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Abstract. Knowledge tracing (KT) is a fundamental task of intelli-
gent education, which traces students’ knowledge states by their histor-
ical interactions. In KT, students, questions, concepts, and answers are
four main types of entities, and they contain various relations, including
student-question interactive relations, question-concept relations, and
question-answer relations. Such rich knowledge in these heterogeneous
relations could potentially improve the prediction of KT. However, it
has not been sufficiently utilized in existing KT methods. In this paper,
we propose a novel method, called Heterogeneous Graph Representation
for Knowledge Tracing, to leverage these useful relations. Our method
first models all the complex entities and relations in KT as a hetero-
geneous graph, and then uses a heterogeneous graph neural network to
obtain entities’ feature representations. After that, we feed the feature
embeddings to a KT model in an end-to-end training manner. Due to
the heterogeneous graph’s high representational capacity, our method
exploits the relations among students, questions, concepts, and answers
in a concise and unified way. Experiments on four KT datasets show that
our method achieves state-of-the-art performance.

Keywords: Knowledge Tracing · Heterogeneous Graph · Intelligent
Education

1 Introduction

Currently, online education is developing rapidly and has gradually become a
common way of learning. Many advanced algorithms are used to mine large-scale
interactive data between students and the system to provide more intelligent
educational services so that each student can have a better adaptive learning
experience. Knowledge tracing (KT) [7] is a fundamental task of intelligent edu-
cation, which uses students’ historical learning interactive data to trace students’
dynamic knowledge states and predict their performances in future interactions.

In KT, the collected historical data include relational information among
entities of students (i.e., users), questions (i.e., problems/exercises), concepts
(i.e., knowledge concepts/skills), and answers (i.e., responses). These entities
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Fig. 1. An example of knowledge tracing data, student-question-concept relation graph,
and meta-paths. Questions q3 and q4 are done by the same student s3, and they have
similar related concepts and difficulties. Questions q1 and q2 are related to the same
concept c1 but have different difficulties. Question q2’s meta-based neighbors include
q2, q3 (via q-s-q), q1, and q4 (via q-c-q).

contain three main types of relations: student-question, question-concept, and
question-answer. Existing KT methods utilize the knowledge in these entities
and relations with varying degrees. However, they do not model all types of
relations in a comprehensive and uniform way.

For question and concept entities, many KT models [19,33] only use concepts
as the input to learn a student’s concept mastery, and they ignore the specific
information and the student’s state of each question, causing the loss of latent
information between them [1,30] (see q1, q2 in Fig. 1). For student entities, few
KT models consider using student information as the input, and students are
only indices of sequence. Using student information is meaningful, and the ques-
tions done by the same student can implicitly reflect that their learning stages
and difficulties are similar. Some previous work partially utilizes relational infor-
mation by introducing a question-concept graph [15,27,30] or student-specific
parameters [20,31], but they do not fully use all types of relations.

We believe that the KT task can be better achieved by comprehensively and
uniformly modeling all types of entities while retaining specific feature informa-
tion. Since these entities with different types have unique effects and structural
information, complete modeling of all entities and their relations can best extract
the rich information contained therein.

Inspired by previous work [9,11], we represent all types of entities and rela-
tions in KT as vertices and edges in a heterogeneous graph. A heterogeneous
graph [21,23] contains multiple types of vertices and edges, which can naturally
express data with complex structures in the real world. As shown in Fig. 1 and 2,
the heterogeneous graph demonstrates these entities and their relations. In addi-
tion, heterogeneous graph neural networks (HGNNs) [8,28] can obtain semantic
relational information in a heterogeneous graph.

In this paper, we propose a deep KT model, namely Heterogeneous Graph
Representation for Knowledge Tracing (HGRKT), to model various types
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of entities and relations in the KT task in a unified way. We first construct a
knowledge tracing heterogeneous graph (KTHG), which describes the student-
question-concept-answer relations. Then, we use a meta-path-based multi-layer
HGNN to obtain heterogeneous relation-aware representations in KTHG. Specif-
ically, we use Heterogeneous Graph Attention Network (HAN) to implement
HGNN, which is based on hierarchical attention and performs well among
HGNNs. After that, we feed the representations of questions into the KT model,
and the whole model can be optimized through end-to-end backpropagation.

