
Deep Classifier for
Large Scale Hierarchical Text Classification

Dingquan Wang, Weinan Zhang, Gui-Rong Xue, and Yong Yu

Dept. of Computer Science and Engineering, Shanghai Jiao Tong University,
Dongchuan Road. 800, 200240 Shanghai, China

{dqwang,wnzhang,grxue,yyu}@apex.sjtu.edu.cn

Abstract. In this competition, we refined a novel algorithm for clas-
sification on large scale documents with deep category structure based
on a two-stage strategy known as the deep-classifier [1]. The basic idea
of deep-classifier is to take advantage of the better performance of k-
NN relevance search on large scale categories and the higher precision
of the Naive Bayes for multi-class classification. As a result, it achieved
improvement on both performance and efficiency in our experiment.

1 Introduction

In our algorithm, the training set was firstly well pruned using search method
before the second stage’s accurate and efficient classify. There are two issues
mainly affect the performance of our classifier, the first is the large category and
feature set for each document which seriously slow down the execution time,
second is the deep category structure that decrees the accuracy of the result. To
deal with the first problem, feature selection was carefully performed based on
the vector space model of tf×idf. To deal with the second problem, we came up
to a bottom up refining method by adding in the hierarchy information. Since
the two stages are different evaluation aspects of the same category, the second
stage is more likely to perform better after inheriting the relevant scores from
the first stage, which was verified in our experiment.

2 Algorithms

2.1 Overview

In this section, we refine the deep-classification algorithm based on the one pro-
posed by Xue. et al[1]. For a given document, the main problem of traditional
approach for classification is the large scale of categories and features, which is
the main difficulty to over come in this contest. Facing this problem, a two-stage
approach is to extract a subset of the whole categories which is related to the
given document fast, called Search Stage, and, sequently, the traditional explicit
method of classification could be used on the extracted categories to offer the



2 Dingquan Wang, Weinan Zhang, Gui-Rong Xue, and Yong Yu

final category as the result, called Classification Stage. Meanwhile, another chal-
lenge is the deep hierarchy structure of the category tree. In our algorithm, we
use the hierarchy information in the Search Stage, which improves the precision
of the Search Stage.

Fig. 1. Algorithm flow chart of refined deep-classification

The algorithm flow chart is shown in Fig. 1. In the Preparation part, we
extract the category vectors by merge the document vectors belong to each
category. According to the contest data, only the leaves categories of the category
tree have instance of documents. Thus the ancestor categories have no document
to feature them. Dealing with this case, we extract the ancestor category vectors
by merge the child category vectors of them. Both the leaf vectors and the
ancestor vectors are indexed in the search engine for the Search Stage.

In the Search Stage, the leaf vector index is used in the basic search part
of the Search Stage, which return the top N(150, in our experiment) related
categories to the given testing document; the ancestor vector index is used in
the refinement part of the Search Stage, which returns the top K (10, in our
experiment) related categories to the given testing document as the candidates
for the Classification Stage. In our experiment, an improvement is seen after the
addition ancestor information.

In the Classification Stage, the vectors of candidates are chosen to train a
classifier(Naive Bayes, which works the best in our experiment). Compared with
the traditional classification, this stage is based on the candidate categories from
Search Stage so that for every testing case, we will train a new classifier from
the candidate categories. In such case, we discover two place for improvement
over the deep-classifier proposed by Xue. Firstly, for every testing case, the
training data for Classification Stage is different, thus the parameters of the
classifier in this stage should be different as the training data changes, which is



Deep Classifier Large Scale Hierarchical Text Classification 3

called Personalized Parameter Tuning. Secondly, as the candidate categories are
recommended by the Search Stage, the ranking information of the Search Stage
can be used in the Classification Stage. Both of the two improvements will be
discussed in the section 2.3.

2.2 Search Stage

The main purpose of Search Stage is providing a relevant subset of category
candidates for the Classification Stage. In this stage, the cosine similarity search
of k-NN is chosen as the main algorithm. The input file of this stage is a set of
training categories and a set of testing documents whose feature vectors were
redistributed after the preparation stage and the output of this stage is top 10
categories with its relevant ranking scores. The whole stage can be separated into
two parts, In the first part, a flat strategy is adopted for directly choose the top
150 leaf category candidates the its relevant ranking scores. In the second part,
the ancestor information of these 150 leaf category candidates were introduced.
The similarity calculation is secondly performed, but this time we calculating
the similarity between the test and the candidate categories’ ancestor. The final
score of the these 150 candidates is a combination of scores from the first part
and the second part. After seizing the final search score, an efficient top-K search
is processed for extracting 10 most similar categories from 150 categories as the
relevant subset of category candidates for the Classification Stage.

2.3 Classification Stage

Given the testing document and then the candidates categories and with the
help of their relevance score in Search Stage, the Classification Stage builds up a
traditional classifier and classify the testing document. Specifically, in our exper-
iment, we get the best performance and efficiency using Naive Bayes Classifier
to classify the 10 candidate categories.

Personalized Parameter Tuning In the standard Naive Bayes Classifier
based on the multinomial model and Laplacian smoothing yields, the maximum
likelihood estimation of a word ωi and class c is:

p(ωi|c) =
N i

c + α

Nc + V α
(1)

where N i
c stands for the number of times that ωi occurs in the documents of

c and Nc stands for the total word number of the documents of c. The total
vocabulary size of the training documents is noted as V and α is the parameter
of this model. In the deep-classifier, for each testing case, the Search Stage will
offer a set of candidate category, of which the total vocabulary size V changes
case by case. In the standard NB model, the parameter α is tuned against V
to refine the performance. Therefore, in deep-classifier, as V changes against
every testing case, the parameter m should also changes. We call the tuning of



4 Dingquan Wang, Weinan Zhang, Gui-Rong Xue, and Yong Yu

the parameters of the classifier against the testing case Personalized Parameter
Tuning.

