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ABSTRACT
Knowledge tracing, which estimates students’ knowledge states

by predicting the probability that they correctly answer questions,
is an essential task for online learning platforms. It has gained much
attention in the decades due to its importance to downstream tasks
like learning material arrangement, etc. The previous deep learning-
based methods trace students’ knowledge states with the explicitly
intra-student information, i.e., they only consider the historical
information of individuals to make predictions. However, they ne-
glect the inter-student information, which contains the response
correctness of other students who have similar question-answering
experiences, may offer some valuable clues. Based on this considera-
tion, we propose a method called Collaborative Knowledge Tracing
(CoKT) in this paper, which sufficiently exploits the inter-student
information in knowledge tracing. It retrieves the sequences of
peer students who have similar question-answering experiences
to obtain the inter-student information, and integrates the inter-
student information with the intra-student information to trace
students’ knowledge states and predict their correctness in answer-
ing questions. We validate the effectiveness of our method on four
real-world datasets and compare it with 10 baselines. The experi-
mental results reveal that CoKT achieves the best performance.

CCS CONCEPTS
• Information systems → Personalization; • Applied comput-
ing → E-learning.
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Figure 1: An example of knowledge tracing.
1 INTRODUCTION

With the popularity of online education, automatically estimat-
ing the level of students mastering concepts becomes important for
online learning platforms, since it is a prerequisite for these sites
to offer the services like question recommendation [20], adaptive
testing [38], learning path suggestion [10, 17] and learning material
arrangement [39]. Knowledge tracing is studied to address this issue,
which assesses the level of students mastering concepts by predict-
ing the probability that they correctly answer the concept-related
questions. That is, the inputs of a knowledge tracing model are
a new question and the question-answering history of a student,
and the output is the probability that the student correctly answers
the question. An example is shown in Figure 1, where we aim to
use the question-answering history of Mary and Bob to predict the
probabilities that they correctly answer new questions.

Many outstanding deep learning-based works are proposed to
solve the knowledge tracing task. Some of them adopt the auto-
regressive models [1, 4, 15, 21, 25, 33, 40], like Recurrent Neural
Networks (RNNs) [14] or Memory Networks [13, 41], to exploit the
sequential information in question-answering history of students.
These methods use the hidden states of auto-regressive models
to represent the level of students mastering concepts, which are
usually termed by knowledge states [8]. The knowledge states are
learned by feeding the question representation and correctness of
students’ responses to the RNN (memory) cells at each time step,
and will be used to predict the probability of students correctly
answering questions. The attention mechanism is another major
approach for modeling students’ question-answering history [6, 12,
23, 24, 31]. They rely on the attention to identify the importance
of historical question-answering records and then make prediction
based on students’ historical performance.

Although the previous methods have significant achievements,
their prediction results are based on the explicite intra-student
information, i.e., they use the information in individual question-
answering history to make prediction. The intra-student informa-
tion does offer help when students answer questions which are
relevant to the historical questions, e.g., when Mary answers the
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question 𝑄7 in Figure 1, her performance on 𝑄5 could act as a
clue for the prediction on 𝑄7. However, the help is limited when
students answer questions that are irrelevant to the historical ques-
tions. Considering the question𝑄12 Bob aims to answer in Figure 1,
since the concept find pattern is irrelevant to addition, it is difficult
to use Bob’s performance on find pattern-related questions to esti-
mate the probability that Bob correctly answering addition-related
question. In that case, the inter-student information, composed by
the records of other students who have similar question-answering
experiences, offers some valuable clues for the prediction. Since
both Mary and Ann could correctly answer the questions related
to addition after they correctly answer the questions related to find
pattern, it is highly possible that answering the questions related to
addition is easy for the students with solid mastery on find pattern.
Thus, there is a high probability for Bob to answer 𝑄12 correctly.
Hence, both the intra-student information and inter-student in-
formation benefit the performance of knowledge tracing models.
However, the previous methods only explicitly consider the intra-
student information, while the inter-student information has never
been explicitly considered in knowledge tracing solutions.

In this paper, we proposed a method called Collaborative Knowl-
edge Tracing (CoKT), which introduces the inter-student infor-
mation to the previous intra-student knowledge tracing. Specif-
ically, we design a retrieval-based mechanism, which retrieves the
question-answering sequences of other students who have sim-
ilar question-answering experiences, to obtain the inter-student
information. We integrate the inter-student information with the
intra-student information as a clue to trace students’ knowledge
states and estimate the probability of students correctly answering
questions. We compare our method with 10 existing knowledge
tracing models on four public datasets. The experimental results
demonstrate the efficacy and superiority of our proposed method.

The contributions of our paper are summarized as:
• We explicitly integrate the intra-student information and inter-
student information to trace students’ knowledge states. To our
knowledge, CoKT is the first work which explicitly considers
both intra-student and inter-student information simultaneously.

• We design an effective mechanism which obtains inter-student
information by retrieving the question-answering sequences of
the students who have similar question-answering experiences.
The mechanism is model-agnostic and easy-to-deploy, thus could
be incorporated with different base models.

• Extensive experiments on four real-world datasets show that
CoKT outperforms the state-of-the-art models. Further investi-
gations verify our method is efficient to boost the performance
of knowledge tracing models.

2 RELATEDWORKS
The knowledge tracing methods can be grouped into traditional

methods and deep learning-based methods. The deep learning-based
methods are more effective in general [43].

Most traditional methods consider the factors related to learning.
One group is built based on Bayesian Knowledge Tracing (BKT)
[8, 44]. BKT considers four factors affecting students’ responses:
initial knowledge states, learning rate, slip probability, and guess
probability, and it uses Hidden Markov Model to estimate students’
knowledge states. Another typical type is Factor Analysis methods

[36, 42]. The simplest model is the Item Response Theory (IRT) [9].
It measures students’ ability and the difficulty of questions to make
prediction. Recent works elaborate the factors related to learning.
For instance, Vie and Kashima [36] introduced the factors like
school ID, teacher ID, and they find that the performance becomes
better as the number of factors increases.

