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ABSTRACT
Click through rate (CTR) prediction of image ads is the core
task of online display advertising systems, and logistic re-
gression (LR) has been frequently applied as the prediction
model. However, LR model lacks the ability of extracting
complex and intrinsic nonlinear features from handcrafted
high-dimensional image features, which limits its effective-
ness. To solve this issue, in this paper, we introduce a novel
deep neural network (DNN) based model that directly pre-
dicts the CTR of an image ad based on raw image pixels and
other basic features in one step. The DNN model employs
convolution layers to automatically extract representative
visual features from images, and nonlinear CTR features
are then learned from visual features and other contextual
features by using fully-connected layers. Empirical evalua-
tions on a real world dataset with over 50 million records
demonstrate the effectiveness and efficiency of this method.

Keywords
DNN, CNN, Click through rate, Image Ads, Display Adver-
tising

1. INTRODUCTION
Online display advertising generates a significant amount

of revenue by showing textual or image ads on various web
pages [3]. The ad publishers like Google and Yahoo sell
ad zones on different web pages to advertisers who want
to show their ads to users. And then Publishers get paid
by advertisers every time the ad display leads to some de-
sired action such as clicking or purchasing according to the
payment options such as cost-per-click (CPC) or cost-per-
conversion (CPA) [15]. The expected revenue for publishers
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Figure 1: Display ads on an e-commerce web page.

is the product of the bid price and click-through rate (CTR)
or conversion rate (CVR).

Recently, more and more advertisers prefer displaying im-
age ads [17] (Figure 1) because they are more attractive and
comprehensible compared with textual ads. To maximize
the revenue of publishers, this has led to a huge demand on
approaches that are able to choose the most proper image
ad to show for a particular user when he or she is visiting a
web page so that to maximize the CTR or CVR.

Therefore, in most online advertising systems, predicting
the CTR or CVR is the core task of ads allocation. In this
paper, we focus on CPC and predict the CTR of display
ads. Typically an ads system predicts and ranks the CTR
of available ads based on contextual information, and then
shows the top K ads to the users. In general, prediction
models are learned from past click data based on machine
learning techniques [3, 24, 9, 5, 32, 16].

Features that are used to represent an ad are extremely
important in a machine learning model. In recent years,
to make the CTR prediction model more accurate, many
researchers use millions of features to describe a user’s re-
sponse record (we call it an ad impression). Typically, an
image ad impression has basic features and visual features.
The basic features are information about users, products and
ad positions in a web page, etc. Visual features describe the
visual appearance of an image ad at different levels. For
example, color and texture are low level features, while face
and other contextual objects are high level features. Low
level and high level features may both have the power to
influence the CTR of an image ad (Figure 2). Traditionally,
researchers lack effective method to extract high-level visual
features. The importance of visual features is also usually
under estimated. However, as we can see from Figure 2, ads
with same basic features may have largely different CTRs
due to different ad images. As a consequence, How to use
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the visual features in machine learning models effectively
becomes an urgent task.

Among different machine learning models that have been
applied to predict ads CTR using the above features, Lo-
gistic regression (LR) is the mostly well-known and widely-
used one due to its simplicity and effectiveness. Also, LR
is easy to be parallelized on a distributed computing sys-
tem thus it is not challenging to make it work on billions
of samples [3]. Being able to handle big data efficiently is
necessary for a typical advertising system especially when
the prediction model needs to be updated frequently to deal
with new ads. However, LR is a linear model which is in-
ferior in extracting complex and effective nonlinear features
from handcrafted feature pools. Though one can mitigate
this issue by computing the second-order conjunctions of the
features, it still can not extract higher-order nonlinear rep-
resentative features and may cause feature explosion if we
continue increasing the conjunction order.

To address these problems, other methods such as factor-
ization machine [22], decision tree [9], neural network [32] are
widely used. Though these methods can extract non-linear
features, they only deal with basic features and handcrafted
visual features, which are inferior in describing images. In
this paper, we propose a deep neural network (DNN) to
directly predict the CTR of an image ad from raw pixels
and other basic features. Our DNN model contains con-
volution layers to extract representative visual features and
then fully-connected layers that can learn the complex and
effective nonlinear features among basic and visual features.
The main contributions of this work can be summarized as
follows:

1. This paper proposed a DNN model which not only di-
rectly takes both high-dimensional sparse feature and
image as input, but also can be trained from end to
end. To our best knowledge, this is the first DNN
based CTR model which can do such things.

