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ABSTRACT

The explosion in online advertisement urges to better es-
timate the click prediction of ads. For click prediction on
single ad impression, we have access to pairwise relevance
among elements in an impression, but not to global interac-
tion among key features of elements. Moreover, the exist-
ing method on sequential click prediction treats propagation
unchangeable for different time intervals. In this work, we
propose a novel model, Convolutional Click Prediction Mod-
el (CCPM), based on convolution neural network. CCPM
can extract local-global key features from an input instance
with varied elements, which can be implemented for not only
single ad impression but also sequential ad impression. Ex-
periment results on two public large-scale datasets indicate
that CCPM is effective on click prediction.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Filtering
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1. INTRODUCTION

Recently, online advertising has become the most popular
approach to do brand promotion and product marketing for
the advertiser, and contributes the overwhelming majority
of income for the commercial web publisher.

Nowadays, click prediction on single ad impression [10]
has received much attention, and many different approaches
have been proposed. For simplicity and effectiveness, Lo-
gistic Regression (LR) [7, 9] has been widely used in click
prediction. Representing each element (e.g. query, ad, user
and other contexts) of a single ad impression by a value,
LR is not capable enough to describe the latent features of
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an element or reveal the complicated relation among these
elements. As a widely-used technique in recommendation
systems, matrix factorization (MF) method [4] in the Col-
laborative Filtering approach is also employed for click pre-
diction. MF method factorizes and rebuilds the dependency
matrix to learn latent semantic representations of pages and
ads. Later, Factorization Machines (FM) [5, 6], a extension
of MF in multiple element space, obtains latent semantic in-
formation of each pairwise elements, which is able to better
model relation of various elements. However, MF and FM
models capture relevance of pairwise elements in single ad
impression and overlook the high-order interaction among
these elements.

Different from traditional works taking single ad impres-
sion as input instance and overlooking dependency of histor-
ical impressions, Recurrent Neural Network (RNN) model
[10] is leveraged for click prediction of sequential ad impres-
sion. Taking full advantage of historical click sequences, the
recurrent structure enhances the accuracy of click prediction
further. The model takes each user’s browsing history as a
sequence and obtains internal sequential dependency of var-
ied impressions. Historical click sequence of a certain user
is divided by different time intervals, sequence signals of one
time interval can be propagated to next interval by the recur-
rent connection matrix. Due to the fact that the recurrent
connection matrix of a trained RNN model is a constan-
t one, the propagations of sequence signals between every
two consecutive time intervals remain all the same. Howev-
er, in real-world scenarios, since users’ attitudes toward ads
change over time, RNN models may has its limitation for
these scenarios due to using the unchangeable propagations.

In order to mine significant semantic features in complex
and dynamic sceneries, deep neural network is a good choice.
As stated above, for click prediction on single ad impression,
the MF and FM methods only reveal the relevance between
pairwise elements, but convolutional neural network (CNN)
can treat varied elements in a single ad impression as a w-
hole and obtain complex interaction among them. On the
other hand, the unchangeable propagations of RNN models
on sequential ad impression has the limitation in effective-
ly modeling dynamic click predictions, while pooling and
convolutional layers of a deep CNN architecture can fully
extract local-global key features from sequential ad impres-
sion. In addition, some recent studies about CNN architec-
ture have successfully model significant semantic features in
varieties of fields. CNN approaches to speech recognition [1],
image recognition [3], information retrieval [8] have achieved
much improvement in respective fields. Moreover, proved



as a effective sentence model in natural language process-
ing, Dynamic Convolutional Neural Network (DCNN) [2]
can analyses semantic content and extracts key features of
sentences.

We propose a Convolutional Click Prediction Model (C-
CPM) for click prediction in sceneries of the single ad im-
pression and sequential ad impression. An input instance of
CCPM is composed by elements of an ad impression or ele-
ments related to a sequential ad impression. Convolutional
layers extract local-global features of input instances, and
the dynamic pooling layers can obtain significant features.
CCPM investigates significant semantic features of an ad im-
pression and sequential relevance of impression history into
enhancing the accuracy of click prediction. Experiments are
conducted to validate the CCPM model’s effectiveness in
modeling different kinds of input instances and reveal that
CCPM achieves great improvement on the accuracy of click
prediction comparing the state-of-the-art models such as L-
R, FM and RNN. To the best of our knowledge, CCPM is
the first approach that attempts to leverage CNN to improve
the accuracy of click prediction.

2. CCPM

In an event of single ad impression, there are some no-
ticeable elements like user, query, ad, impression time, site
category, device type, etc. On the other hand, sometimes
system can collect sequential ad impression of each individ-
ual user, where user’s behaviors on ads yield high dependen-
cy on how the user behaved along with the past time. This
sequential ad impression is comprised of a series of single
ad impressions. The goal of this work is to predict the click
probability based on these two kinds of impressions.