We divide the vocabulary size in some continuous regions after the analysis of
the vocabulary size distribution. For each region, the parameter α has a different
value(in NB model, the larger V is, the smaller α is). If α unchanges in different
regions, the scenario comes back to basic deep-classifier.

Two Stage Score Combining The K-size candidate category set from the
Search Stage is not just a set in fact. As is discussed in the section 2.2, the
Search Stage will return the candidate categories with the relevant score to the
testing document. These scores suggest the possibility of each candidate category
as the final result. After analysis of the relevant score with the final result, we
discovered that the higher the score(rank) of a candidate category is, the more
likely it is to be the right answer. In such case, the relevant score from the Search
Stage can refine the performance of the Classification Stage.

We record the scores given by both stage and merge the two score to the
final score of a candidate category. For a class c, the Equation is as below:

sc = se1,c · s2,c (2)

where s1,c and s2,c stand for the score from the Search and Classification Stage
respectively. The parameter e (< 1) limits the importance of the score from in
the Search Stage.

Feature Selection In deep-classifier, for every test case we should train a new
classifier, which takes much time. Feature selection on the candidate document
feature set is significantly useful to cut down the time of the Classification Stage
with little reduce of the time used in this stage.

3 Experiment and Evaluation

3.1 Experiment Specification

In this section, we describe the details of our experiment.

Category Vector Building We merge the document vectors by plus the value
of the same features and combination of all the features. To get the ancestor
vectors, we merge the child categories to their ancestor with the same method
of merging document vectors. This process is simple enough but so useful that
until now we can still not find a better method.

K-NN Similarity According to the Lucene source code [2], the tf×idf vector
is not truly the value of tf · idf . Instead, the value is tf0.5 · idf . The exponent



Deep Classifier Large Scale Hierarchical Text Classification 5

parameter can tunes for different data set. In our experiment, we use tf0.625 · idf
as the value of each vector feature.

The first part of Search Stage, we extract N = 150 candidates with a relevant
score for each one. In the second part of Search Stage, we calculate the relevance
score of the father categories of the N candidates. Then we combine the relevant
score of each candidate category and their father. The final relevant score of
class c in Search Stage is

rsc = sc · s0.52f(c) (3)

where sc stands for the first part score for c and sf(c) stands for the second part
score for the father category of c.

Feature Selection We tried several approaches for feature selection, such as
CHI-χ2, IG, tf×idf. In our experiment, tf×idf performance the best that it dou-
bles the speed of training with a reduce of 1% of performance on the local test
data(validation.txt). However, Search Stage takes almost 12 times of time to
the Classification Stage, thus the feature selection cannot improve the efficient
of the whole work. In our submit code, we do not include the feature selection
procession in order to make sure the best performance.

Personalized Parameter Tuning Without the feature selection, the vocab-
ulary size for each test case is significantly different. In the test of local large
data, the distribution of vocabulary size and the best value of α is given in the
Table below.

vocabulary distribution rate tuned α
1∼2000 2.95% 0.36

2001∼3500 19.1% 0.27
3501∼6000 38.0% 0.16
6001∼10000 18.4% 0.14
10001∼∞ 21.5% 0.08

Two Stage Score Combining Similar to the combination between the two
parts of Search Stage, for class c the combination cscof two stage scores in given
below:

csc = rs0.12c · nsc (4)

where rsc stands for the relevant score from Search Stage and nsc stands for the
score from Naive Bayes Classifier in Classification Stage. The exponent param-
eter can also be tuned against the data.

3.2 Experiment Conditions

Computer Hardware AMD athlon(tm) 64*2 Dual, Core Processor 5000+,
2.61GHz 7.75GB of RAM.



6 Dingquan Wang, Weinan Zhang, Gui-Rong Xue, and Yong Yu

Operation System Microsoft Windows Server 2003 R2, Enterprise x64 Edi-
tion, Service Pack2.

3.3 Results

In section we mainly list the performance and the efficiency of the refined deep-
classification on the dry-run data set.

TASK Test Case Hit Case Precision Time Used Time per Case
Basic 1858 919 0.4946 146s 0.079s
Cheap 1858 829 0.4462 119s 0.064s

Expensive 1858 925 0.4978 158s 0.085s
Full 1858 983 0.5291 167s 0.090s

3.4 Computational Complexity Analysis

Suppose the training set have n documents covering c categories the testing set
have m documents, each document have k features on an average. The com-
plexity of the Prepare Stage is O(nk). The complexity of the Search Stage is
O(cmk)+O(c) = O(cmk). The complexity of the Classification Stage is O(cmk).
So the over-all complexity is O(cmk).

4 Conclusion and Future Work

In this paper, we refined the deep-classifier algorithm in both stages and get
improvements on both performance and efficiency. In the future work, some
parts of the algorithm will be research more deeply such as the category vector
extraction from the document vector, more utilization of hierarchy information
in the Classification Stage. If we can obtain the sequence of the words in the
document, the N-gram method could be used, which improved the performance
significantly as described in the Xue’s paper [1].

References

1. Xue, G.R., Xing, D., Yang, Q., Yong, Y.: Deep Classification in Large-scale Text
Hierarchies. In: Proc. of SIGIR’08, pp. 619–626. Singapore(2008)

2. Lucene Apache Website, http://lucene.apache.org