2. Efficient methods are introduced to tackle the chal-
lenge of high-dimensionality and huge data amount in
the model training stage. The proposed methods re-
duce the training time significantly and make it fea-
sible to train on a normal PC with GPUs even with
large-scale real world training data.

3. We conduct extensive experiments on a real-world dataset
with more than 50 million user response records to il-
lustrate the improvement provided by our DNN model.
The impacts of several deep learning techniques have
also been discussed. We further visualize the saliency
map of image ads to show our model can learn effective
visual features.

The paper is organized as follows. Section 2 introduces
the related work, followed by an overview of our scheme
in Section 3. In Section 4, we describe the proposed DNN
model in detail, and we show the challenges in the training
stage as well as our solutions in Section 5. Section 6 presents
the experimental results and discussion, and then Section 7
is the conclusion.

2. RELATED WORK
We consider display advertising CTR prediction and deep

neural network are two mostly related areas to our work.

(a) (b) 

(c) (d) 

Figure 2: Two groups of image ads in each row.
The two ads in each group have completely same ad
group id, ad zone and target people. CTRs of im-
age ads (a) and (b) are 1.27% and 0.83%. (b) suffers
from low contrast between product and background
obviously. CTRs of (c) and (d) are 2.40% and 2.23%.
We find too many subjects in an men’s clothing ad
may bring negative effect. (the number of impres-
sions of each ad is sufficiently high to make the CTR
meaningful).

2.1 Display Advertising CTR prediction
Since the display advertising has taken a large share of

online advertising market, many works addressing the CTR
prediction problem have been published. In [24, 2], authors
handcraft many features from raw data and use logistic re-
gression (LR) to predict the click-through rate. [3] also uses
LR to deal with the CTR problem and scales it to billions of
samples and millions of parameters on a distributed learn-
ing system. In [20], a Hierarchical Importance-aware Fac-
torization Machine (FM) [23] is introduced, which provides
a generic latent factor framework that incorporates impor-
tance weights and hierarchical learning. In [5], boosted de-
cision trees have been used to build a prediction model. In
[9], a model which combines decision trees with logistic re-
gression has been proposed, and outperforms either of the
above two models. [32] combines deep neural networks with
FM and also brings an improvement. All of these methods
are very effective when deal with ads without images. How-
ever, when it comes to the image ads, they can only use
pre-extracted image features, which is less flexible to take
account of the unique properties of different datasets.

Therefore, the image features in display advertisement
have received more and more attention. In [1, 4], the im-
pact of visual appearance on user’s response in online display
advertising is considered for the first time. They extract
over 30 handcrafted features from ad images and build a
CTR prediction model using image and basic features. The
experiment result shows that their method achieves better
performance than models without visual features. [18] is
the most related work in literature with us, in which a de-
capitated convolutional neural network (CNN) is used to
extract image features from ads. However, there are two
important differences between their method and ours. First,
they do not consider basic features when extracting image
features using CNN. Second, when predicting the CTR they
use logistic regression which lacks the ability in exploring the
complex relations between image and basic features. Most
of the information in their image features is redundant such
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as product category which is included in basic features. As
a result, their model only achieves limited improvements
when combining both kinds of features. Worse still, when
the dataset contains too many categories of products, it can
hardly converge when training. Our model uses an end to
end model to predict the CTR of image ads using basic fea-
tures and raw images in one step, in which image features
can be seen as supplementary to the basic features.

2.2 Deep Neural Network
In recent years, deep neural network has achieved big

breakthroughs in many fields. In computer vision field, con-
volutional neural network (CNN) [13] is one of the most
efficient tools to extract effective image features from raw
image pixels. In speech recognition, deep belief network
(DBN) [10] is used and much better performance is obtained
comparing with Gaussian mixture models. Comparing with
traditional models that have shallow structure, deep learn-
ing can model the underlying patterns from massive and
complex data. With such learning ability, deep learning can
be used as a good feature extractor and applied into many
other applications [21, 26].

