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Abstract. This paper is concerned with the multi-label text classification
(MLTC) task, whose goal is to assign one or more categorical labels to a
document. The two critical characteristics of this task are the intra-class
and inter-class information. The former means the distribution of sam-
ples belonging to the same category, and the latter models the relation-
ships between labels such as label co-occurrence and label hierarchy. How-
ever, previous methods focus on either of them instead of combining both.
This paper proposes a novel two-branch architecture to capture both intra-
class and inter-class information. Experimental results show that consid-
ering both information improves the performance of the model. Besides,
our model achieves competitive results on two widely used datasets.

1 Introduction

Multi-label text classification (MLTC) focuses on assigning one or multiple class
labels to a document given the candidate label set. It has been applied to many
fields such as tag recommendation [7], sentiment analysis [8], text tagging on
social medias [18]. It differs from multi-class text classification, which aims to
predict one of a few exclusive labels for a document [6].

Two types of information should be captured for the MLTC task. One is intra-
class information, which cares the data distribution of samples belonging to the
same category. The other is inter-class information, which models relationships
between classes, such as label co-occurrence and hierarchy.

Prior efforts for multi-label text classification mainly focus on learning
enhanced text representation [1,13,20,22]. These models feed the text representa-
tion into a set of linear classifiers. Each linear classifier predicts whether the given
document belongs to a certain class. During training, the linear classifiers capture
the intra-class information by learning the decision boundaries of corresponding
classes. However, these methods neglect the inter-class information since the linear
classifiers are trained independently and never interact with each other.

Recently, extracting the inter-class information has raised researchers’ atten-
tion [15,16,19,23]. Some studies construct a label graph according to the inter-
class information, and convert the graph into node features via random walk-
based node embedding methods [23] or graph neural network (GNN) [15,16,19].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Tanveer et al. (Eds.): ICONIP 2022, CCIS 1791, pp. 239–250, 2023.
https://doi.org/10.1007/978-981-99-1639-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1639-9_20&domain=pdf
https://doi.org/10.1007/978-981-99-1639-9_20


240 X. Wu et al.

The probability that a document belongs to a class is calculated by the dot
product of document features and corresponding node features. These meth-
ods capture the inter-class information while depreciating the expressiveness
of intra-class information. For node embedding-based methods, node embed-
dings are optimized in advance with the objective function of reconstructing
neighbors. The optimized node embeddings, which take information for recon-
struction rather than text classification, occupy the limited capacity originally
used for modeling intra-class information. For GNN-based methods, the message
passage process harms the expressiveness of intra-class information because the
decision boundaries of classes receive noises from other nodes.

In this paper, we propose Aggregating Intra-class and Inter-class information
Framework (AIIF) for MLTC. AIIF consists of a text encoder and a two-branch
classification layer. On the classification layer, the linear branch applies multiple
linear classifiers to capture intra-class information. The graph-assisted branch
employs graph neural networks to a label-graph, where the message passing pro-
cess captures the inter-class information. Each branch takes the text feature
as input and makes predictions independently. Two branches’ predictions are
aggregated by a followed fusion module, which is optimized during the train-
ing process. With a divide-and-conquer architecture, AIIF captures both intra-
and inter-class information and prevents the modeling of intra- and inter-class
information from interfering with each other. Besides, AIIF supports plug-and-
play usage, i.e., existing studies focusing on enhanced text representation or
extracting inter-class information can be coupled with AIIF by serving as the
text encoder or graph-assisted branch.

To evaluate the effectiveness of AIIF, we implement an instance of AIIF with
BERT [5] and GCN [9], then evaluate the instance on widely used RCV1 and
AAPD datasets. Experimental results show that the instance outperforms its
variants without the two-branch classifier by a large margin. Besides, the instance
achieves state-of-the-art results on the widely used RCV1 dataset and achieves
competitive scores on the AAPD dataset.

The main contributions of this paper are listed as follows:

– We propose AIIF, a novel MLTC framework which can capture both intra-
class and inter-class information.

– We implement an instance of AIIF. Experimental results show that the
instance outperforms the baselines and gets competitive results on two public
MLTC datasets.