One representative group in deep learning-basedmethods is single-
state methods. The single-state methods maintain one vector to rep-
resent students’ knowledge states. DKT [25] is a typical single-state
method, which uses the hidden state of LSTM [14] to represent stu-
dents’ knowledge state, and estimates the probability of students
correctly answering questions according to their knowledge states.
Many works extend based on DKT: Nagatani et al. [21] considered
the forgetting behavior; Chen et al. [4] labeled the prerequisite rela-
tions among concepts; Su et al. [32] and Huang et al. [15] encoded
question embedding with text description; Liu et al. [18] pre-trained
the embeddings of questions. There are also some works maintain-
ing multiple vectors to represent students’ knowledge states, which
are denoted as multi-state methods. Zhang et al. [45] proposed a
model called DKVMN, which uses a Key-value memory network
to store students’ knowledge states, and it makes prediction based
on all the vectors of knowledge states. Following DKVMN, Nak-
agawa et al. [22] and Tong et al. [34] introduced concept graph;
Abdelrahman and Wang [1] incorporated the LSTM and Memory
network in knowledge states update. Another representative group
in deep learning-based methods is attention-based methods. They
apply attention to identify the relevance between the to-predict
question and the historical questions, while making predictions
based on students’ historical performance. One typical of them is
SAKT [23], which adopts self-attention [35] to obtain the weight of
the historical performance. There are also many extensions: Pandey
and Srivastava [24] introduced the relation of questions and stu-
dents’ forgetting behavior, Choi et al. [6] replaced the self-attention
with Transformer [35], Ghosh et al. [12] introduced the decay in the
weight of attention. Except for the self-attention and Transformer,
some works use the dot product [30] or cosine similarity [15] to
perform the attention mechanism.

Although these deep learning-based methods have achieved
sound results, they only explicitly consider the intra-student in-
formation in individual question-answering history, which limits
the performance of models. In this paper, we explicitly integrate
the inter-student information with the intra-student information to
address the limitation in previous knowledge tracing models and
improve their performance.

3 PROBLEM DEFINITION
In this section, we briefly introduce the knowledge tracing task

with the notations used throughout the paper. We summarize them
in Table 1.

Suppose a student, who is denoted as𝑢 1, uses an online learning
platform to answer questions. We define her knowledge state as:

Definition 3.1. (Knowledge State). The student’s knowledge state
denotes the level she masters concepts. We represent the knowledge
state of 𝑢 at step 𝑡 as a 𝑑ℎ dimensional vector h𝑡 , h𝑡 ∈ R𝑑ℎ .

We define the question-answering records of 𝑢 as
1For the ease of presentation, we omit 𝑢 in our notation when there is no ambiguity.
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Figure 2: The Collaborative Knowledge Tracing (CoKT) model.

Definition 3.2. (Record). Given a student u, the record that her
answers question at step i is 𝑟𝑢

𝑖
. 𝑟𝑢

𝑖
is a triple, 𝑟𝑢

𝑖
= {𝑞𝑖 ,𝐶𝑖 , 𝑦𝑖 }. 𝑞𝑖

represents the question she answers at step 𝑖 . 𝐶𝑖 denotes the set of
the concepts which are related to 𝑞𝑖 . 𝐶𝑖 = {𝑐 𝑗 } |𝐶𝑖 | and |𝐶𝑖 | ≥ 1, 𝑐 𝑗
represents the ID of the concepts in 𝐶𝑖 . 𝑦𝑖 denotes the correctness of
the student’s response on 𝑞𝑖 :

𝑦𝑖 =

{
1, if the student’s answer is right;

0, otherwise,
(1)

An example is illustrated in Figure 1, inwhichAnn’s 7th question-
answering record is represented as 𝑟37 . For an arbitrary record, we
define its question-answering history and context as:

Definition 3.3. (Question-answering History of Record and
Context of Record). Given a record 𝑟𝑢

𝑖
, the question-answering

history of 𝑟𝑢
𝑖
is the records which are owned by the same student 𝑢

and generated before 𝑟𝑢
𝑖
. We represent the question-answering history

of 𝑟𝑢
𝑖
as X𝑢

𝑖−1 = {𝑟𝑢1 , 𝑟
𝑢
2 , ..., 𝑟

𝑢
𝑖−1}. The context of 𝑟

𝑢
𝑖
is the vector rep-

resentation of X𝑢
𝑖−1, which represents the aggregation of the previous

|𝑖 − 1| records and is denoted as h𝑣𝑖 ∈ R𝑑ℎ .
Considering the 𝑟37 in Figure 1, the question-answering history

of 𝑟37 is X3
6 = {𝑟31 , 𝑟

3
2 , 𝑟

3
3 , 𝑟

3
4 , 𝑟

3
5 , 𝑟

3
6 }.

For an arbitrary student 𝑢 in the online learning platform, there
are many other students who have similar question-answering
experiences with𝑢, which offers clues for estimating the probability
of 𝑢 correctly answering questions. Thus, we define:

Definition 3.4. (Similar Peer Record and Similar Peer Sub-
sequence). Given a record of student 𝑢 with unknown correctness
of response, 𝑟𝑢𝑡 = {𝑞𝑡 ,𝐶𝑡 , 𝑁𝐴} (𝑁𝐴 denotes the answer has not been
given by the student), its similar peer record 𝑟𝑢

𝑖
should satisfy three

conditions: (1) its corresponding question is the same to 𝑞𝑡 or its
corresponding concepts are the same to𝐶𝑡 ; (2) 𝑟𝑢𝑡 and 𝑟𝑢

𝑖
are generated

by different students, i.e., 𝑢 ≠ 𝑢. (3) student 𝑢 have answered same
questions or the questions with same concepts with student 𝑢 before
step 𝑖 . We denote the similar peer records set of 𝑟𝑢𝑡 as 𝑅𝑢𝑡 = {𝑟𝑢

𝑖
} |𝑅 | ,

where |𝑅 | denotes the number of similar peer records. ∀ 𝑟𝑢
𝑖
∈ 𝑅𝑢𝑡 , its

question-answering history X𝑢
𝑖−1 is a similar peer sub-sequence of 𝑟𝑢𝑡 .