We model above input instances using a convolutional
architecture that alternates wide convolutional layers with
flexible p-max pooling layers. The whole procedure of CCP-
M is illustrated in Figure 1. In the network the width of an
intermediate feature map varies with the length of the input
instance. It is remarkable to state that the proposed model
can handle input instances with varied length, which make
it can be used widely.

2.1 Convolution Layer

Given an input instance with n elements, to obtain the
first layer of CCPM, we take an embedding e; € R? for each
element in the instance and construct the instance matrix
s € R¥™ as

(1)

The values in the embeddings e; are estimated during the
training process, which contributes to more suitable rep-
resentations for input instances. A convolutional layer in
the network is obtained by convolving a weight matrix w €
R™“ with the activation matrix at the layer below in an
one-dimensional row-wise way. For example, the second lay-
er is obtained by applying a convolution on the input in-
stance matrix s. Dimension d and filter width w are hyper-
parameters of input instances. The resulting matrix r has
dimensions d X (n +w — 1). Given w; € R¥, s; € R" and
r; € R™t%=Y a5 the i-th row of corresponding matrix, we
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can obtain one-dimensional convolution as

(2)

where the index j ranges from 1 to n +w — 1. Out-of-range
values s; ;; (where k < 1 or k > n) are set to zero.

The optimized weights in the filter w detects features
and recognizes specific ranges of neighborhood in input in-
stances. Applying one-dimensional row-wise convolution on
two-dimensional matrix of activations, has the following ad-
vantage over simply using two-dimensional convolution. Usu-
ally we apply two-dimensional convolution in image identi-
fication for the reason that the detectors need to recognize
special two-dimensional features, such as edges of an objec-
tive. However, in the click prediction model, each dimension
of the embedding represents a distinct aspect of an element
in an instance. Therefore, each row of the resulting matrix
r obtains distinct features from the activation matrix.

2.2 Flexible p-Max Pooling

Here, we describe the flexible p-max pooling layer. Giv-
en a vector r; € R", p-max pooling selects a sub-vector
sP € RP, which contains the p biggest values in the original
vector r;. Due to the fact that input instances are of var-
ied length, the vector lengths of intermediate convolutional
layer change accordingly, consequently the following pooling
layer need to be flexible enough to select prominent features
smoothly. Considering all facts mentioned above, we let p
be a function of length of the input instance and depth of
the network. In spite of many possible functions, we select
the following one

po={ 06T

3, i
where [ is the total number of convolutional layers of the
network, n is the length of the input instance and p; repre-
sents the parameter of the i-th pooling layer. For example,
given an input instance of length n = 18, in a network of
three convolutional layers, whose pooling parameters are as
follows: p1 = 16, p2 = 6 and p3 = 3.

This selected function has many advantages. Firstly, the
last pooling layer has a fixed parameter, so it is guaranteed
that the matrix of the fully connected layer for output has
a unified dimensionality, despite varied lengths of different
input instances. Secondly, the power-exponential function
changes slowly at first compared with linear function, which
avoids losing too many important features at the beginning.

The flexible p-max pooling layer can not only select the
p most key features, but also preserve the relative order of
those features, which plays a critical role in the sequential
click prediction.

T
ri =W; Sij—wt+ly ,

2.3 Feature Maps

We apply a non-linear function for outputs of pooling lay-
ers. The non-linear function is also called as activation func-
tion, which obtains activations of threshold values:

eap(z) — exp(—z)

8anh(7) = p(@) + exp(—z)

(4)
So far, convolutional layer, flexible p-max pooling layer and
non-linear function have been applied to input instances. In
this way, we can obtain a first order feature map. Moreover,
the three operations above can be repeated again and again
to yield multiple order feature maps and a architecture of
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Figure 1: The framework of CCPM. The left part is an input instance (single ad impression or sequential
ad impression) with varied elements and the length of element embedding is d = 4. The architecture has
two convolutional layers with two feature maps each. The widths of filters at two layers are three and two
respectively. The flexible pooling layer p; changes with length of instance and the last pooling layer p> = 2.

deeper layers. We denote an i-th order feature map by F'.
At a certain layer, many feature maps can be computed in
parallel. For example, F; represents the j-th feature map of
those i-th order feature maps, an is computed by summing
the convolutional results of a distinct weight matrix w;k

and each feature map Fz_l of the lower order ¢ — 1,

F; = ZW;,I@ * F;;l? (5)
k=1

where m; denotes the number of feature map in correspond-
ing i-th order layer, and * refers to the one-dimensional row-
wise convolution described in Sec. 2.1. Similarly, flexible p-
max pooling and non-linear function can be applied to fea-
ture map F; successively. Finally, there is a fully connected
layer, and the prediction is made via softmax.

