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Abstract. We consider the problem of adaptive targeting for real-time
bidding for internet advertisement. This problem involves making fast
decisions on whether to show a given ad to a particular user. For intelli-
gent platforms, these decisions are based on information extracted from
big data sets containing records of previous impressions, clicks and sub-
sequent purchases. We discuss several strategies for maximizing the click
through rate, which is often the main criteria of measuring the success of
an advertisement campaign. In the second part of the paper, we provide
some results of statistical analysis of real data.
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1 Introduction

Online advertising is an important form of marketing where advertisements
shown to a user may depend on the user browsing behaviour. Advertising plat-
forms collect big data which may include records of previous conversions, clicks,
impressions, visited webpages, account information and search requests. A large
part of online advertisements goes through prominent technology companies like
Google, Yahoo, Bing and Facebook, which are able to collect enormous amounts
of data on the user behaviour, see e.g. [4,6,8,12,19]. Some part of online adver-
tisement spend goes through independent ad exchanges where advertising plat-
forms have less information about users [14]. The present paper deals with the
latter case.

Ad exchanges as well as search providers use Real-Time Bidding (RTB),
which is a popular way of delivering online advertising, see [3,9,13,20]. As
reported in [5], spending on RTB in the US during 2014 increased by 137 %
and reached $10 billion and RTB has 45 % of the total spend in online advertis-
ing. In contrast to traditional advertising on TV and fixed contracts on showing
fixed advertisements on specific websites, RTB enables a demand side to find a
favorable ad campaign and submit a bid for a request depending on parameters
of the request and behaviour data (i.e. a track record of a user). In our case the
demand side is represented by an advertising platform whose core business is
c© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 240–251, 2015.
DOI: 10.1007/978-3-319-27926-8 21



Adaptive Targeting for Online Advertisement 241

in delivering efficient advertisements on websites, see [14]. Marketing managers
expect that online advertising brings customers at cheaper costs and granular
targeting capabilities although the traditional offline advertisement is continued.

Fig. 1. The scheme of real-time bidding for online advertising.

In Fig. 1 we show the scheme of the RTB system, which consists of 4 compo-
nents: a user, a webpage with embedded ad place, demand partners (advertising
platforms) and ad campaigns; see [17,20] for more detail.

The process of delivering online advertisements occurs billions times each
day and consists of the following steps:

– A user comes to a webpage of a web site, where advertisement can be delivered
using auction via an ad exchange.

– The web site via the ad exchange notifies several demand partners that there
is a possibility to show an ad via bid request (real time auction). Each bid
request contains information about user (user id, time of request, IP, geo,
user agent) and information about the site (site, url, minimal bid). To make
efficient decision demand side can store and analyze information about bid
requests. Due to the enormous amount of bid requests storage and analysis of
this data is a true big data challenge.

– If a demand partner decides to deliver an ad for the given request, it responds
with a bid and a particular advertisement. The demand partners are usually
required to return a bid in a short time (e.g. 100 ms) while the webpage is
loaded by a user. The bid is given in a certain currency (often USD) multiplied
by 1000, corresponding to the commonly adopted cost-per-mille pricing model.

– The website via the ad exchange decides which demand partner won the auc-
tion (based on their bids) and delivers the ad of the winner. Note that ad
exchanges are working as the second price auction model; that is, the winner
pays the second highest bid.

– If a demand partner wins, it delivers the ad and can store information about
ad delivery in order to analyze historical efficiency. Note that the user is given
the right to opt out from targeted advertisement delivery via demand platform
site opt out or via ad itself. In such case the demand partner doesn’t store
user related information.



242 A. Pepelyshev et al.

– If the user clicks on the delivered ad, the advertiser can store the information
about clicks.

– If the user visits the advertised site which contains code of the advertiser, the
demand partner can store the information about the visit and can use it to
optimize campaign efficiency further.

– If the user buys a product on the advertised site, the demand partner can
store the purchase information to evaluate optimization strategies on historical
data.

The advertiser has to solve the problem of maximizing either the click through
rate (CTR) or the conversion rate by targeting a set of requests under several
constraints:

(i) Budget (total amount of money available for advertising),
(ii) Number of impressions (total amount of ad exposures),
(iii) Time (ad campaign is restricted to certain time period).

Campaign size in programmatic segment varies between $5000 and $500000
per month and the advertisement company running a campaign needs to choose
from 5 mln to 500 mln requests out of 50 bln available ones.