In CTR prediction field, besides [32] that is mentioned in
Section 2.1, DNN has also been used in some public CTR
prediction competitions12 recently. In these two competi-
tions, only basic features are available for participants. An
ensemble of four-layer DNNs which use fully-connected lay-
ers and different kinds of non-linear activations achieves bet-
ter or comparable performance than LR with feature con-
junction, factorization machines, decision trees, etc. Com-
paring with this method, our model can extract more pow-
erful features by taking consideration of the visual features
in image ads.

3. METHOD OVERVIEW
As aforementioned, in this paper, each record of user’s

behavior on an ad is called an impression. denoted by x.
Each impression has an image u with a resolution of around
120 × 200. Besides the image, the basic feature vector is
denoted by v ∈ Rd such as the user’s gender, product’s
category, ad position in the web page, and usually d can
be very large, say, from a few thousand to many million.
Our goal is to predict the probability that a user clicks on
an image ad given these features. We will still use logistic
regression to map our predicted CTR value ŷ to 0 to 1, thus
the CTR prediction problem can be written as:

ŷ =
1

1 + e−z
(1)

z = f(x) (2)

where f(.) is what we are going to learn from training data,
that is, the embedding function that maps an impression
to a real value z. Suppose we have N impressions X =
[x1, x2...xN ] and each with a label yi ∈ {0, 1} depends on the
user’s feedback, 0 means not clicked while 1 means clicked.
Then the learning problem is defined as minimizing a Loga-

1https://www.kaggle.com/c/avazu-ctr-prediction
2https://www.kaggle.com/c/criteo-display-ad-challenge
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Figure 3: The overall architecture of the network.
The output of each fully-connected layer is then pass
through a ReLU nonlinear activation function.

rithmic Loss (Logloss):

L(W) = − 1

N

∑
i

(yi log ŷi + (1− yi) log(1− ŷi)) + λ||W||2

(3)
where W is the parameters of the embedding function f(.)
and λ is a regularization parameter that controls the model
complexity.

In this model, what we need to learn is the embedding
function f(.). Conventional methods extract handcrafted
visual features from raw image u and concatenate them with
basic features v, then learn linear or nonlinear transforma-
tions to obtain the embedding function. In this paper we
learn this function directly from raw pixels of an image ad
and the basic features using one integrated deep neural net-
work.

4. NETWORK ARCHITECTURE
Considering basic features and raw images come from two

different domains, we cannot simply concatenate them to-
gether directly in the network. Training two separate net-
works is also inferior since it cannot take into account the
correlations between the two features. As a result, our net-
work adopts two different sub-networks to deal with basic
features and raw images, respectively, and then uses multi-
ple fully-connected layers to capture their correlations.

As illustrated in Figure 3, a deep neural network called
DeepCTR is designed which contains three parts. One part,
Convnet, takes raw image u as input and follows with a con-
volutional network. The output of the Convnet is a feature
vector of the raw image. The second part which is called
Basicnet, takes basic features v as input and applies a fully-
connected layer to reduce the dimensionality. Subsequently,
outputs of Convnet and Basicnet are concatenated into one
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Figure 4: The architecture of the 17-layer Convnet in our model.

vector and fed to two fully-connected layers. The output of
the last fully-connected layer is a real value z. This part is
called Combnet. On the top of the whole network, Logloss
is computed as described in Section 3.

The design of Convnet is inspired by the network in [7,
27], as shown in Figure 4. The network consists of 17 convo-
lution layers. The first convolution layer uses 5× 5 convolu-
tion kernels. Following first layer, there are four groups and
each has four layers with 3 × 3 kernels. We do not build a
very deep network such as more than 50 layers in considera-
tion of the trade off between performance and training time.
We pre-train the Convnet on the images in training dataset
with category labels. We use two fully-connected layers with
1024 hidden nodes (we call them fc18 and fc19 ), a fully-
connected layer with 96-way outputs (we call it fc20 ) and
a softmax after the Convnet in pre-training period. Since
our unique images set is smaller (to be detailed in Section
6) than ImageNet [6], we use half the number of outputs in
each group comparing with [7]. After pre-training, a 128-
way fully-connected layer is connected behind the last con-
volution layer. Then we train the whole DeepCTR using
Logloss from end to end.