3. EXPERIMENTS

3.1 Datasets and Baselines

To empirically evaluate the performance of our method
on the click prediction with single and sequential impres-
sion data, we perform experiments on two public real-world
datasets: Avazu' and Yoochoose?. The Avazu dataset in-
cludes several days of ad click-through data, ordered chrono-
logically. In each piece of click data, there are 17 data fields
such as ad id, site id, click, etc. These above data fields indi-
cate elements of a single ad impression. We use this dataset
to assess the performance of click prediction on the single
ad impression. Collected during several months in 2014,
the Yoochoose dataset contains many sessions of browse and
purchase events from an online retailer, where each session
encapsulates the click events of an individual user. Some ses-
sions contain purchase events, which means that the session
ends with the user purchasing something. Here, we treat
products as ads, then the browse behavior can be viewed
as a single ad impression and the purchase behavior as an
impression with click. This dataset is employed to evalu-
ate the performance of click prediction on the sequential ad
impression.

"https: //www.kaggle.com/c/avazu-ctr-prediction/data
2http:/ /recsys.yoochoose.net

1745

Three state-of-the-art methods are used for empirical com-
parison, which are LR [7], FM [6] and RNN [10]. (1) As a
widely used algorithm for click prediction in industry, LR is
easy to understand, quick to train, and efficient enough to be
implemented by search engines as an integral part of their
advertising system. (2) FM is a general regression model
that captures interaction between pairs of elements by using
factors. FM has proved to be useful in different tasks and
domains. In particular, it can be efficiently used to model
the interaction with various elements of ad impressions. (3)
RNN models the dependency on user’s sequential behaviors
into the click prediction process, which depends on not only
the current input features, but also the sequential histori-
cal information. Since Avazu does not contain sequential ad
impression, we only implement RNN model on Yoochoose.
In all experiments, we randomly select 90% of dataset as
training data and the rest 10% as test data. For CCPM, we
apply a CNN architecture of three layers in this work. The
parameters of CCPM are set as d=11, m=[4,4,2], w=[6,5,3]
for the Avazu dataset, and d=8, m=][3,4,2], w=]6,5,3] for
Yoochoose (m,w are the number of feature maps and filter
width in three layers).

In the real-world scenarios, the probability of click is ex-
tremely low, similar to [7], we adopt logloss as the evaluation
metric to measure the accuracy of CTR prediction.

Ntest
- 2. vilogpi + (1 —yi)log(1 —pi) |,
(6)
where p; = P(y; = 1|s) represents the predicted click proba-
bility. and s donotes an ad impression. y; is the correspond-
ing observed label, y; = 1 means the user has click the ad
impression. m is the total number of input instances.

logloss = —

3.2 Results and Analyses

Left part of Figure 2 illustrates the click prediction per-
formance of CCPM and other competitive compared meth-
ods on single ad impression and sequential ad impression.
We identify that on both datasets, CCPM outperfom the
conventional methods. Since FM can describe the latent
features of an element and reveal the relation of pairwise
elements, it achieves significant improvement over the that
of LR on both datasets. On sequential ad impression, RNN
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Figure 3: Parameter Study of filter width w and the number of feature maps m in corresponding layer

measured by LogLoss.
illustrates the results on the Yoochoose dataset.

leverages sequential dependency of varied impressions, and
enhance the effectiveness of click prediction further. Since
CCPM obtain underlying semantic information of input in-
stances and extracts local-global features by using convolu-
tional layers, and use k-max pooling to select key features,
it can not only reveal the high-order interaction among var-
ious elements of a single ad impression but also capture the
historical propagation pattern in sequential ad impression.
Furthermore, in the right part of Figure 2, we illustrate
the logloss values of CCPM on both datasets with varying
dimensionality d of latent vector. On the Avazu dataset,
the performance of CCPM achieves the best result at d =
11, while on Yoochoose CCPM yields the best performance
when the dimensionality d = 6. It may be because the Yoo-
choose dataset is more sparse than the Avazu, latent vector
with small dimension can be well estimated. After CCPM
obtains the best results on both datasets, the performance
decreases gradually with increasing d due to overfitting.
Finally, on both datasets, the parameter impacts of the
filter width w and the number of feature map m in cor-
responding layer are studied. As illustrated in Figure 3,
setting smaller corresponding filter width in deeper convo-
lutional layer will contribute to higher accuracy of click pre-
diction. The filters w of convolution layers can learn to rec-
ognize specific neighborhoods that have size less or equal to
the filter width w. Therefore as reflected in the experiment
results, w1 in the first layer is often set to large enough to
grasp all possible neighborhoods. Considering that pooling
layers will drop some less significant items, input length of
following convolutional layer can decreases. As a result, key
features of input instances are further extracted at a deeper
layer and kernel size gets smaller. For the sake of enriching
the representation of input instances from various angles,
there are many parallel feature maps in one layer. Similarly,
we can also set smaller number of feature maps in deeper
layer to reach better click prediction results. As a layer goes
deeper, key features have already been extracted and noise
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The top part illustrates the results on the Avazu dataset, and the bottom part

eliminated, deeper layers just need small number of feature
maps to extract key features.

4. CONCLUSIONS

In this paper, we have proposed a convolutional click pre-
diction model based on CNN for single and sequential ad
impression. Extensive experiments on two public datasets
have demonstrated the effectiveness of the proposed model.
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