– To our best knowledge, We firstly analyze MLTC from the view of intra- and
inter-class information. We hope this work can provide a new perspective to
the community.

2 Related Work

As mentioned in Sect. 1, existing MLTC work focuses on two directions: improv-
ing text representation and extracting the inter-class information.
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To obtain a good text representation, many neural models have been applied,
such as CNN [13], RNN [14,20,22], the combination of CNN and RNN [10],
and BERT [1,3]. Some models consider improving text representation with the
interaction between the input document and labels [6,20,22]. In addition, some
methods construct a graph of words or documents to capture non-consecutive
and long-distance semantics within a document or the whole corpus [17,21]. We
argue that these methods neglect the inter-class information.

Capturing the inter-class information has attracted much attention in recent
years. The main idea is modeling relationships between labels as graphs and
guiding the multi-label prediction with graph representation. For example, Zhang
et al. [23] construct a category graph according to the label correlations and used
a random-walk-based method to encode the graph. Most subsequent work applies
neural networks to encode label graphs, such as Tree-LSTM [24] and the variants
of GCN [15,16,24]. Lu et al. [15] propose aggregating knowledge from multiple
label graphs. Ma et al. [16] propose predicting the label graph according to each
document. However, these methods sometimes perform worse than their variants
without label graphs [2,15], which may be attributed to the reason that these
methods ignore intra-class information.

Above methods only focus on either intra-class or inter-class information.
Compared with them, AIIF applies a two-branch architecture to capture both
information.

3 Methods

As shown in Fig. 1, AIIF separates the modeling of intra- and inter-class infor-
mation with a two-branch classification layer. The classification layer takes the
representation of the input document, which is obtained by the text encoder,
as input. The linear branch captures intra-class information with a set of linear
binary classifiers. The graph-assisted classifier branch models inter-class infor-
mation by first encoding the label graph as node features, then calculating the
dot product between node features and text features. The fusion module com-
bines the predictions of the linear and graph-assisted branches as the probability
that the input document belongs to each category.

Problem Formulation. Given the label space L = {l1, l2, . . . , lT } and an input
document x, MLTC aims at predicting a label set Lpred ⊆ L for x.

In the remaining part of this section, we first describe the working flow of
AIIF when BERT serves as the text encoder and GCN serves as the graph
encoder. Then we introduce the training of AIIF . Finally, we introduce the
method of constructing the label graph.

3.1 AIIF Models

Text Encoder. Basically, given an input document x = {x1,x2, . . . ,xn}, where
xi is the i-th token in the document, BERT converts x to the text feature as

Ht = BERT (x) , (1)
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Fig. 1. The overall architecture of AIIF.

where Ht ∈ Rdt are the text feature. As recommended in [5], we add a special
“[CLS]” token in front of x before feeding x into the BERT model, and take the
token feature of the “[CLS]” token produced by the BERT model as the text
feature of the input document x.

Graph-assisted Classifier. Given the category graph G, we obtain its node
features via a graph convolutional network (GCN). We choose GCN for two
reasons: First, GCN can capture the complex topology structure between labels
through message passing. Second, GCN can be jointly trained with the other
parts of the model in an end-to-end manner to achieve the optimal solution. We
denote every convolutional network layer as a non-linear function f( , ), which
takes the adjacency matrix A′ and node features H l

g ∈ RT×dl
g as input. Here, T

is the number of nodes (labels) and dlg represents the dimension of node features.

H l+1
g = f(H l

g ,A′)

= σ(A′H l
gW

l)
(2)

Here, W l ∈ Rdg×dg is a weight matrix to be learned, σ(·) indicates a non-linear
function, which is implemented with ReLU in this paper.

We treat the output of the last convolutional layer as node features, denoted
by LG . The graph-assisted classifier produces the prediction for each label
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according to the dot product between text features and node features.

fg(Ht) = HtW
g

zgi = LG i · fg(Ht)i
(3)

where fg() is a linear transformation with Wg ∈ R
dt×dg . The transformation is

required to match the dimension to that of LG.