We denote the similar peer sub-sequences set of 𝑟𝑢𝑡 as S𝑢
𝑡 = {X𝑢

𝑖−1}
|𝑅 | .

Considering the example in Figure 1, we can observe that (1) 𝑟17
and 𝑟37 share same question 𝑄7; (2) 𝑟17 is generated by Mary, and
𝑟37 is generated by Ann; (3) both Ann and Mary have answered
the questions related to addition, multiplication and find pattern.
Thus, 𝑟37 is a similar peer record of 𝑟17 , and X3

6 is a similar peer
sub-sequence of 𝑟17 accordingly.

The task of knowledge tracing is formulated as predicting the
probability that the student 𝑢 will correctly answer the question

Table 1: Notations and descriptions.
Notations Descriptions
X𝑢
𝑖−1 Student u’s question-answering history.

𝑞𝑖 , 𝑐 𝑗 The question and the concept.
𝐶𝑖 The set of concepts that are related to 𝑞𝑖 .

𝑦𝑡 , 𝑦𝑡 The predicted probability and the true label.
h𝑡 The knowledge state.
h𝑣𝑡 The context of record.

𝑟𝑢𝑡 , 𝑅
𝑢
𝑡 The question-answering record and similar peer records.

S𝑢
𝑡 The similar peer sub-sequence.

𝑞𝑡 given the question-answering history of 𝑟𝑢𝑡 = {𝑞𝑡 ,𝐶𝑡 , 𝑁𝐴}, i.e.,
𝑃𝑟 (𝑦𝑡 = 1|𝑞𝑡 ,𝐶𝑡 ,X𝑢

𝑡−1). Since the question-answering records of
other students are available in real-world scenario, and there are
some students who have similar question-answering experiences
with student 𝑢, we extract the inter-student information from the
similar peer records and similar peer sub-sequences of 𝑟𝑢𝑡 as a clue
for prediction. Thus, in our model the task is formulated as predict-
ing 𝑃𝑟 (𝑦𝑡 = 1|𝑞𝑡 ,𝐶𝑡 ,X𝑢

𝑡−1,S
𝑢
𝑡 , 𝑅

𝑢
𝑡 ). We approach the probability by

learning a function 𝑓Θ parameterized by Θ:
𝑦𝑡 = 𝑓Θ (·) (2)

Here, 𝑦𝑡 = 𝑃𝑟 (𝑦𝑡 = 1|𝑞𝑡 ,𝐶𝑡 ,X𝑢
𝑡−1,S

𝑢
𝑡 , 𝑅

𝑢
𝑡 ;Θ), and (·) denotes the

features we use to predict.

4 METHOD
Unlike the previous methods, which only explicitly considers

the intra-student information in knowledge tracing, our CoKT ex-
plicitly utilizes both intra-student and inter-student information
in knowledge tracing. The intra-student information is extracted
from the students’ historical question-answering records, and the
inter-student information is extracted from the similar peer records
and similar peer sub-sequences (in Definition 3.4). Our framework
is illustrated in Figure 2. We integrate the intra-student and inter-
student information in the integration module, and we feed the
integration of intra-student and inter-student information to the
prediction module to estimate the probability of students correctly
answering questions, and we feed the integration to state update
module to update students’ knowledge states. In the following sec-
tions, we will first present the integration of intra-student and
inter-student information (the integration module in Figure 2(a)).
Then, we will discuss the prediction module and state update mod-
ule in Figure 2(a).

4.1 The integration module
The integration module integrates the intra-student and inter-

student information, as it is shown in Figure 2(b). Since the inter-
student information is extracted from the similar peer records and
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similar peer sub-sequences, we will first discuss the obtaining of
similar peer records and similar peer sub-sequences. Subsequently,
we will present the inter-student information representation and
intra-student information representation. Finally, we will discuss
the integration of two types of information.
4.1.1 Obtaining similar peer records and sub-sequences. Inspired
by the works of Qin et al. [26, 27], we devise a retrieval-based
mechanism to obtain the similar peer records and sub-sequences.
First, for an arbitrary record 𝑟𝑢

𝑖
= {𝑞𝑖 ,𝐶𝑖 , 𝑟𝑖 } in dataset, we store

the followings to the database of a search engine: (1) record ID: the
ID of 𝑟𝑢

𝑖
; (2) student ID: the ID of 𝑢; (3) question ID: the ID of 𝑞𝑖 ;

(4) concept string: the string concatenation of the concepts in 𝐶𝑖 ;
(5) historical string: the string concatenation of the questions and
concepts in the question-answering history (Definition 3.3) of 𝑟𝑢

𝑖
.