In summary, our main contributions are as follows:

1. We construct a KTHG to comprehensively and uniformly model the inter-
active and structural relations among students, questions, concepts, and
answers, where each vertex has an embedding and represents an entity with
a type. Our proposed method is simple and concise by exploiting the high
representational capacity of the heterogeneous graph.

2. We apply HGNN to get representations for KT. HGNN can effectively extract
the rich knowledge contained in relations into the generated question embed-
dings, and the embeddings are used as the input of the KT model.

3. Experiments on multiple benchmark datasets show our model’s effectiveness.
Our method improves AUC by 1% compared to the best baseline on average.

2 Related Work

2.1 Knowledge Tracing

Existing KT models can be roughly divided into non-deep models and deep mod-
els. In recent years, deep learning has been widely used in KT task research for
its powerful ability to extract and represent features and discover complex struc-
tures [14]. DKT [19] first introduces deep learning to KT and uses a Recurrent
Neural Network (RNN) [29] to model a student’s knowledge state. DKVMN [33]
uses Memory Augmented Neural Network to automatically discover basic con-
cepts and trace the state of each concept. Since then, various deep KT methods
have been proposed based on the two methods.

Many researchers introduce graph and question features to model knowledge
structure in different ways, such as utilizing concept graphs [3,17,25], consid-
ering question features and combining them with concept features in predic-
tion [16,27], and using question-concept relation graphs and graph neural net-
works (GNNs) [13] to learn embeddings for questions [15,30].

2.2 Heterogeneous Graph

A heterogeneous graph [21,23] is a graph with multiple types of vertices and
edges, which can naturally describe complex relations and rich semantics in
many data mining tasks [9,11]. Recently, researchers have proposed many Het-
erogeneous graph neural networks (HGNNs) models [8,28,32] to extract repre-
sentations of vertices and obtain knowledge in heterogeneous graphs.
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Our method mainly uses the Heterogeneous Graph Attention Network
(HAN) [28]. HAN is an HGNN based on vertex-level and semantic-level atten-
tions. Vertex-level attention uses a semantic-specific GAT [26] layer to learn
the importance between vertices and their meta-path-based neighbors, while
semantic-level attention measures the importance of meta-paths with an atten-
tion vector and fuses embeddings of all meta-paths to obtain the final embedding.

3 Preliminaries

3.1 Knowledge Tracing

In the KT task, a group of students S sequentially answer a series of questions
from a set Q. At the time step t, a student s ∈ S answers a question qt ∈ Q, and
the correctness of the answer is at ∈ {0, 1}. The observed learning interaction
sequence before the time step T is

XXX = {qt, at}T
t=1 = {(q1, a1), . . . , (qt, at), . . . , (qT , aT )}. (1)

In the time step T + 1, given the historical sequence XXX and a new ques-
tion qT+1, the goal of KT is to predict the probability of the student correctly
answering the new question:

âT+1 = P (aT+1 = 1|XXX, qT+1). (2)

Let � be the loss function (e.g., binary cross-entropy). The predictive loss of
the answer is �(at+1, ât+1), and the loss for a student is

∑
t �(at+1, ât+1).

3.2 Heterogeneous Graph

A heterogeneous graph [23] G = (V, E) consists of a vertex set V and an edge set
E , and it is associated with a vertex type map and an edge type map so that
each vertex and edge has its own type.

A meta-path [24] Φ is a path A1
R1−−→ A2

R2−−→ · · · Rl−→ Al+1 describing a
composite relation of all intermediate edge types R1, . . . , Rl between vertex types
A1 and Al+1. Given a meta-path Φ, the meta-path-based neighbors N Φ is a map
from vertex i to a set of vertices that connect with vertex i via meta-path
Φ. Meta-path is a fundamental structure of a heterogeneous graph, which can
express certain semantics and reveal diverse structure information.