5. SPEED UP TRAINING
An online advertising system has a large number of new

user response records everyday. It is necessary for ad sys-
tems to update as frequently as possible to adapt new ten-
dency. An LR model with distributed system requires sev-
eral hours to train with billions of samples, which makes it
popular in industry.

Typically a deep neural network has millions of parame-
ters which makes it impossible to train quickly. With the
development of GPUs, one can train a deep CNN with 1
million training images in two days on a single machine.
However, it is not time feasible for our network since we
have more than 50 million samples. Moreover, the dimen-
sionality of basic features is nearly 200,000 which leads to
much more parameters in our network than a normal deep
neural network. Directly training our network on a single
machine may take hundreds of days to converge according
to a rough estimation. Even using multi-machine can hardly
resolve the training problem. We must largely speed up the
training if we want to deploy our DeepCTR on a real online
system.

To make it feasible to train our model with less than one
day, we adopt two techniques: using sparse fully-connected

layer and a new data sampling scheme. The use of these two
techniques makes the training time of our DeepCTR suitable
for a real online system.

5.1 Sparse Fully-Connected Layer
In CTR prediction, the basic feature of an ad impression

includes user information like gender, age, purchasing power,
and ad information like ad ID, ad category, ad zone, etc.
This information is usually encoded by one-hot encoding or
feature hashing [29] which makes the feature dimension very
large. For example, it is nearly 200,000 in our dataset. Con-
sequently, in Basicnet, the first fully-connected layer using
the basic feature as input has around 60 million parame-
ters, which is similar to the number of all the parameters
in AlexNet [13]. However, the basic feature is extremely
sparse due to the one-hot encoding. Using sparse matrix in
first fully-connected layer can largely reduce the computing
complexity and GPU memory usage.

In our model, we use compressed sparse row (CSR) format
to represent a batch of basic features V . When computing
network forward

Yfc1 = VW, (4)

sparse matrix operations can be used in the first fully-connected
layer. When backward pass, we only need to update the
weights that link to a small number of nonzero dimensions
according to the gradient

∇(W ) = V. (5)

Both of the forward pass and backward pass only need a
time complexity of O(nd′) where d′ is the number of non-
zero elements in basic features and d′ � d. An experiment
result that compares the usages of time and GPU memory
with/out sparse fully-connected layer can be found in Sec-
tion 6.2.

5.2 Data Sampling
Another crucial issue in training is that Convnet limits the

batch-size of Stochastic Gradient Descent (SGD). To train
a robust CTR prediction model, we usually need millions
of ad samples. However, the Convnet requires lots of GPU
memory, which makes our batch-size very small, say, a few
hundred. For a smaller batch-size, the parallel computing
of GPU can not maximize the effect in the multiplication of
large matrix. And the number of iterations of each epoch
will be very large. We need much more time to run over
an epoch of iterations. Though the sparse fully-connected
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Figure 5: Originally, the image and the basic feature
vector are one to one correspondence. In our data
sampling method, we group basic features of an im-
age together, so that we can deal with much more
basic features per batch.

layer can largely reduce the forward-backward time in Ba-
sicnet, training the whole net on such a large dataset still
requires infeasible time. Also, the gradient of each iteration
is unstable in the case of smaller batch-size, which makes
the convergence harder. In CTR prediction, this problem is
even more serious because the training data is full of noise.

In this paper, we propose a simple but effective training
method based on an intrinsic property of the image ads click
records, that is, many impressions share a same image ad.
Though the total size of the dataset is very large, the number
of unique images is relatively smaller. Since a good many
of basic features can be processed quickly by sparse fully-
connected layer, we can set a larger batch-size for Basicnet
and a smaller one for Convnet. In this paper we employ a
data sampling method that groups basic features of a same
image ad together to achieve that (Figure 5), which is de-
tailed as follows.