Then, for an arbitrary record 𝑟𝑢𝑡 , we obtain its similar peer
records by retrieving the records which satisfy the three condi-
tions: (1) have same question ID or same concept string with 𝑟𝑢𝑡 ; (2)
have different student ID with 𝑟𝑢𝑡 ; (3) have similar historical string.
We evaluate the similarity score of historical strings by BM25 [29]:

𝑠𝑐𝑜𝑟𝑒 (𝑠𝑢𝑡 , 𝑠𝑢𝑗 ) =
𝑛∑
𝑖=1

𝐼𝐷𝐹 (𝑘𝑖 ) ·
𝑡 𝑓 (𝑘𝑖 ,𝑠𝑢𝑗 ) · (𝑏1+1)

𝑡 𝑓 (𝑘𝑖 ,𝑠𝑢𝑗 )+𝑏1 · (1−𝑏2+𝑏2 ·
|𝑠𝑢
𝑗
|

𝐿
)
, (3)

where 𝑠𝑢𝑡 denotes the historical string of 𝑟𝑢𝑡 . 𝑠𝑢𝑗 denotes the historical
string of other students’ records, whose length is represented as
|𝑠𝑢
𝑗
|. 𝑘𝑖 denotes the keywords like the question ID, concept ID in 𝑠𝑢𝑡 .

𝑡 𝑓 (𝑘𝑖 , 𝑠𝑢𝑗 ) denotes the 𝑘𝑖 ’s term frequency in 𝑠𝑢
𝑗
. 𝐿 is the average

length of the historical strings for all the records. 𝑏1 and 𝑏2 are
free parameters, and we use 𝑏1 = 1.2, 𝑏2 = 0.75 in our case. The
𝐼𝐷𝐹 (𝑘𝑖 ) is the inverse document frequency weight of 𝑘𝑖 :

𝐼𝐷𝐹 (𝑘𝑖 ) = ln(𝑁 − 𝑛(𝑘𝑖 ) + 0.5

𝑛(𝑘𝑖 ) + 0.5
+ 1), (4)

in which 𝑁 is the total number of records, and 𝑛(𝑘𝑖 ) is the number
of the records which contains 𝑘𝑖 .

We rank the records according to the similarity score, and take
the top |𝑅 | records as the similar peer records (𝑅𝑢𝑡 ) of 𝑟𝑢𝑡 . For each
record 𝑟𝑢

𝑖
∈ 𝑅𝑢𝑡 , we take out its question-answering history X𝑢

𝑖−1 =

{𝑟𝑢1 , 𝑟
𝑢
2 , ..., 𝑟

𝑢
𝑖−1} to obtain the similar peer sub-sequence.

4.1.2 Inter-student information representation. The inter-student
information aims to collect the peer students’ correctness of re-
sponses to the similar questions under the context of similar peer
records, and we apply attention to obtain it. Thus, to obtain the
inter-student information, these representation are necessary: (1)
the context (Definition 3.3) of similar peer records; (2) the peer stu-
dents’ correctness to similar questions under the context of similar
records; (3) the importance of peer students to student 𝑢.

For each records 𝑟𝑢
𝑖
∈ 𝑅𝑢𝑡 , we take following steps to obtain the

its context:
First, we initialize the context of 𝑟𝑢1 with 0 ∈ R𝑑ℎ . That is h𝑣1 = 0.

For an arbitrary record 𝑟𝑢
𝑗
∈ X𝑢

𝑖−1 (in Definition 3.3, X𝑢
𝑖−1 is the

question-answering history of 𝑟𝑢
𝑖
), 𝑟𝑢

𝑗
= {𝑞 𝑗 ,𝐶 𝑗 , 𝑦 𝑗 }, we represent

the question 𝑞 𝑗 with the its embedding and the embedding of the
concepts in 𝐶 𝑗 :

p𝑗 =

[
e𝑞
𝑗
: e𝑚

]
, (5)

Figure 3: The obtaining of the inter-student information.

where e𝑞
𝑗
∈ R𝑑𝑞 denotes the embedding of question 𝑞 𝑗 , e𝑚 ∈ R𝑑𝑐

denotes the mean embedding of the concepts in 𝐶 𝑗 . Both the ques-
tion embedding and concept embedding are randomly initialized
and trained with the model. [:] denotes the vector concatenation.
So we have p𝑗 ∈ R𝑑𝑝 , 𝑑𝑝 = 𝑑𝑐 + 𝑑𝑞 .

Then, we define the concatenation of question representation
and the correctness of students’ responses as:

𝑔𝑐 (p𝑗 , 𝑦𝑖 ) =


[
p𝑗 : 0

]
, if 𝑦 𝑗 = 1,[

0 : p𝑗

]
, otherwise,

z𝑣𝑗 = 𝑔𝑐 (p𝑗 , 𝑦𝑖 )

(6)

where 0 has the same dimension with p𝑗 . Thus z𝑣𝑗 ∈ R2𝑑𝑝 .
Subsequently, we feed the concatenation to RNN to obtain the

context representation of record 𝑟𝑢
𝑗+1,

h𝑣𝑗+1 = 𝐺𝑅𝑈 (z𝑣𝑗 ,h
𝑣
𝑗 ), (7)

where GRU denotes the Gated Recurrent Unit [5]. Using Eq. 7 in
X𝑢
𝑖−1 repeatedly, we can obtain the context of 𝑟𝑢

𝑖
(𝑟𝑢
𝑖
= {𝑞𝑖 ,𝐶𝑖 , 𝑦𝑖 }),

which is represented as h𝑣𝑖 , as it is shown in Figure 3.
To obtain the representation of peer students’ correctness to

similar questions under the context of similar records, for 𝑟𝑢
𝑖
∈ 𝑅𝑢𝑡 ,

we concatenate its context, question representation and correctness
of response into context-question-correctness concatenation:

m𝑟,𝑣
𝑖

= 𝑔𝑐 ( [h𝑣𝑖 : p𝑖 ], 𝑦𝑖 ), (8)

where 𝑔𝑐 is a function defined in Eq. 6, and m𝑟,𝑣
𝑖

∈ R2𝑑𝑚 , 𝑑𝑚 =

𝑑ℎ + 𝑑𝑐 + 𝑑𝑞 . We integrate the context-question-correctness con-
catenations of similar peer records into a matrix M𝑟,𝑣

𝑡 ∈ R |𝑅 |×2𝑑𝑚 ,
in which each row represents the context-question-correctness
concatenation of one similar peer record (shown Figure 3).