As shown in Fig. 1, the meta-path question-concept-question represents ques-
tions with the same concept (e.g., q1 and q4), while the meta-path question-
student-question represents questions done by the same student (e.g., q2 and
q3). Question q2’s neighbors based on the meta-path question-student-question
include q2 (itself) and q3, indicating that s2 answers both. Its neighbors based
on meta-path question-concept-question include q2, q1, and q4, indicating that
they share the same concept c1.
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3.3 Message Passing

To utilize the graph structural knowledge, we apply the message passing to
get the new embeddings of vertices in graph G(V, E). We can use a GNN layer
to apply the message passing from source vertices {vi|(vi, vj) ∈ E} to target
vertices {vj |(vi, vj) ∈ E} via all edges. We construct an embedding matrix M =
(hT

1 ; . . . ;hT
N ) ∈ R

N×d, consisting of all vertices’ embedding vectors, where hi =
Mi,∗ ∈ R

d is vertex vi’s embedding vector. The GNN transforms the input
embedding matrix into a new embedding matrix M′ = GNN(M|G), where the
new embedding of vertex i is h′

i = M′
i,∗.

For a heterogeneous graph G′, we should construct multiple embedding matri-
ces for each type of vertices. For vertices with type Ak, its corresponding embed-
ding matrix is Mk. The message passing is applied from source vertices to tar-
get vertices with various types. Let the source vertices have ns different types
{AS

1 , . . . , AS
ns

} and target vertices have nt different types {AT
1 , . . . , AT

nt
}, then

the HGNN transforms the embedding matrices of sources into embedding matri-
ces of targets, i.e., {MT

1 , . . . ,MT
nt

} = HGNN(MS
1 , . . . ,MS

ns
|G′).

4 Method

4.1 KTHG

The data of knowledge tracing includes students, questions, concepts, answers,
and their relations. We model them as vertices and edges with different types in
a knowledge tracing heterogeneous graph (KTHG). Let S, Q, and C be the set
of students, questions, and concepts separately. Let A = {a|a = 0 or a = 1} be
the set of answers, where the member 1 and 0 indicates whether the answer is
correct or not. We define the KTHG GKT(VKT, EKT) as the combination of three
simpler heterogeneous graphs Gsq,Gqc,Gqa, i.e., GKT = Gsq ∪ Gqc ∪ Gqa.

Student-Question Graph. The student-question graph Gsq(S ∪ Q, Esq) is a bipar-
tite graph, where Esq contains the interactions between students and questions
in the training data, and an undirected edge (si, qj) means that student si ∈ S
answers question qj ∈ Q, as is shown in the upper part of Fig. 2(b).

Question-Concept Graph. The question-concept graph Gqc(Q∪C, Eqc) is a bipar-
tite graph, where Eqc contains the relations between questions and concepts. An
undirected edge (qi, cj) means that question qi ∈ Q is related to concept cj ∈ C,
as is shown in the lower part of Fig. 2(b).

Question-Answer Graph. The question-answer graph Gqa(Q ∪ A ∪ QA, Eqqa ∪
Eaqa) is a combination of two complete bipartite graphs Gqqa(Q ∪ A, Eqqa) and
Gaqa(A ∪ QA, Eaqa), where QA is the set of questions combined with answers, and
QA = {qi0, qi1}|Q|

i=1 for Q = {qi}|Q|
i=1, and |QA| = 2|Q|. Concretely, to combine

the question qi ∈ Q with answer a, we use two new vertices qi1, qi0 ∈ QA to
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Fig. 2. The architecture of our method. (a) The question-answer graph Gqa; (b) The
student-question graph Gsq and the question-concept graph Gqc; (c) The overview of
our method. It shows the updating of a student’s knowledge state in the time step t.
Two parts of KTHG in (a) and (b) are used in two HGNN layers in (c) separately.
Dotted lines show the message passing via meta-paths.

represent the question with the correct and incorrect answer respectively, called
question-with-answer (qa for short) vertices.