Suppose the unique images set in our dataset is U, the
set of impressions related to an image u are Xu and basic
features are Vu. At each iteration, suppose the training
batch size is n, we sample n different images U from U.
Together with each image u ∈ U , we sample k basic features
Vu from Vu with replacement. Thus we have n images and
kn basic features in each batch. After Convnet, we have
n image features. For each feature vector convu we copy
it k times to have Cu and send them forward to Combnet
along with Vu. In backward time, the gradient of each image
feature vector can be computed as:

∇(convu) =
1

k

∑
c∈Cu

∇(c) (6)

The training method is summarized in Alg. 1 and Alg. 2. In
fact, this strategy makes us able to deal with kn samples in
a batch. Since the sparse fully-connected layer requires very
small GPU memory, we can set k a very big value according
to the overall average number of basic feature vectors of

Algorithm 1 Training a DeepCTR network

Input: : Network Net with parameter W, unique images
set U, basic features set V, labels Y, batch size n, basic
feature sample number k.

Output: : Network for CTR prediction, Net
1: Initialize Net.
2: Compute the sample probability p(u) of each image u,

p(u) =
#Vu∑

u′∈U #Vu′
(7)

3: repeat
4: Sample n images U according to p(u).
5: For each u in U , sample k basic features Vu from Vu

with labels Yu uniformly with replacement.
6: forward backward(Net, U, V, Y ).
7: until Net converges

Algorithm 2 forward backward

Input: : Network Net with parameters W which contains
a Convnet, Basicnet and Combnet, image samples U ,
basic features V , labels Y , basic feature sample number
k.

1: Compute the feature vector convu of each image u:
conv = net foward(Convnet, U)

2: Copy each feature vector k times so we have C.
3: loss = net forward(Basicnet and Combnet, V, C).
4: ∇(C) = net backward(Combnet and Basicnet, loss).
5: Compute ∇(convu) of each image u according to Eq. 6.
6: net backward(Convnet,∇(conv)).
7: Update network Net.

image ads. This strategy reduces the number of iterations of
an epoch to several thousand and largely speeds up training.
A larger batch-size also makes the gradient of each batch
much more stable which leads to the model easy to converge.
We also conduct an experiment to evaluate whether this
sampling method influences the performance of DeepCTR
comparing a throughly shuffle strategy in Section 6.2.

6. EXPERIMENT
In this section, a series of experiments are conducted to

verify the superiority of our DeepCTR model.

6.1 Experimental Setting

6.1.1 Dataset
The experiment data comes from a commercial advertising

platform (will expose it in the final version) in an arbitrary
week of year 2015. We use the data from first six days as our
training data and the data from last day (which is a Friday)
as testing data. As described in Section 3, each impression
consists of an ad x and a label y. An impression has an image
u (Figure 2) and a basic feature vector v. The size of training
data is 50 million while testing set is 9 million. The ratio of
positive samples and negative samples is around 1:30. We
do not perform any sub-sampling of negative events on the
dataset. We have 101,232 unique images in training data and
17,728 unique images in testing data. 3,090 images in testing
set are never shown in training set. Though the image data
of training set and test data are highly overlapped, they
follow the distribution of the real-world data. To make our
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experiment more convincing, we also conduct a experiment
on a sub test set that only contains new images data that
never been used in training. The basic feature v is one-
hot encoded and has a dimensionality of 153,231. Following
information is consisted by basic features:

1. Ad zone. The display zone of an ad on the web page.
We have around 700 different ad zones in web pages.

2. Ad group. The ad group is a small set of ads. The ads
in an ad group share almost same products but differ-
ent ad images (in Figure 2, (a) and (b) belong to an ad
group while (c) and (d) belong to another group). We
have over 150,000 different ad groups in our dataset.
Each ad group consists less than 20 different ads.

3. Ad target. The groups of target people of the ad. We
have 10 target groups in total.

4. Ad category. The category of the product in ads. We
have 96 different categories, like clothing, food, house-
hold appliances.

5. User. The user information includes user’s gender, age,
purchasing power, etc.

Besides above basic features, we do not use any handcrafted
conjunction features. We hope that our model can learn ef-
fective non-linear features automatically from feature pools.