To obtain the importance of peer students to the student 𝑢, we
compute the relevance of the context and questions they answer.
Thus, for an arbitrary 𝑟𝑢

𝑖
∈ 𝑅𝑢𝑡 , we concatenate its context with

question representation into context-question concatenation:
m𝑝,𝑣

𝑖
=
[
h𝑣𝑖 : p𝑖

]
, (9)

where p𝑖 is the question representation of 𝑞𝑖 as it is defined in Eq. 5
and m𝑝,𝑣

𝑖
∈ R𝑑𝑚 . We integrate the context-question concatena-

tions of similar peer records into a matrix M𝑝,𝑣
𝑡 ∈ R |𝑅 |×𝑑𝑚 as it

is illustrated in Figure 3. We also concatenate the context of the
record which we aim to predict with its question representation:

m𝑝,𝑣
𝑡 =

[
h𝑣𝑡 : p𝑡

]
, (10)

where m𝑝,𝑣
𝑡 ∈ R𝑑𝑚 .

Finally, we apply the attention mechanism over M𝑟,𝑣
𝑡 [35] as

the left-side of Figure 2(b) illustrates to obtain the inter-student
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Figure 4: The obtaining of the intra-student information.

information representation. Specifically, we define

Q𝑣 = m𝑝,𝑣
𝑡 ,K𝑣 = M𝑝,𝑣

𝑡 ,V𝑣 = M𝑟,𝑣
𝑡 . (11)

The attention is
𝑔𝑎 (Q𝑣,K𝑣,V𝑣) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

Q𝑣K
T
𝑣√︁

(𝑑)
)V𝑣, (12)

where 𝑑 is the dimension of Q𝑣 . (Here d is a variable which denotes
the dimension of query in attention.).

The inter-student information is represented by the multi-head
attention:

v𝑣𝑡 = 𝑓𝑣 (
[
ℎ𝑒𝑎𝑑𝑣1, ℎ𝑒𝑎𝑑

𝑣
2, ..., ℎ𝑒𝑎𝑑

𝑣
𝑛𝑣

]T W𝑣
ℎ
), (13)

where v𝑣𝑡 ∈ R2𝑑𝑚 is the inter-student information, W𝑣
ℎ
∈ R𝑛𝑣×1 is

the weight of attention heads, 𝑛𝑣 is the number of heads and 𝑓𝑣 is
multiple layer perceptron (MLP). ℎ𝑒𝑎𝑑𝑣𝑛𝑣

is an attention head,

ℎ𝑒𝑎𝑑𝑣𝑛𝑣
= 𝑔𝑎 (𝑓 𝑣𝑞 (Q𝑣), 𝑓 𝑣𝑘 (K𝑣), 𝑓 𝑣𝑣 (V𝑣)), (14)

where 𝑓 𝑣𝑞 , 𝑓 𝑣𝑘 and 𝑓 𝑣𝑣 are the MLPs and 𝑔𝑎 is defined in Eq. 12.

4.1.3 Intra-student information representation. The intra-student
information aims to collect the student’s historical correctness to
questions under the historical knowledge states. Since the histori-
cal questions has different importance to the to-predict question,
we also apply attention mechanism to represent the intra-student
information as the right-side of Figure 2(b) illustrates. First, for an
arbitrary record 𝑟𝑢

𝑖
(1 ≤ 𝑖 < 𝑡), we concatenate the corresponding

knowledge state with its correctness as Figure 4 illustrates (the
obtaining of knowledge state will be discussed in 4.3):

h𝑟,ℎ
𝑖

= 𝑔𝑐 (h𝑖 , 𝑦𝑖 ), (15)

where h𝑟,ℎ
𝑖

∈ R2𝑑ℎ , 𝑔𝑐 is a defined in Eq. 6. Then we define:
Qℎ = p𝑡 , Kℎ =

[
p1, p2, · · ·, p𝑡−1

]T
, Vℎ =

[
h𝑟,ℎ1 ,h𝑟,ℎ2 , · · ·,h𝑟,ℎ

𝑡−1

]T
, (16)

where Qℎ ∈ R𝑑𝑝 , Kℎ ∈ R(𝑡−1)×𝑑𝑝 , and Vℎ ∈ R(𝑡−1)×2𝑑ℎ .
The intra-student information is represented by:

vℎ𝑡 = 𝑓ℎ (
[
ℎ𝑒𝑎𝑑ℎ1 , ℎ𝑒𝑎𝑑

ℎ
2 , ..., ℎ𝑒𝑎𝑑

ℎ
𝑛ℎ

]T
Wℎ

ℎ
), (17)

where vℎ𝑡 ∈ R2𝑑𝑚 denotes the intra-student information represen-
tation, Wℎ

ℎ
∈ R𝑛ℎ×1 is weight on attention heads, and 𝑓ℎ is MLP.

ℎ𝑒𝑎𝑑ℎ
𝑖
is an attention head, which is defined as

ℎ𝑒𝑎𝑑ℎ𝑛ℎ = 𝑔𝑎 (𝑓 ℎ𝑞 (Qℎ), 𝑓 ℎ𝑘 (Kℎ), 𝑓 ℎ𝑣 (Vℎ)), (18)

where 𝑓 ℎ𝑞 , 𝑓 ℎ
𝑘
and 𝑓 ℎ𝑣 are the MLPs and 𝑔𝑎 is defined in Eq. 12.

4.1.4 The integrated information representation. We integrate the
representation of intra-student information and inter-student in-
formation with:

v𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (w𝑟 )
[
vℎ𝑡 , v

𝑣
𝑡

]T
, (19)

to obtain the integrated information, where v𝑡 ∈ R2𝑑𝑚 , w𝑟 is
a two-dimensional parameter vector, and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (w𝑟 ) ∈ R1×2

indicates the relative importance of intra-student information and
inter-student information.