Linear Classifiers and Fusion Module. The linear classifiers make prediction
for each label as,

fp(Ht) = HtW
p

zwi = fp(Ht)LW

(4)

where fp() is a linear transformation with Wp ∈ R
dt×dp ., LW is the weight of

linear classifiers.
The fusion module aggregates predictions of the linear classifiers zw and that

of the graph-assisted classifier zg by weighted summation as follows,

z = zg · μ + zw · (1 − μ) (5)

where μ ∈ R
T is trainable parameters representing the ratio of inter-class rela-

tionship for each category.

3.2 AIIF Training

We adopt a 2-stage training for AIIF : (1) Training the text encoder (2) Training
the classification layer.

Training the Text Encoder. In the first stage, we train the text encoder
according to supervised signals from the dataset to obtain well-learned text
features. Specifically, we add a linear classifier after the text encoder and compare
predictions of the linear classifier with ground-truth labels with a hinge loss.

SH(y, ŷ) =
T∑

i=1

(max(0, 1 − yi · ŷi)2) (6)

where ŷ ∈ RT is the prediction of the linear classifier. After training, only the
parameters in the text encoder are saved for later use.

Training the Classification Layer. In the second stage, we freeze the param-
eters of the text encoder. The remaining parts of AIIF are randomly initialized
and trained. Here, we use the binary cross-entropy (BCE) loss to train the model.
Given the ground-truth label vector y and a vector of predicted probability p,
the BCE loss is calculated as

BCE(p,y) =
T∑

i=1

(yi log pi + (1 − yi) log (1 − pi)) (7)
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We apply BCE loss to the linear classifiers, the graph-assisted classifier and
the whole model. The final loss L is calculated as

Lf = BCE(sigmoid(z),y)
Lw = BCE(sigmoid(zw),y)
Lg = BCE(sigmoid(zg),y)
L = Lf + αLw + βLg,

(8)

where α and β are hyper-parameters used for balancing these losses.
For the initialization of the vertices embedding matrix, one method is using

the mean-pooling of word embeddings of the tokens in the text of the label. How-
ever, some MLTC datasets does not provide label text or provide it in the form
of abbreviation, which prevents us from obtaining a good initial vertices embed-
ding matrix. Thus, we initialize the embedding of a category label according to
the documents belong to the category. More specifically, if a set of documents
{x1,x2, . . . ,xk} have the ground-truth label l, then the initial vertex embedding
of l is

H0
g =

1
k

k∑

j=1

BERT (xj) , (9)

3.3 Label Graph Construction

Following [4], we create the label graphs according to the co-occurrence patterns
between labels within the dataset. Details are as follows.

First, we count the co-occurrence of label pairs (li, lj) in the training set to
obtain the label correlation matrix M ∈ R

T×T . Then, we calculate the condi-
tional probability P (lj |li) that lj appears when li appears as

P (lj |li) = Mij/Ni, (10)

where Ni denotes the appearance frequency of li in the training set.
Then, we apply a threshold τ to filter out the noisy rare co-occurrence via

Aij =
{

0, if P (lj |li) < τ
1, otherwise , (11)

where A is the binary adjacency matrix. However, directly applying A to GCN
may cause the over-smoothing problem [12]. To alleviate the issue, we re-weight
A as follows to obtain the final adjacency matrix A′.

A′
ij =

{
p/

∑C
j=1,i �=j Aij , if i �= j,

1 − p, if i = j
(12)
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Table 1. Summary of the datasets. N is the number of samples in the training and val-
idation set, M is the size of the testing set, W denotes the average length of documents,
and C̃ means the average number of labels per sample.

Datasets N M W C̃

RCV1 23,149 781,265 223.2 3.2

AAPD 54,840 1,000 155.9 2.4

4 Experiments

4.1 Datasets and Evaluations

We perform experiments on two widely-used MLTC datasets: RCV1 [11] and
AAPD. For a fair comparison, we follow the dataset split used in previous work
[20]. The statistics of datasets are shown in Table 1.