As shown in Fig. 2(a), question q1 and two answers, “a = 0” and “a = 1”, are
linked into q10 and q11 by two meta-paths, question-qa and answer-qa. We use
these two meta-paths to fuse a question embedding and an answer embedding
into a question-with-answer embedding.

4.2 Representation Learning on KTHG

We stack the HGNN layers to make up a multi-layer HGNN, and apply message
passing on KTHG with a two-layer HGNN to generate representations of vertices
with graph structure information about other vertices connected with them.
Although we may get the new embeddings for any type of vertices, we only use
generated embeddings about questions as the input feature of the KT model
because students’ performance is mainly related to them.

For all types of vertice sets S,Q, C,A,QA, we construct embedding matrices
MS ,MQ,MC ,MA,MQA. At first, We use an HGNN layer to transform the
original question embeddings, student embeddings, and concept embeddings into
aggregated question embeddings:

M′
Q = HGNNsqc(MS ,MQ,MC |Gsq ∪ Gqc), (3)

where M′
Q =

(
q′T
1 ; . . . ;q′T

N

)
, q′

i =
(
M′

Q

)

i,∗ and N = |Q|. Here, we apply message
passing on the student-question-concept graph and use meta-paths ended with
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the question vertex, and the aggregated question embeddings carry information
about questions, students, and concepts.

When modeling the student’s learning process, we need to combine the infor-
mation about questions and answers. We use another HGNN layer to fuse an
aggregated question embeddings M′

Q and an answer embeddings MA into an
aggregated question-with-answer embeddings M′

QA:

M′
QA = HGNNqa(M′

Q,MA|Gqa), (4)

where M′
QA =

(
q′T
10;q

′T
11; . . . ;q

′T
N0;q

′T
N1

)
and qia =

(
M′

QA

)

2i+a−1,∗. Here, we
apply message passing on the question-answer graph and use the meta-paths
ended with the question-with-answer vertex, so the aggregated question-with-
answer embeddings carry the information of its corresponding aggregated ques-
tion embeddings and answer embeddings.

4.3 KTHG Representations for KT Model

We trace a student’s knowledge state by his/her learning interaction sequence
{qt, at}T

t=1. Note that here qt denotes the question ID in the time step t (instead
of the question with ID t). The architecture of our KT model is shown in Fig. 2(c).
After representation learning on KTHG, we get question embedding matrices
M′

Q,MQA with graph structure information for the KT model. For question qt,
we can get its aggregated question embedding q′

t = (M′
Q)qt,∗. When tracing

the student’s knowledge state, we can get the question-with-answer embedding
q′

ta = (M′
QA)2qt+at−1,∗ for the current answer at.

Then, similar to DKT [19], we use an RNN to trace the student’s knowledge
state. For each time step t, we feed the embedding q′

ta into an RNN cell to
update the RNN’s hidden state vector ht:

ht = RNN(q′
ta,ht−1), t = 1, 2, . . . , T. (5)

In the prediction, we use the student’s current knowledge state and question
embedding to predict the answer. Specifically, we first concatenate RNN’s current
state ht−1 with the aggregated question embedding q′

t. After that, we feed the
concatenated vector into a fully connected layer to obtain the summary vector
h′

t, and then we feed the vector into a Sigmoid activation layer to calculate the
probability of correctly answering, denoted as ât:

h′
t = tanh(Wfc(ht−1 ⊕ q′

t) + bfc), (6)
ât = σ(Wah′

t + ba), (7)

where ⊕ denotes concatenation operator and σ is the Sigmoid function.

5 Experiment

5.1 Datasets

We evaluate our method on four open public datasets: ASSIST09, ASSIST12,
EdNet, and Junyi, which are sampled from educational platforms [2,6,10].
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Table 1. Dataset statistics.