4.2 Prediction module
We predict the probability of student 𝑢 correctly answering 𝑞𝑡

by the integrated information v𝑡 (Eq. 19), her knowledge state (h𝑡 )
and the question representation (p𝑡 ), as it is shown in Figure 2(a).

More specifically, we concatenate the integrated information
with the student’s knowledge state and question representation,
and feed the concatenation to a classifier to predict the probability
that student 𝑢 correctly answer 𝑞𝑡 :

𝑦𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑓𝑝 (
[
v𝑡 : h𝑡 : p𝑡

]
)) (20)

where 𝑓𝑝 denotes a MLP, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (·) denotes the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function.

4.3 State update module
The student acquires some knowledge after she answers ques-

tions. Thus, her knowledge state transfers from h𝑡 to h𝑡+1 after she
answered 𝑞𝑡 . We consider the question representation, correctness
and the integrated information to update the knowledge states, as
it is shown in Figure 2 (a) and (c). First, we combine the question
representation, the correctness and the integrated information by:

z𝑢𝑡 = 𝑓𝑢 (
[
v𝑡 : 𝑔𝑐 (p𝑡 , 𝑦𝑡 )

]
), (21)

where 𝑔𝑐 is the function defined in Eq. 6, 𝑓𝑢 is MLP, and z𝑢𝑡 ∈ R2𝑑𝑝 .
Subsequently, we feed z𝑢𝑡 to GRU to update the student’s knowledge
state:

h𝑡+1 = 𝐺𝑅𝑈 (z𝑢𝑡 ,h𝑡 ). (22)

4.4 Model Learning
The objective function of our model is to minimize the negative

log-likelihood of the observed sequences. The learning parameters
of our method are the embedding of concepts and questions, w𝑟 in
Eq. 19, the weights in GRU and the parameters of all the MLPs. The
parameters are jointly learned by minimizing the cross-entropy
between the predicted probability 𝑦𝑡 and the true label 𝑦𝑡 as

L = −
∑︁
𝑢

𝑇𝑢∑︁
𝑡=1

(𝑦𝑡 𝑙𝑜𝑔 𝑦𝑡 + (1 − 𝑦𝑡 ) 𝑙𝑜𝑔(1 − 𝑦𝑡 )), (23)

where 𝑇𝑢 denotes the length of student 𝑢’s question-answering
sequence. Algorithm 1 shows training procedure of our method,
and implementation details will be discussed in the next section.

5 EXPERIMENT
In this section, we present our experimental settings and the

results in detail 2. We also make some discussions with extended
investigations to illustrate the effectiveness of our model.

5.1 Dataset
We evaluate our method on four public real-world datasets: AS-

SIST09 , ASSIST12, EdNet and Junyi.
ASSIST09 is gathered from the ASSISTments online tutoring

platform [11]. We filter out the records without concept tags. Each
question in this dataset is related to one to four concepts.

2The source code is available at https://github.com/githubg0/CoKT
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Algorithm 1: Training procedure of CoKT
1 Store the transformational records in a search engine;
2 Pre-processing: for each record, search its similar peer

records and similar peer sub-sequences ;
3 Randomly initialize the learning parameters;
4 while not converged do
5 for batch in data do
6 for (t = 0; t < seq_length; t = t + 1) do
7 Obtain the context of records (Eq. 7);
8 Obtain the inter-student information (Eq.13);
9 Obtain the intra-student information (Eq.17);

10 Predict the correctness of responses (Eq. 20);
11 Update the knowledge states (Eq. 22);
12 end
13 Compute the gradient and update the parameters

w.r.t the loss L (Eq. 23);
14 end
15 end

Table 2: Dataset Statistics. The statistics are the actual sample
data we used for the experiment after pre-processing.

Dataset ASSIST09 ASSIST12 EdNet Junyi
Students 2,968 22,422 4,700 7,000
Records 185,110 1,839,429 326,037 622,781
Questions 15,003 45,543 11,060 1,978
Concepts 121 99 189 39
Questions Per Concept 150.76 460.03 128.73 50.72
Concepts Per Question 1.22 1.0 2.21 1.0
Attempts Per Question 12.34 40.39 29.48 314.85
Attempts Per Concept 1914.21 18,580.10 4023.72 15,968.74
Positive Label Rate 63.80% 69.60% 59.69 % 67.30%

ASSIST12 is also gathered from the ASSISTments online tutoring
platform [11]. Different with ASSIST09, each question corresponds
only one concept. We do the same pre-processing as ASSIST09.

EdNet is a large scale datatset contributed by Choi et al. [7]. We
randomly sample some students by the same way used in [18].

Junyi is collected from Junyi e-learning website [3]. we also
randomly sample some students by the same way as EdNet.

The statistic details of the four datasets after pre-processing
are shown in Table 2. The maximum length of students’ question-
answering history is set to 200. We split 80% data for training and
validation, and 20% for testing.

5.2 Baselines
According to the research of [42], the deep learning-based meth-

ods have better performance than traditional methods in knowledge
tracing task in general. To evaluate the effectiveness of our model,
we follow [1, 12] and compare our method with three groups of 10
representative deep leanring-based models. The first group are the
single-state methods, which make predictions based on the students’
knowledge states, each of which is represented by one vector.
• DKT [25] obtains students’ knowledge states by feeding students’
individual question-answering records to a LSTM [14], and it
outputs the prediction based on the knowledge state.

• EERNNA [15] is also an extension of DKT by considering the
relevance between the historical questions and the to-predict
question.

Table 3: The performance on four public datasets. * indicates
p-value < 0.05 in the significance test.