One of the main characteristics of an ad campaign is average cost-per-action
(CPA) or average cost per conversion. To identify those parameters of bid request/
impressions, which caused the click/conversion, we have to use all logs.

The problem of adaptive targeting for ad campaigns was addressed in pro-
ceedings of the annual WWW conference and in a dozen of papers, however,
many of them deal with the sponsored search, see e.g. [8,12,19]. Some papers,
for example [2,16], use the look-alike idea implying that a new request will
lead to the click/conversion if the new request is similar to (look like one of)
the previous successful requests. In 2014 two Kaggle contests were organized
[see https://www.kaggle.com/c/avazu-ctr-prediction and https://www.kaggle.
com/c/criteo-display-ad-challenge] on algorithms for predicting the CTR using
datasets with subsampled non-click records (the CTR for one dataset is about
17 %). The algorithms proposed by many teams are based on different
approaches, mainly, ensembles of field-aware factorisation machines (FFM) [15],
follow-the-regularized-leader (FTRL) methodology [11], gradient boosting
machines (GBM) [7], and are now publicly available, give approximately the
same performance with respect to the logarithmic loss criterion

logloss = −1/N
N∑

i=1

(yi log(pi) + (1 − yi) log(1 − pi)),

where N is the size of the test set, pi is the predicted probability of click for the
i-th request, and yi = 1 if the i-th request leads to click and yi = 0 otherwise.

All the main strategies mentioned above make learning either about the
parameters of the model (like in FFM and FTRL) or the response function
directly depending on X. This learning constitutes the main objective at the
initial phase of any advertisement campaign. At a later stage in the campaign,

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
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when either models or estimates of the response function can be considered
satisfactory, they are used for improving the selection of users with the purpose
to increase (or even maximize) the CTR. The cost of impressions on the learning
stage should be kept on the lowest level but it should be increasing as the choice
of users becomes more intelligent since we should be prepared to pay higher price
for the users that are more likely to click on our ad.

The present paper is organized as follows. In Sect. 2 we present the formal
description of the problem of maximizing the CTR and propose an adaptive
strategy which consists of estimating the preference characteristic for a new
request and suggesting a relevant bid price; this strategy is based on the ‘look-
alike’ principle and does not use any parametric models similar to those used by
FFM and FTRL. In Sect. 3 we perform an analysis of data provided to us by an
advertising platform. Specifically, we give the descriptive statistics in Sect. 3.1
and perform the multidimensional scaling in Sect. 3.2. Finally, we evaluate the
performance of the proposed strategy in Sect. 3.3 and investigate the sensitivity
of the strategy to the choice of factors in Sect. 3.4. Conclusions are given in
Sect. 4.

2 Adaptive Strategy for Maximizing the CTR
of an Ad Campaign

Suppose that the ad we want to show is fixed. Consider the problem of max-
imization of the click through rate by an adaptive targeting procedure which
should yield the decision whether to show or not the ad to a request from a
webpage visited by a user. If the procedure decides to show the ad, it has to
propose a bid.

The adaptive decision should depend on the current sample of impressions
and clicks which contain the users to whom we have shown the ad before and
who have clicked on the ad. We will treat the sample size N as time. We can
increase the size of the sample by including all our previous impressions of the
same advertisement, so that N could be very large.

Features of an i-th request: Xi = (xi,1, . . . , xi,m), i = 1, . . . , N , where m is
the number of features (factors). We equate the i-th request to Xi. Suppose that
the requests leading to the click on the ad are Xj1 , . . . , XjK , where 1 ≤ j1 <
j2 < . . . < jK ≤ N and K = K(N) < N . Our running performance criterion of
the advertising campaign is the click through rate (CTR) defined by pN = K/N .
It is clear that the CTR pN changes as N grows.

We make the following important assumption of independence: if we choose
a request with features X = (x1, . . . , xm) then the probability of a click is pX ;
different events (‘click’ or ‘no click’) are independent. We assume that all possible
vectors X = (x1, . . . , xm) belong to some set X (which is partly discrete and
possibly has difficult structure). We also assume that for any two points X and
X ′ ∈ X we can define some kind of measure d(X,X ′) which can be considered
as distance (it does not have to satisfy mathematical axioms of the distance
function). The properties we require for d(X,X ′) are: (a) d(X,X ′) ≥ 0 for all
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X,X ′ ∈ X; (b) d(X,X) = 0 for all X ∈ X; (c) small values of d(X,X ′) indicate
on a large degree of similarity between X and X ′; (c′) large values of d(X,X ′)
indicate on a large degree of dissimilarity between X and X ′; (d) d(X,X ′) = ∞
if X and X ′ can be considered as unrelated (or totally dissimilar).