6.1.2 Baselines
We use LR only with basic features as our first baseline.

We call this method lr basic in following experiments. To
verify that our DNN model has the ability of extracting ef-
fective high-order features, a Factorization Machine imple-
mented by LibFM [23] only with basic features is our second
baseline. We call it FM basic. We use 8 factors for 2-way
interactions and MCMC for parameter learning in FM ba-
sic. Then we evaluate a two hidden layers DNN model only
using basic features. The numbers of outputs of two hid-
den layers are 128 and 256 respectively. The model can be
seen as our DeepCTR net without the Convnet part. This
method is called dnn basic. We further replace the Convnet
in our DeepCTR net with pre-extracted features, SIFT [14]
with bag of words and the outputs of different layers of the
pre-trained Convnet. We call these two methods dnn sift
and dnn layername (for example dnn conv17 ).

6.1.3 Evaluation Metric
We use two popular metrics to evaluate the experiment

result, Logloss and the area under receiver operator curve
(AUC). Logloss can quantify the accuracy of the predicted
click probability. AUC measures the ranking quality of the
prediction. Our dataset comes from a real commercial plat-
form, so both of these metrics use relative numbers compar-
ing with lr basic.

Since the AUC value is always larger than 0.5, we remove
this constant part (0.5) from the AUC value and then com-
pute the relative numbers as in [30]:

relative AUC = (
AUC(method)− 0.5

AUC(lr basic)− 0.5
− 1)× 100% (8)

6.1.4 Network Configuration
In our Convnet, a 112 × 112 random crop and horizontal

mirror for the input image are used for data augmentation.
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Figure 6: Test Logloss of the DeepCTR net
with/without batch normalization in Combnet.

Each group has four convolution layers followed by a batch
normalization [11] and a ReLU [19] activation. The stride of
the first convolution layer is 2 if the output size of a group
halves. We initialize the layer weights as in [8]. When pre-
training the Convnet on our image dataset with category
labels, we use SGD with a mini-batch size of 128. The learn-
ing rate starts from 0.01 and is divided by 10 when test loss
plateaus. The pre-trained model converges after around 120
epochs. The weight decay of the net is set as 0.0001 and
momentum is 0.9.

After pre-training Convnet, we train our DeepCTR model
from end to end. Other parts of our net use the same initial-
ization method as Convnet. We choose the size of mini-batch
n as 20, and k = 500. That is to say, we deal with 10,000
impressions per batch. We start with the learning rate 0.1,
and divided it by 10 after 6×104, 1×105 and 1.4×105 itera-
tions. The Convnet uses a smaller initial learning rate 0.001
in case of destroying the pre-trained model. The weight de-
cay of the whole net is set as 5× 10−5. The dnn basic, dnn
sift and dnn layername use the same learning strategy.

We implement our deep network on C++ Caffe toolbox
[12] with some modifications like sparse fully-connected layer.

6.2 Results and Discussion
In this section we compare the results of various methods

and the effects of some network structures. First we com-
pare the results of models with deep features in different
levels. We plot the two metrics of dnn conv13, dnn conv17,
dnn fc18, dnn fc19, and dnn fc20 in the middle of Table
1. From the results, we find that dnn conv17 and dnn fc18
achieve best performance. Image features in these layers are
of relatively high level but not highly group invariant [31].
Comparing with following fully-connected layers, they have
more discriminations in same category. Comparing with pre-
vious layers, they contain features in a sufficiently high-level
which are superior in describing the objects in images. Con-
sequently, we connect conv17 layer in our DeepCTR model.
We do not choose fc18 because it needs higher computa-
tions. We have also tried to compare our DeepCTR with
the approach in [18]. However the model in [18] does not

816



Table 1: relative AUC and Logloss. All the numbers are best resuts achieved in three repeated experiments.
We omit dnn of methods using deep neural network with pre-extracted features.

method lr basic FM basic basic sift conv13 conv17 fc18 fc19 fc20 DeepCTR 3 DeepCTRs
AUC(%) - 1.47 1.41 1.69 3.92 4.13 4.10 3.48 3.04 5.07 5.92

Logloss(%) - -0.40 -0.39 -0.45 -0.79 -0.86 -0.86 -0.74 -0.69 -1.11 -1.30
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Figure 7: (a) and (b) are the histograms of outputs
of Basicnet and Convnet without batch normaliza-
tion while (c) and (d) with batch normalization.

converge on our dataset. We think the reason is that our
dataset consists of too many categories of products while in
their datasets only 5 different categories are available.