Model ASSIST09 ASSIST12 EdNet Junyi
ACC AUC ACC AUC ACC AUC ACC AUC

CKT 0.6870 0.7067 0.7036 0.6542 0.6285 0.6424 0.8203 0.8803
SAKT 0.6691 0.6779 0.7160 0.6959 0.6655 0.6982 0.7543 0.7963
SAINT 0.6720 0.6803 0.7123 0.6876 0.6632 0.6981 0.8075 0.8536
AKT 0.7069 0.7241 0.7355 0.7377 0.6792 0.7217 0.8189 0.8668

DKVMN 0.6489 0.6463 0.7117 0.6824 0.6579 0.6808 0.8306 0.8846
SKVMN 0.6441 0.6384 0.7083 0.6769 0.6558 0.6816 0.8229 0.8793
GKT 0.7270 0.7547 0.7181 0.6875 0.6644 0.6940 0.8074 0.8587
DKT 0.6633 0.6723 0.7128 0.6901 0.6666 0.7025 0.8337 0.8873

EERNNA 0.7053 0.7258 0.7352 0.7370 0.6671 0.7066 0.8122 0.8685
DHKT 0.7170 0.7390 0.7361 0.7391 0.6636 0.6940 0.8420 0.8961
CoKT 0.7324* 0.7682* 0.7380* 0.7401 0.6887* 0.7374* 0.8448 0.8980

• DHKT [40] is another extension of DKT, by considering the
hierarchical structure constraint of question embedding and
concept embedding.
The second group are multi-state methods, which maintain mul-

tiple vectors to represent students’ knowledge states.
• DKVMN [45] makes prediction based on students’ knowledge
states, and it obtains the knowledge states by feeding students’
question-answering records to a memory network.

• SKVMN [1] improves DKVMN by applying a LSTM on the
concept-similar records.

• GKT [22] extends DKVMN by updating the knowledge states
according to a graph.
The third group are attention-based methods, which trace stu-

dents’ knowledge with attention mechanism.
• CKT [30] adopts the dot product to identify students’ historical
relevant performance to make prediction.

• SAKT [23] introduces the self-attention [35] to capture the rele-
vance between historical questions and the to-predict question.

• SAINT [6] uses the Transformer [35] to capture the relevance
between the historical questions and the to-predict question.

• AKT-NR [12] also applies the Transformer to model students’
question-answering sequences. However, it adopts the exponen-
tial decay in multi-head attention score.

5.3 Implementation Details
Following [37], we set the dimension of the knowledge states,

question embedding and concept embedding to 64 for all the models.
In our CoKT, the dimension of context is also 64. The hidden layers
of all MLPs except for 𝑓 ℎ𝑞 , 𝑓 ℎ𝑘 , 𝑓

ℎ
𝑣 are one. The number of attention

heads in Eq. 13 is 4. The number of attention heads in Eq. 17 is
1, and 𝑓 ℎ𝑞 (Qℎ) = Qℎ, 𝑓

ℎ
𝑘
(Kℎ) = Kℎ, 𝑓

ℎ
𝑣 (Vℎ) = Vℎ . We select the

number of similar peer records (sub-sequences) from {3, 5, 7, 9, 10,
11, 12, 15} for all the datasets. For the baselines which use RNN
to update the knowledge states (like DKT, DHKT, EERNNA), we
also apply GRU for fair comparison. The other hyperparameters
for all the baselines are carefully tuned to their best performances.
The optimizer is Adam [16], and we choose learning rate from
{1 × 10−4, 3 × 10−4, 6 × 10−4, 1 × 10−3}.

5.4 Experiment Result
Wemeasure the ACC, AUC and the statistical significance to eval-

uate the performance of models. Specifically, AUC is the proportion
of true positives (resp. negatives) that are correctly predicted to be
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Figure 5: The improvement on different types of methods.

Figure 6: The contribution of different modules for different datasets.

positive (resp. negative). ACC is the proportion of predictions that
are correct. A higher AUC (ACC) indicates a better performance. For
statistical significance, following [28], we deploy a MannWhitney
U test [19] under AUC metric, and a t-test [2] under ACC metric.
Table 3 shows the converged ACC, AUC and the statistical signifi-
cance of our model against the baseline models. Figure 5 illustrates
our improvement on different groups of methods.

From table 3, we can observe that our method outperforms all the
baselines and achieves the best results on all the datasets. Compared
with previous methods, our method has 0.18% - 0.96% improvement
in ACC, and 0.10% - 1.57% improvement in AUC. From Figure 5,
we can observe that: (1) Our method is better than attention-based
methods by 0.25%-2.55% in ACC and 0.25% - 4.41% in AUC, better
than multi-state methods by 0.54% - 2.43% in ACC and 1.34% - 5.26%
in AUC, better than single-statemethods by 0.18%-2.16% inACC and
0.10% -3.08% in AUC. Since the difference between our method and
other deep-learning based methods is the inter-student information,
the results demonstrate that the inter-student information benefits
model performance; (2) There is no clear performance boundary
among baseline models, different groups of methods are good at
different datasets. For instance, the best multi-state method has
closer performance to our CoKT than the best attention-based
method in ASSIST09. However, it has opposite results in EdNet;

5.5 Ablation Study
To further investigate the contributions of different information

in our method, we conduct some ablation studies. Specifically, we
have two different variants:
• CoKT-Intra removes the intra-student information. That means,
the vℎ𝑡 is removed in Eq. 19, and there is no w𝑟 accordingly.

• CoKT-Inter removes the inter-student information. That means,
the v𝑣𝑡 is removed in Eq. 19, and there is no w𝑟 accordingly.
Figure 6 illustrates the results. From Figure 6, we can identify

that: (1) Both intra-student and inter-student information are bene-
ficial for the model’s performance. We can observe that removing
the intra-student information or inter-student information from
the integration module will decrease the performance in most cases.

Table 4: The performance of introducing inter-student in-
formation (Model+ Inter) or both intra-student and inter-
student information (Model + Both) to other single-state
baselines.