Statistics ASSIST09 ASSIST12 EdNet Junyi

#Records 185,110 1,839,429 326,267 622,781

#Students 2,968 22,422 4,700 7,000

#Questions 15,003 45,543 11,060 1,978

#Concepts 121 99 189 39

#Concepts per Question 1–4 1 1–7 1

Avg. #Questions Per Concept 150.8 460.0 128.7 50.7

AVg. #Concepts Per Question 1.2 1.0 2.2 1.0

Avg. #Attempts Per Question 12.3 40.4 29.5 314.9

Avg. #Attempts Per Concept 1,914.2 18,580.1 4,026.9 15,968.7

Correct Rate (%) 63.8 69.6 59.7 67.3

We filter out records without concepts and students with less than 10 inter-
actions and randomly sample students to make computing resources affordable.
The statistics of the four datasets are shown in Fig. 1. We use the indices of ques-
tions, their related concepts, and students’ answers from records. The maximum
length of students’ interaction sequence is set to 200. In the datasets, We split
4/5 of students for training and validation, and another 1/5 for testing, where
no student appears in both training and testing sets.

5.2 Implementation Details

To evaluate the effectiveness of our method, we compare our method with three
groups of 11 KT baseline methods. Single-state methods represent a student’s
knowledge state with a vector, which is often the hidden state of RNN; Multi-
state methods represent the student’s knowledge concept state with multiple
vectors; State-free methods do not maintain a vector to represent the student’s
knowledge state. Note that our method is single-state.

To fairly compare the results of all methods, we uniformly set some shared
parameters. The dimension of question embeddings and concept embeddings is
64. The batch size is 16. We initialize the parameters randomly, and the optimizer
is Adam [12] with a learning rate of 0.001. We use a single-layer GRU [4] to
implement RNN [4], and the dimension of its hidden state is 64. We run each
method five times and show their average results of AUC.

We choose HAN [28] as the HGNN layer implementation, called HAN-
HGRKT. In HAN, the dimension of the semantic-level attention vector is 128.
The input dimension of the vertex embedding is set to 64. Besides, we only update
part of useful vertices in the current batch to reduce memory usage. We pick five
meaningful meta-paths for two HAN layers: (1) q-s-q, q-c-q, c-q for Gsq,Gqc; (2)
q-qa, a-qa for Gqa, where “q”, “s”, “c”, “a”, and “qa” denote question, student,
concept, answer, and question-with-answer respectively. The code of our imple-
mentation is available at https://github.com/chenjisen/HGR-KT.

https://github.com/chenjisen/HGR-KT
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Table 2. AUC results (%) on four datasets.

Group Method ASSIST09 ASSIST12 EdNet Junyi

Single-state DKT [19] 67.1 68.8 70.2 88.5

EERNNA [22] 74.1 74.1 71.5 86.9

DHKT [27] 74.2 74.1 71.6 89.0

GIKT [30] 75.5 73.9 72.5 88.9

Multi-state DKVMN [33] 65.6 68.6 68.9 88.5

GKT [17] 75.1 68.5 69.1 85.8

SKT [25] 71.3 66.4 66.4 86.1

State-free SAKT [18] 68.9 69.5 70.5 79.5

CKT [20] 70.3 70.0 64.9 87.7

SKVMN [1] 64.7 68.2 68.9 88.2

SAINT [5] 68.5 68.5 69.9 85.3

(Ours) HAN-HGRKT * 76.8 74.4 73.4 89.5

Table 3. Attention weights of meta-paths in two HAN layers.

Graphs Meta-path ASSIST09 ASSIST12 EdNet Junyi

Gsq ,Gqc q-s-q 0.39 0.64 0.53 0.52

q-c-q 0.35 0.36 0.29 0.36

c-q 0.26 0.00 0.18 0.12

Gqa q-qa 0.71 0.81 0.69 0.66

a-qa 0.29 0.19 0.31 0.34

5.3 Results

We measure AUC to evaluate and compare the performance of methods. All
decimals are rounded to the nearest tenth. Table 2 shows AUC results in exper-
iments, and a higher AUC indicates that the method predicts student perfor-
mances better. We observe that our method, HAN-HGRKT, outperforms all 11
baselines and achieves state-of-the-art performance in all four datasets, demon-
strating that our method leverages all types of relations better with the HAN.
Our method outperforms the best baseline (GIKT) by about 1% in AUC on
average. In addition, there is no significant difference in performance between
state-free, single-state, and multi-state methods.