Comparison between other baselines is shown in Table
1 too. From the result, it can be seen that a deep neu-
ral network and image features can both improve the CTR
prediction accuracy. FM basic and dnn basic achieve almost
same improvements comparing with lr basic, which indicates
that these two models both have strong power in extracting
effective non-linear basic features. For the image part, com-
paring with handcrafted features, like SIFT, deep features
have stronger power in describing the image, which leads to
a significant improvement in the prediction accuracy. Our
DeepCTR model goes one step further by using an end to
end learning scheme. Ensemble of multiple deep networks
usually brings better performance, so we train 3 DeepCTR
models and average their predictions, and it gives the best
AUC and Logloss. Compared with lr basic, the AUC in-
crease will bring us 1∼2 percent CTR increase in the adver-
tising system (according to online experiments), which will
lead to over 1 million earnings growth per day for an 100
million ads business.

To make our results more convincing, we also conduct
an experiment on the sub test set that only contains 3,090
images that are never shown in training set. The relative
AUC and Logloss of three representative methods dnn basic,
dnn sift and a single DeepCTR are in Table 2. Clearly,
our DeepCTR wins by a large margin consistently. We also
notice that while the AUC of dnn basic decreases, dnn sift
and our DeepCTR have an even higher relative AUC than
the result on the full test set. Ad images in 3K sub test

Table 2: relative AUC and Logloss of the sub test
set that only contains images never shown in the
training set.

AUC (%) Logloss (%)
lr basic - -

dnn basic 1.07 -0.21
dnn sift 2.14 -0.48

DeepCTR 5.54 -0.85

set are all new ads added into the ad system and the ad
groups have not appeared in the training set. This lead to
the prediction worse in 3K sub test set because the ad group
feature does not exist in the training set. However, though
we lack some basic features, visual features bring much more
supplementary information. This is the reason that dnn sift
and DeepCTR have more improvements over the baseline
methods (which only have basic features) in 3K sub test set
comparing with the full test set. This experiment shows
that visual features can be used to identify ads with similar
characteristics and thus to predict the CTR of new image
ads more accurately. It also verifies that our model indeed
has strong generalization ability but not memories the image
id rigidly.

For different real-world problems, different techniques may
be needed due to the intrinsic characteristics of the problem,
network design and data distribution. Therefore, solutions
based on deep learning typically will compare and analyze
the impact and effectiveness of those techniques to find the
best practices for a particular problem. Therefore, we fur-
ther explore the influence of different deep learning tech-
niques in our DeepCTR model empirically.

First we find that the batch normalization in the Comb-
net can speed up training and largely improve performance
(Figure 6). To investigate the reason, we show the histogram
(Figure 7) of the outputs of Convnet and BasicNet. We
can see from the histogram that two outputs have signifi-
cant difference in scale and variance. Simply concatenating
these two different kinds of data stream makes the following
fully-connected layer hard to converge.

Dropout [28] is an efficient way to prevent over-fitting
problem in deep neural network. Most deep convolution
networks remove the dropout because batch normalization
can regularize the models [7, 11]. However, in our DeepCTR
model, we find it still suffers from over-fitting without dropout.
We compare the loss curves of the model with/without dropout
in the last two fully-connected layers. We can see that the
model with dropout achieves lower testing Logloss, though
we need more time to reach the lowest test loss.

We also evaluate the performance of the sparse fully-connected
layer and our data sampling method. We plot computing
time and memory overhead (Table 3) of the sparse fully-
connected layer comparing with dense layer. Loss curves of
training and testing are exactly the same since sparse fully-
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Figure 8: Logloss of the DeepCTR net with/without
dropout in Combnet. Dashed lines denote training
loss, and bold lines denote test loss.

Table 3: forward-backward time and GPU memory
overhead of first fully-connected layer with a batch
size of 1,000.

time (ms) memory (MB)
sparse layer 6.67 397
dense layer 189.56 4667

connected layer does not change any computing results in
the net, so we do not plot them. From this table we can find
dense layer requires much more computing time and mem-
ory than sparse one. Using sparse layer allows a lager batch
size when training, which speeds up the training and makes
the net much easier to converge.