Model ASSIST09 ASSIST12 EdNet Junyi
ACC AUC ACC AUC ACC AUC ACC AUC

DKT 0.6633 0.6723 0.7128 0.6901 0.6666 0.7025 0.8337 0.8873
DKT+Inter 0.7005 0.7204 0.7288 0.7224 0.6743 0.7142 0.8352 0.8887
Inter_Imprv 3.72% 4.81% 1.60% 3.23% 0.77% 1.17% 0.15% 0.14%
DKT+Both 0.7233 0.7564 0.7324 0.7273 0.6868 0.7334 0.8414 0.895
Both_Imprv 6.00% 8.41% 1.96% 3.72% 2.02% 3.09% 0.77% 0.77%

DHKT 0.717 0.739 0.7361 0.7391 0.6636 0.694 0.842 0.8961
DHKT+Inter 0.7301 0.7653 0.7347 0.7342 0.6836 0.7291 0.8364 0.8892
Inter_Imprv 1.31% 2.63% -0.14% -0.49% 2.00% 3.51% -0.56% -0.69%
DHKT+Both 0.7307 0.7653 0.7373 0.7374 0.6895 0.7383 0.8421 0.8955
Both_Imprv 1.37% 2.63% 0.12% -0.17% 2.59% 4.43% 0.01% -0.06%
EERNNA 0.7053 0.7258 0.7352 0.737 0.6671 0.7066 0.8122 0.8685

EERNNA+Inter 0.7328 0.7683 0.7378 0.7401 0.6845 0.7282 0.8456 0.8983
Inter_Imprv 2.75% 4.25% 0.26% 0.31% 1.74% 2.16% 3.34% 2.98%

That implies both of them offer help for prediction. (2) Different in-
formation have different importance to different datasets. In Junyi,
removing inter-student information (CoKT-Inter) has no negative
impact on the model performance, but removing the intra-student
information (CoKT-Intra) decreases the performance more signifi-
cantly, which is contrary in ASSIST09. Moreover, removing either
of them will decrease model’s performance in ASSIST12 and Ed-
Net. That means different datasets have different preferences on
intra-student and inter-student information.

5.6 Compatibility Analysis
Our method CoKT is a single-state method, which explicitly uses

both intra-student information and inter-student information to
improve the performance. To investigate whether our mechanism
benefits the performance of other single-state baselines, we also ap-
ply our intra-student and inter-student information representation
to other single-state baselines. Specifically, we introduce our con-
sideration of only inter-student information, and both inter-student
and intra-student information to DKT and DHKT. We only intro-
duce our consideration of inter-student information to EERNNA,
since it has explicitly considered the intra-student information
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Figure 7: The impact of peer similar records number.

Figure 8: The impact of inter-student information on the correctness prediction

by cosine similarity. The results is presented in Table 4. We can
observe that our representation of intra-student information and
inter-student information benefits the performance of other sing-
state baselines in most cases. Introducing our intra-student and
inter-student information brings 2.85% AUC improvement in av-
erage, and introducing our inter-student information brings 2.00%
AUC improvement in average.

5.7 Hyper-parameter Study
To investigate the sensitivity of our model, we evaluate the im-

pact of the different number of similar peer records (sub-sequences)
on the performance. The other hyperparameters remain unchanged
when we test the number of similar peer records (sub-sequences)
in the experiments. We illustrate the results in Figure 7. From Fig-
ure 7, we can observe that the performance of our model changes
smoothly around the peak region. That means our method has good
stability. Therefore, the optimal hyperparameters of our method
are easily obtained.

5.8 Case Study
To further investigate the impact of inter-student information

on the correctness prediction, we visualize the prediction of a stu-
dent’s 𝑡-th (𝑡 = 40) question-answering, as it is shown Figure 8.
Each grid in Figure 8 denotes a record. The first line of the grids
represents the student’s 𝑡 records, and the 2nd - 11th lines repre-
sent the records of peer students identified by our method, i.e., the
similar peer sub-sequences and similar peer records. Each grid is
annotated by the question ID (number), concepts (color: similar to
the to-predicted are dark green, otherwise purple) and the ground
truth correctness (solid or hollow). From intra-student information
presented in Figure 8, we can observe: (1) the to-predict student
has never answered the question with ID 1 previously; (2) the to-
predicted student has 35/39 = 89.74% accuracy in previous 𝑡 − 1
steps; (3) the to-predicted students has 11/12 = 91.67% accuracy
in the historical questions which has similar concepts with the

to-predict question. The evidence in intra-student information indi-
cates that the student has a high probability to correctly answer 𝑞𝑡 .
However, the student gives the wrong answer as it is presented in
Figure 8, 𝑞𝑡 is annotated by hollow grid. On the other hand, from
the inter-student information presented in Figure 8, we can observe
that 7/10 = 70% peer students incorrectly answered the question
with ID 1. It implies that the student has a high probability of in-
correctly answering 𝑞𝑡 , which is consistent with the ground truth.
By integrating the inter-student information with the intra-student
information, our CoKT predicts that the student has only 46.87%
probability of correctly answering the question. That means, the
inter-student information is beneficial for the prediction, especially
when intra-student information is less informative.

6 CONCLUSION
In this paper, we proposed a model called CoKT to trace students’

knowledge states. Different from the previous methods, which
consider only intra-student information, our model explicitly in-
troduces the inter-student information in knowledge tracing. We
obtain the inter-student information by retrieving the records and
sub-sequences of the students who have similar question-answering
experiences. CoKT makes predictions based on the integration of
the intra-student and inter-student information. We validate the
performance of our model on four public datasets, and compare it
with 10 outstanding methods. The experiment results demonstrate
that our method achieves the state-of-art performance. Since our
inter-student information is based on the context representation,
future works could further explore the context representation to
improve the performance.
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