Following the setting of previous work [16,20], we apply two metrics for
performance evaluation: precision at top k (P@k), the normalized discounted
cumulated gain at top k (nDCG@k). Given the ground-truth binary vector
y ∈ {0, 1}T , P@k is defined as follows:

P@k =
1
k

k∑

l=1

yrank(l) (13)

where rank(l) is the index of the l-th highest predicted label. nDCG@k is
defined as follows:

DCG@k =
k∑

l=1

yrank(l)

log(l + 1)

iDCG@k =
min(k,||y ||0)∑

l=1

1
log(l + 1)

N@k =
DCG@k

iDCG@k

(14)

4.2 Baselines

We select the following methods as baselines. (1) DXML Zhang et al. [23] con-
struct a graph of labels considering the co-occurrence between labels and applied
a random walk-based method to obtain node features. (2) AttentionXML You
et al. [22] adopt a multi-label attention mechanism to perform hierarchical clas-
sification. (3) LSAN Xiao et al. [20] use the attention mechanism to consider
the relations between document words and labels. (4) LGAN Ma et al. [16] use
GCN to encode a static and dynamic text-specific label graph for predictions
of each text. It achieved current state-of-the-arts results on RCV1 and AAPD
datasets. We report the results of baselines from their original paper if no extra
description.
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4.3 Implementation Details

We apply BERT [5] as the text encoder because BERT has the ability to obtain
strong contextualized text representation and has achieved great success in
many NLP tasks. The pre-trained BERT utilized in this paper are provided
by transformers1 library. We use the BERTbase checkpoint. We set dt = 768 and
dg = dp = 256. When constructing the label graph, we use τ = 0.5 and p = 0.2.

For all training stages, we use the Adam optimizer. The initial learning rate
lr is 5 × 10−4 expect for fine-tuning BERT in the first training stage, where lr
is 5 × 10−5. We use learning rate warm-up during the first 0.1 proportion of
the whole training process, and a linear learning rate decay is applied for the
remaining process. We use early stopping and the max training epoch for each
stage is 20. We set α = 1 and β = 1. Each document is truncated at the length
of 350 and 250 for the RCV1 and the AAPD dataset, respectively.

Table 2. Compare AIIF with previous methods. † indicates that the scores are collected
from [20]. Best results are shown in bold.

Dataset RCV1 AAPD

Method P@1 P@3 P@5 nDCG@3 nDCG@5 P@1 P@3 P@5 nDCG@3 nDCG@5

DXML 94.04† 78.65† 54.38† 89.83† 90.21† 80.54† 56.30† 39.16† 77.23 † 80.99†

AttentionXML 96.41† 80.91† 56.38† 91.88† 92.70† 83.02† 58.72† 40.56† 78.01† 82.31†

LSAN 96.81 81.89 56.92 92.83 93.43 85.28 61.12 41.84 80.84 84.78

LDGN 97.12 82.26 57.29 93.80 95.03 86.24 61.95 42.29 83.32 86.85

BERT (ours) 97.18 83.36 57.61 94.19 94.48 86.60 62.40 41.58 81.75 85.20

AIIF 97.50 84.07 58.22 94.85 95.20 86.9 62.40 42.06 82.34 85.81

4.4 Main Results

We compare AIIF with previous methods. Results are shown in Table 2. From
the results, we can observe that

1. AIIF significantly outperforms BERT. AIIF outperforms BERT in all
metrics in both datasets, with the improvement between 0.70% and 1.15% in
RCV1 dataset and between 0.23% and 1.44% in AAPD dataset. The supe-
riority of AIIF over BERT is that AIIF capture both intra- and inter-class
information, not just intra-label information.

2. Competitive results on two datasets. Compared with the previous state-
of-the-art method LDGN, AIIF outperforms LDGN in all metrics on the
RCV1-v2 dataset, with an improvement between 0.27% and 2.35%; on the
AAPD dataset, AIIF achieved close results with LDGN, with an improvement
between −1.20% and 0.73% in each metric.

1 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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4.5 Ablation Study

Table 3. AIIF compares with its variants on MLTC datasets. AIIF-L represents the
model consists of the text encoder and linear classifiers. AIIF-G represents the model
consists of the text encoder and graph-assisted classifier. The best results are shown in
bold.