However, our method has the least improvement on ASSIST12 and Junyi,
which only outperforms the best baseline for no more than 1% in AUC. We
assume that in these two datasets, a question is only related to a concept, so
they are simpler than other datasets, and there is no place for the heterogeneous
graph to show its powerful representation capacity.

Besides, we get the attention weight values of all meta-paths in HAN. Table 3
shows the results, where a mid-line separates the results from two HAN layers.
We find that the HAN can automatically adjust the weight of each meta-paths
on different datasets.
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Table 4. AUC results (%) of HAN-HGRKT with different graphs and meta-paths in
two HAN layers.

Graphs Meta-paths ASSIST09 ASSIST12 EdNet Junyi

Gsq q-s-q 75.1 74.4 73.3 89.5

Gqc c-q 76.0 68.4 69.3 85.6

q-c-q 76.3 74.5 71.7 89.1

q-c-q, c-q 76.6 74.5 71.8 89.0

Gsq,Gqc q-s-q, q-c-q 76.4 74.4 73.4 89.5

q-s-q, q-c-q, c-q* 76.8 74.4 73.4 89.5

Gqa q-qa, a-qa * 76.8 74.4 73.4 89.5

q-qa, aq-qa 71.4 71.7 70.9 86.8

(AE) (AE) 76.7 74.4 73.2 89.4

(ZV) (ZV) 76.5 74.3 73.2 89.1

5.4 Ablation Study

We design the ablation study to further analyze the effect of each sub-graph and
meta-path in our method.

Student-Question Graph and Question-Concept Graph. We change the usage of
Gsq, Gqc, and their related meta-paths in the first HAN layer, while not changing
the second HAN layer. The upper part of Table 4 shows the results, where our
original method performs the best, and removing any graphs or meta-paths
decreases the performance. We notice that the meta-path c-q has the least effect,
but it has the most significant improvement and the largest attention weight (see
Table 3) on ASSIST09, indicating that the c-q relation contains irreplaceable
semantic information on ASSIST09 compared to the other datasets, and our
method can automatically catch it.

Question-Answer Graph. We compare our second HAN layer with other methods
of combining questions with answers, while not changing the first HAN layer.
The variants of the methods of combining answers with questions are listed as
follows: (1) Using a new vertex type “aq”, which means that we use two answer
vertices for each question respectively, and the number of “aq” vertices is 2|Q|;
(2) AE: concatenating new question embedding with answer embedding instead
of using Gqa, i.e., q′

ta = q′
t ⊕ at; (3) ZV: concatenating new question embedding

with zero vectors in two orders instead of using Gqa, i.e., q′
ta = q′

t ⊕ 0 when
at = 1 and 0 ⊕ q′

t when at = 0. The lower part of Table 4 shows the results,
where our original method performs the best. We notice that if we construct
two answer embedding for each question vertex individually, the performance
decreases a lot, and the reason may be that it increases the complexity of the
model and causes difficulty for training.
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6 Conclusion

In this paper, we propose an end-to-end method, Heterogeneous Graph Rep-
resentation for Knowledge Tracing (HGRKT), to learn question representations
for the KT task. We introduce a KTHG to model heterogeneous relations among
students, questions, concepts, and answers. Then, we use a multi-layer HGNN to
obtain the question representations with rich relational knowledge. After that,
we use a KT model to get the students’ performances. We evaluate our method
on four KT datasets and compare it with 11 knowledge tracing baseline methods.
As our model gets better question representations, it performs state-of-the-art
performance and outperforms the best baseline by 1% on average. The extensive
ablation study shows the effectiveness of the whole KTHG with the meta-paths.
In the future, we will apply different implementations of heterogeneous graph
models to explore a better extraction method of heterogeneous relations.

Acknowledgments. This work is supported by Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0102) and National Natural Science Foun-
dation of China (62177033).
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