If X is a discrete set with all features X = (x1, . . . , xm) ∈ X given on the
nominal scale then we can use the Hamming distance

d(X,X ′) =
m∑

j=1

δ(xj , x
′
j), δ(xj , x

′
j) =

{
1 xj = x′

j ,

0 xj �= x′
j ,

or the weighted Hamming distance d(X,X ′) =
∑m

j=1 wjδ(xj , x
′
j), where the

coefficients wj are positive and proportional to the importance of the j-th feature
(factor), j = 1, . . . , m.

The purpose of the strategy for maximizing the CTR is to adapt the feature
sets for the new requests we will be showing the ad to increase pN as N increases.
Formally, if we assume that N → ∞ then our aim is devising a strategy such that
limN→∞ pN is maximum. In practice, we are given Ntotal, the total number of
requests to be exposed to an ad. Correspondingly, we want to maximize pNtotal

.
The natural adaptive strategy is an evolutionary one which prefers new

requests in the vicinity of the requests that were successful previously, i.e. which
follow the look-alike idea. To define the preference criterion, for all N we need
an estimator p̂N (X) of the function p(X), which is defined for all X ∈ X. We do
not need to construct the function p̂N (X) explicitly; we just need to compute
values of p̂N (X) for a given X, where X is a request which is currently on offer
for us. We hence suggest the following estimator p̂N (X):

p̂N (X) =
∑K

k=1 exp{−λNd(X,Xjk)}
∑N

i=1 exp{−λNd(X,Xi)}
+ εN , (1)

where λN and εN are some positive constants (possibly depending on N). The
sum in the numerator in (1) is taken over all users which have clicked on the
ad. If all these (good) requests are far away from X then the value p̂N (X) will
be very close to zero. The constant εN is a regularization constant. As εN > 0
there is always a small probability assigned to each X, even if in the past there
were no successful requests that were similar to X. Theoretically, as N → ∞,
we may assume that εN → 0.

Alternative way of determining the estimator of p(X) is the logistic model
constructed by the FFM and FTRL approaches [11,15] or the tree-based model
constructed by the GBM methodology [7].

Using an estimator p̂N (X) for p(X), we can suggest how much the advertis-
ing platform can offer for the request X in the bidding procedure. For example,
the demand side can offer larger bids if p̂N (X) ≥ p∗, where p∗ is the desired
probability we want to reach. Another strategy: the amount of money the adver-
tising platform offer for X is proportional to the difference p̂N (X)−K/N , if this
difference is positive.
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In the strategy above, we can remove old data from the sample by always
keeping the sample size equal to N0 (assuming N0 < N); in this case the esti-
mator (1) changes to

p̂N,N0(X) =
∑K

k=1 1[jK≥N−N0] exp{−λd(X,Xjk)}
∑N

i=N−N0
exp{−λd(X,Xi)}

+ ε; (2)

in this estimator there is no need to change λ and ε as the sample size is constant
(it is always equals N0). In (2), 1[jK≥N−N0] is the indicator of the event jK ≥
N − N0.

3 Analysis of Real Data

Since descriptive statistics for big data are important tools for understanding
the data structure, see [1], we show some figures for two ad campaigns named as
ad campaign 1 and ad campaign 2. For different subsets of data, we depict the
estimator of the CTR computed as p̂ = K/N with the 95 %-confidence interval
(p̂ − 1.96

√
p̂(1 − p̂)/N, p̂ + 1.96

√
p̂(1 − p̂)/N), where K is the number of clicks

and N is the number of impressions in the selected subset. We use the descriptive
statistics to study the influence of each factor on the CTR that helps us to reduce
the number of factors for the adaptive strategy.

The estimated CTR for all data is p̂ = 1.7 · 10−4 for ad campaign 1 and
p̂ = 2.4 · 10−4 for ad campaign 2. These values will serve as a baseline for
comparing the CTRs for different subsets of data.

