN the optimal dropout rate is around
0.8 while for SNN is about 0.99.

5 Conclusion

In this paper, we investigated the potential of training deep neural networks
(DNNs) to predict users’ ad click response based on multi-field categorical fea-
tures. To deal with the computational complexity problem of high-dimensional
discrete categorical features, we proposed two DNN models: field-wise fea-
ture embedding with supervised factorisation machine pre-training, and fully
connected DNN with field-wise sampling-based RBM and DAE unsupervised
pre-training. These architectures and pre-training algorithms make our DNNs
trained very efficiently. Comprehensive experiments on a public real-world
dataset verifies that the proposed DNN models successfully learn the underly-
ing data patterns and provide superior CTR estimation performance than other
compared models. The proposed models are very general and could enable a wide
range of future works. For example, the model performance can be improved by
momentum methods in that it suffices for handling the curvature problems in
DNN training objectives without using complex second-order methods [36]. In
addition, the partial connection in the bottom layer could be extended to higher
hidden layers as partial connectivities have many advantages such as lower com-
plexity, higher generalisation ability and more similar to human brain [9].

56 W. Zhang et al.

References

1. Beck, J.E., Park Woolf, B.: High-level student modeling with machine learning.
In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp.
584–593. Springer, Heidelberg (2000)

2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1),
1–127 (2009)

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise
training of deep networks. In: NIPS, vol. 19, p. 153 (2007)

4. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders
as generative models. In: NIPS, pp. 899–907 (2013)

5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
6. Broder, A.Z.: Computational advertising. In: SODA, vol. 8, pp. 992–992 (2008)
7. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:

Natural language processing (almost) from scratch. JMLR 12, 2493–2537 (2011)
8. Deng, L., Abdel-Hamid, O., Yu, D.: A deep convolutional neural network using

heterogeneous pooling for trading acoustic invariance with phonetic confusion. In:
ICASSP, pp. 6669–6673. IEEE (2013)

9. Elizondo, D., Fiesler, E.: A survey of partially connected neural networks. Int. J.
Neural Syst. 8(05n06), 535–558 (1997)

10. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? JMLR 11, 625–660 (2010)

11. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4),
193–202 (1980)

12. Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale bayesian click-
through rate prediction for sponsored search advertising in microsoft’s bing search
engine. In: ICML, pp. 13–20 (2010)

13. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: ICASSP, pp. 6645–6649. IEEE (2013)

14. Hand, D.J., Yu, K.: Idiot’s bayes not so stupid after all? Int. Statist. Rev. 69(3),
385–398 (2001)

15. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R.,
Bowers, S., et al.: Practical lessons from predicting clicks on ads at facebook. In:
ADKDD, pp. 1–9. ACM (2014)

16. Hinton, G.: A practical guide to training restricted boltzmann machines. Momen-
tum 9(1), 926 (2010)

17. Hinton, G.E.: Training products of experts by minimizing contrastive divergence.
Neural comput. 14(8), 1771–1800 (2002)

18. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

19. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: CIKM, pp.
2333–2338 (2013)

20. Juan, Y.C., Zhuang, Y., Chin, W.S.: 3 idiots approach for display advertising
challenge. In: Internet and Network Economics, pp. 254–265. Springer, Heidelberg
(2011)

21. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. PAMI 20(3),
226–239 (1998)

Deep Learning over Multi-field Categorical Data 57

22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

23. Kurashima, T., Iwata, T., Takaya, N., Sawada, H.: Probabilistic latent network
visualization: inferring and embedding diffusion networks. In: KDD, pp. 1236–1245.
ACM (2014)

24. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for
training deep neural networks. JMLR 10, 1–40 (2009)

25. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553) (2015)
26. Lee, K., Orten, B., Dasdan, A., Li, W.: Estimating conversion rate in display

advertising from past performance data. In: KDD, pp. 768–776. ACM (2012)
27. Liao, H., Peng, L., Liu, Z., Shen, X.: ipinyou global rtb bidding algorithm compe-

tition dataset. In: ADKDD, pp. 1–6. ACM (2014)
28. McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L.,

Phillips, T., Davydov, E., Golovin, D., et al.: Ad click prediction: a view from the
trenches. In: KDD, pp. 1222–1230. ACM (2013)

29. Oentaryo, R.J., Lim, E.P., Low, D.J.W., Lo, D., Finegold, M.: Predicting response
in mobile advertising with hierarchical importance-aware factorization machine.
In: WSDM (2014)

30. Prechelt, L.: Automatic early stopping using cross validation: quantifying the cri-
teria. Neural Netw. 11(4), 761–767 (1998)

31. Rendle, S.: Factorization machines with libfm. ACM TIST 3(3), 57 (2012)
32. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-

through rate for new ads. In: WWW, pp. 521–530. ACM (2007)
33. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with

convolutional-pooling structure for information retrieval. In: CIKM (2014)
34. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine

learning algorithms. In: NIPS, pp. 2951–2959 (2012)
35. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: A simple way to prevent neural networks from overfitting. JMLR 15(1),
1929–1958 (2014)

36. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: ICML, pp. 1139–1147 (2013)

37. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: WWW, pp. 1067–1077 (2015)

38. Trofimov, I., Kornetova, A., Topinskiy, V.: Using boosted trees for click-through
rate prediction for sponsored search. In: WINE, p. 2. ACM (2012)

39. Wang, X., Li, W., Cui, Y., Zhang, R., Mao, J.: Click-through rate estimation for
rare events in online advertising. In: Online Multimedia Advertising: Techniques
and Technologies, pp. 1–12 (2010)

40. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid
and high level feature learning. In: ICCV, pp. 2018–2025. IEEE (2011)

41. Zhang, W., Yuan, S., Wang, J.: Optimal real-time bidding for display advertising.
In: KDD, pp. 1077–1086. ACM (2014)

42. Zou, Y., Jin, X., Li, Y., Guo, Z., Wang, E., Xiao, B.: Mariana: Tencent deep
learning platform and its applications. VLDB 7(13), 1772–1777 (2014)

	Deep Learning over Multi-field Categorical Data
	1 Introduction
	2 Related Work
	3 DNNs for CTR Estimation Given Categorical Features
	3.1 Factorisation-Machine Supported Neural Networks (FNN)
	3.2 Sampling-Based Neural Networks (SNN)
	3.3 Regularisation

	4 Experiment
	4.1 Experiment Setup
	4.2 Performance Comparison
	4.3 Hyperparameter Tuning
	4.4 Architecture Selection
	4.5 Regularisation Comparison
	4.6 Analysis of Parameters

	5 Conclusion
	References