Finally, we investigate whether the performance of our
model descends using our data sampling method comparing
a throughly shuffle. We only evaluate the sampling method
on dnn conv17 model, that is, we conduct experiments on a
model where the Convnet is frozen. Ideally, we should use
an unfrozen Convnet without data sampling as the contrast
experiment. However, as mentioned in Section 5.2, training
an unfrozen Convnet limits our batch-size less than 200 be-
cause the Convnet needs much more GPU memory, while a
model with frozen Convnet can deal with more than 10000
samples in a batch. It will takes too much time to training
our model on such a small batch-size. Also, the main dif-
ference between with/out sampling is whether the samples
were thoroughly shuffled, while freezing the Convnet or not
does not influence the order of samples. Therefore, we be-
lieve that our DeepCTR model performs similarly with dnn
conv17 model. From Table 4 we can see the performance of
the model is not influenced by the data sampling method.
At the same time, our method costs far less training time
comparing with the approach without data sampling. Using
this data sampling method, training our DeepCTR model
from end to end only takes around 12 hours to converge on
a NVIDIA TESLA k20m GPU with 5 GB memory, which is
acceptable for an online advertising system requiring daily
update.

Table 4: AUC and Logloss of dnn conv17 model with
our data sampling and a throughly shuffle.

AUC(%) Logloss(%)
data sampling 4.13 -0.86

throughly shuffle 4.12 -0.86

Figure 9: Saliency map of an image ad. We can see
that cats, texture, and characters all have effect on
the CTR.

6.3 Visualizing the Convnet
Visualizing the CNN can help us better understand ex-

actly what we have learned. In this section, we follow the
saliency map visualization method used in [25]. We use a
linear score model to approximate our DeepCTR for clicked
or not clicked :

z(U) ≈ wTU + b, (9)

where image U is in the vectorized (one-dimension) form,
and w and b are weight and bias of the model. Indeed,
Eq 9 can be seen as the first order Taylor expansion of our
DeepCTR model. We use the magnitude of elements of w
to show the importance of the corresponding pixels of U for
the clicked probability. where w is the derivative of z with
respect to the image U at the point (image) U0:

w =
∂z

∂U

∣∣∣
U0

(10)

In our case, the image U is in RGB format and has three
channels at pixel Ui,j . To derive a single class saliency value
Mi,j of each pixel, we take the maximum absolute value of
wi,j across RGB channels c:

Mi,j = maxc|wi,j(c)| (11)

Some of the typical visualization examples are shown as
heat maps in Figure 10. In these examples, brighter area
plays a more important role in impacting the CTR of the
ad. We can see main objects in ads are generally more im-
portant. However, some low level features like texture, char-
acters, and even background can have effect on the CTR of
the ad. In another example (Figure 9), it is more clearly to
see that visual features in both high level and low level have
effectiveness. From the visualization of the Convnet, we can
find that the task of display ads CTR prediction is quite
different from object classification where high level features
dominate in the top layers. It also gives an explanation why
an end-to-end training can improve the model. Apparently,
the Convnet can be trained to extract features that are more
particularly useful for CTR prediction.

The visualization provides us an intuitive understanding
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Figure 10: Saliency map of the image ads. Brighter area plays a more important role in effecting the CTR
of ads.

of the impact of visual features in ad images which may be
useful for designers to make design choices. For example,
we can decide whether add another model or not in an ad
according to the saliency map of this model.

7. CONCLUSIONS
CTR prediction plays an important role in online display

advertising business. Accurate prediction of the CTR of ads
not only increases the revenue of web publishers, also im-
proves the user experience. In this paper we propose an end
to end integrated deep network to predict the CTR of image
ads. It consists of Convnet, Basicnet and Combnet. Con-
vnet is used to extract image features automatically while
Basicnet is used to reduce the dimensionality of basic fea-
tures. Combnet can learn complex and effective non-linear
features from these two kinds of features. The usage of
sparse fully-connected layer and data sampling techniques
speeds up the training process significantly. We evaluate
DeepCTR model on a 50 million real world dataset. The
empirical result demonstrates the effectiveness and efficiency
of our DeepCTR model.
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