3.1 Descriptive Statistics of the CTR for Two Ad Campaigns

In Fig. 2 we show the CTR on different days. We can see that CTR slightly
depends on days. We can observe that the largest CTR of ad campaign 1 was
on Dec 20 and the few preceding days, which can be explained by Christmas
shopping. The CTR of ad campaign 2 is larger at weekends since the structure
of bid requests is different at weekends.

Fig. 2. The click through rate multiplied by 104 at different days for ad campaign 1
(left) and ad campaign 2 (right).

In Fig. 3 we show the CTR at different hours. We can see that the CTR for
ad campaign 1 is larger from 22:00 to 22:59, which can be explained by activity



246 A. Pepelyshev et al.

of certain group of users. The CTR for ad campaign 2 is higher from 9:00 to
9:59 and from 19:00 to 19:59, when a group of users usually use internet in the
morning and the evening.

Fig. 3. The click through rate multiplied by 104 at different hours for ad campaign 1
(left) and ad campaign 2 (right).

In Fig. 4 we can see that the CTR is nearly the same for many websites
except very few websites where the CTR is larger. It is quite natural that the
largest CTR is for the website http://www.preloved.co.uk, which is a large clas-
sified advertising site. Another large CTR occurs for the website http://www.
express.co.uk, which is a portal of the newspaper “Sunday Express”; however,
the confidence interval is wide because the number of impressions is small. It is
worth noting that the CTR for the websites of other newspapers, “Independent”
and “Telegraph”, is very close to the average value.

Fig. 4. The click through rate multiplied by 104 for 25 websites with largest numbers
of requests for the ad campaign 2.

In Fig. 5 we can observe that the CTR does not depend on ad exchange but
depends on the user agent. Specifically, the CTR is larger than average for MSIE
and smaller than average for Safari.

In Fig. 6 we can see that the CTR for some cities and postcodes significantly
differs from the average value. In particular, we can observe that the CTR for
London is large but the CTR for Uxbridge and Trowbridge is small. However, the
largest CTR occurs for the postcode PO standing for Portsmouth but the number
of requests with postcode PO is quite small. The second largest CTR is for the
postcode EC standing for Eastern Central, an area in central London. Also the
CTR is well above average for postcodes CV (Coventry) and BN (Brighton).

http://www.preloved.co.uk
http://www.express.co.uk
http://www.express.co.uk
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Fig. 5. The click through rate multiplied by 104 for different ad exchanges and user
agents for the ad campaign 2. The x-tick labels of the left plot are the identification
numbers of ad exchanges.

Fig. 6. The click through rate multiplied by 104 for 25 cites and 33 postcodes with
largest numbers of requests for the ad campaign 2.

3.2 Multidimensional Scaling

In Fig. 7 we show the multidimensional scaling (MDS) performed by the SMA-
COF algorithm (see [10]) where we have used the Hamming distance for mea-
suring the closeness between points X,X ′ ∈ X. The MDS finds the association
between the original high-dimensional points and points in a smaller dimension
preserving the similarity of distances between points. Formally, the MDS for the
dimension 2 is a solution of

min
z1,...,zn∈R2

n∑

i=1

n∑

j=1

(Dij − ||zj − zi||2)2

where Di,j is the distance between the i-th request and the j-th request. We
considered the set X with 7 factors: website, ad exchange, city, postcode, device
type, user agent, user behaviour category. Since the multidimensional scaling is
a hard computational problem we extract a subsample of the points from the
data. We repeated the MDS for different subsamples and found that the pattern
of 2D points very much repeats.

In Fig. 8 we show the supervised multidimensional scaling proposed in [18]
with α = 0.2, which is a solution of

min
z1,...,zn∈R2

1−α

2

n∑

i=1

n∑

j=1

(
Dij−||zj−zi||2

)2+α
∑

i,j:yj>yi

(yj−yi)
2∑

s=1

(
Dij−(zjs−zis)

)2
,

where yi = 1 if the i-th request led to the click and yi = 0 otherwise. Certainly,
the supervised multidimensional scaling gives better separation between the
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Fig. 7. The multidimensional scaling by SMACOF algorithm.

two groups: the users that have clicked on the ad and the users that haven’t.
However, the results of supervised scaling are hard to use in the adaptive strategy
considered above. On the other hand, the classification obtained from unsuper-
vised scaling are easy to use in such procedures.

Fig. 8. The supervised multidimensional scaling.