Dataset RCV1 AAPD

Methods P@1 P@3 P@5 nDCG@3 nDCG@5 P@1 P@3 P@5 nDCG@3 nDCG@5

AIIF 97.50 84.07 58.22 94.85 95.20 86.80 62.40 42.06 82.34 85.81

AIIF-L 97.34 83.65 57.67 94.48 94.63 86.10 62.50 41.84 82.13 85.52

AIIF-G 96.40 83.99 58.17 94.53 94.89 85.80 62.37 41.90 82.09 85.51

To further analyze the effectiveness of the two-branch architecture, we compare
AIIF to its two variants: (1) AIIF-L: We remove the graph-assisted classifier
and the fusion module from the AIIF. The linear classifiers’ predictions are
treated as the final prediction. (2) AIIF-G. We remove the linear classifiers
and the fusion module from the AIIF. The graph-assisted classifier’s predictions
are treated as the final prediction. AIIF, AIIF-L, and AIIF-G follow the same
training methods.

The results are shown in Table 3. We can observe that in most cases, removing
any branch of AIIF will cause the performance drop on two datasets. Take the
P@1 score on the AAPD dataset as an example, AIIF-L is inferior to AIIF
by 0.81%, and AIIF-G is inferior to AIIF by 1.27%. The performance drop
demonstrates the effectiveness of the proposed two-branch classifier.

4.6 Performance on the Tail Labels

As mentioned in Sect. 1, previous work shows that encoding the inter-class infor-
mation achieves promising results on tail labels [19]. We are interested in whether
introducing the intra-class information further improves results on tail labels.
Thus, we evaluate AIIF and its variants with propensity scored precision at k
(PSP@k), which is calculated as

PSP@k =
1
k

k∑

l=1

yrank(l)
Prank(l)

(15)

Results are shown in Fig. 2. We can observe that AIIF outperforms AIIF-G
on all datasets, demonstrating that even if a model has captured the inter-class
information, introducing the intra-class information still improves performance
on tail labels.
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Fig. 2. Performance on tail labels

Table 4. A case study on the RCV1 dataset. Here, we show the top 5 predictions of
BERT and AIIF, and the right predictions are colored by red.

Input Document: French pension at 55 ups cost 117 bln

Reducing the french retirement age to 55 from 60 could cost as much as 117
billion francs over 15 to 20 years, an unpublished study by the pensions branch
of the social security system says, according to Daily Les Echos. The
newspaper said a preliminary study by the CNAV branch of the social security
system believed retirement across the board at 55 would add 28 million people
to the pensioner population, raising existing claimers 31 percent from 91
million. The CNAV estimated that the extra burden on the basic social
security retirement benefit system in extra payouts would be in the region of
100 billion francs.,
. . .

Ground-truth labels: economics; government/social; expenditure/revenue;
government finance; welfare, social services

Top 5 predictions of BERT: government/social; health; domestic politics;
expenditure/revenue; welfare, social services

Top 5 predictions of AIIF: government/social; welfare, social services;
expenditure/revenue; economics; government finance

4.7 Case Study

Further, we compare the prediction results of AIIF and BERT to analyze why
AIIF is superior to BERT in Table 4.

For the example shown in Table 4, BERT correctly predicts the categories
“government/social,” “expenditure/revenue,” and “welfare, social services,” but
not the categories “economics” and “government finance”. AIIF predicts all the
correct categories. We believe the phenomenon can be attributed to AIIF extract-
ing the relationship between the categories after introducing the category map.
In the training set, the categories “economics” and “government finance” have
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a strong co-occurrence with the three categories correctly predicted by BERT.
Correspondingly, they are connected by edges in the category graph. Extracting
such inter-class information increases the probability of predicting “economics”
and “government finance”. Conversely, the two categories that BERT incorrectly
predicted, “health” and “domestic politics”, have weaker co-occurrence with the
three categories that BERT correctly predicted. Hence, AIIF excludes these two
incorrect predictions.

5 Conclusion

This paper studies the multi-label text classification task. Previous methods
focus either intra-class or inter-class information. We propose a novel two-branch
architecture to combine both information. Experimental results show that the
model capture both intra-class and inter-class outperforms those modeling either
of them.
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