3.3 Evaluation of the Adaptive Strategy

To investigate the performance of the adaptive strategy for the database of
requests for ad campaign 2, we split the database of impressions into 2 sets: the
training set Xp(T ) of past records with dates until the certain time T (where T
is interpreted as the present time) and the test set Xf (T ) of future records with
dates from the time T . We also define the set

L(r) = {Xj from Xp(T ): minclicked X̃i∈Xf (T ) d(Xj , X̃i) ≤ r};

that is, L(r) is a set of requests where we have shown the ad and the minimal
distance to the set of clicked requests from the set of past records is not greater
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than r. In other words, the set L(r) is an intersection of the set of our requests
with the union of balls of radius r centered around the clicked past requests.
Here we also consider Xj with 7 factors: website, ad exchange, city, postcode,
device type, user agent, user behaviour category.

Fig. 9. The click through rate multiplied by 104 for the sets L(r), r = 0, 1, . . . , 5, for
several values of T .

In Fig. 9 we show the click through rate for the sets L(r), r = 0, 1, . . . , 5,
for several values of T . Recall that the ad campaign 2 starts on 2015-02-01 and
finishes on 2015-02-17.

It is natural that the CTR for the set L(r) decreases as r increases. We
can observe that the CTR for L(0) and L(1) is very large but the number of
impressions from L(0) and L(1) is small.

To be specific, for the time moment T=2015-02-08 the size of the set L(r)
is 10455 for r = 0, 107805 for r = 1, 800002 for r = 2, 1732279 for r = 3, and
1928722 for r = 4; and the number of clicked impressions in the set L(r) is 16
for r = 0, 54 for r = 1, 189 for r = 2, 403 for r = 3 and 447 for r = 4.

Overall we can see that the CTR for L(1) is significantly larger than the
CTR for L(2) at all times T .

3.4 The CTR for Different Choices of Factors

Let us perform the sensitivity analysis of the CTR for sets L(r) for the ad
campaign 2. In Table 1 we show the CTR for several sets L(r) with T=2015-
02-08 and different choices of factors. We can observe that the device type has
no influence and the ad exchange has a small influence on the CTR for sets
L(0) and L(1), consequently such factors can be removed from the model (and
computations). The postcode has no influence on the CTR for the set L(0) but
has some influence on the CTR for the set L(1).
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Table 1. The CTR multiplied by 104 for several sets L(r) with T=2015-02-08 and dif-
ferent choices of factors. Abbreviation of factors are Be:behaviour category, We:website,
Ex:ad exchange, Ci:city, Po:postcode, De:device type, Ag:user agent.

Factors CTR[L(0)] CTR[L(1)] CTR[L(2)] CTR[L(3)] CTR[L(4)]

Be,We,Ex,Ci,Po,De,Ag 15.3 5.01 2.36 2.33 2.32

We,Ex,Ci,Po,De,Ag 5.13 2.43 2.35 2.33 2.33

Be, Ex,Ci,Po,De,Ag 11.69 2.81 2.35 2.31 2.33

Be,We, Ci,Po,De,Ag 12.29 3.89 2.31 2.29 2.33

Be,We,Ex, Po,De,Ag 7.62 2.46 2.32 2.32 2.33

Be,We,Ex,Ci, De,Ag 14.96 2.45 2.32 2.32 2.33

Be,We,Ex,Ci,Po, Ag 15.27 5.09 2.38 2.33 2.32

Be,We,Ex,Ci,Po,De 4.87 3.37 2.20 2.33 2.33

Be,We,Ex,Ci, Ag 14.93 2.48 2.32 2.32 2.33

Be,We, Ci, Ag 11.99 2.38 2.29 2.33 2.33

Be,We, Ci,Po, Ag 12.27 3.88 2.34 2.29 2.33

In contrast, the user agent, the user behaviour category, and the city are very
influential factors. It is very surprising that the postcode has no influence but
the city has a big influence on the CTR for the set L(0). However, the postcode
is highly important to have the large value of the CTR for the set L(1).

4 Conclusions

We have considered the problem of maximizing the CTR from the view-point
of an advertising platform working with independent ad exchanges. We have
discussed and studied an adaptive strategy which is based on the look-alike
idea. We have tested the performance of the strategy. In particular, we have
found out that the strategy of showing ads to requests from the set L(1) yields
the CTR which is 2.5 times larger than the CTR for the original ad campaign.
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