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Abstract. In many real-world problems, a team of agents need to col-
laborate to maximize the common reward. Although existing works for-
mulate this problem into a centralized learning with decentralized execu-
tion framework, their decentralized execution paradigm limits the agents’
capability to coordinate. Inspired by the concept of correlated equilib-
rium, we propose to introduce a coordination signal to address this limi-
tation, and theoretically show that following mild conditions, decentral-
ized agents with the signal can coordinate their individual policies as
manipulated by a centralized controller. To encourage agents to learn to
exploit the coordination signal, we propose Signal Instructed Coordina-
tion (SIC), a novel coordination module that can be integrated with most
existing MARL frameworks. Our experiments show that SIC consistently
improves performance in both matrix games and popular testbeds with
high-dimensional strategy space.

Keywords: Multi-agent learning · Reinforcement learning ·
Correlated equilibrium

1 Introduction

Multi-agent interactions are common in real-world scenarios such as traffic con-
trol [24] and smartgrid management [27]. A straightforward approach to solve
cooperative multi-agent environments is the fully centralized paradigm, where a
centralized controller is used to make decisions for all agents, and its policy is
learned by applying successful single-agent RL algorithms. However, the fully cen-
tralized method suffers from exponential growth of the size of the joint action space
with the number of agents. Therefore, decentralized execution approaches are pro-
posed, including the fully decentralized paradigm and the centralized training with
decentralized execution (CTDE) [22,25] paradigm. The fully decentralized method
models each participant as an individual agent with its own policy and critic
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conditioned on local information. This setting fails to solve the non-stationary
environment problem [16,23], and is empirically deprecated by [8,20]. In CTDE
framework, agents can leverage global information including the joint observations
and actions of all agents in the training stage, e.g., through training a centralized
critic, but the policy of an agent can only be dependent on the individual infor-
mation and thus they can behave in the decentralized way in the execution stage.
This training paradigm bypasses the non-stationary problem, and can lead to some
coordination among the cooperative agents empirically [22].

Despite the merits of CTDE, the feasible joint policy space with distributed
execution is much smaller than the joint policy space with a centralized con-
troller, limiting the agents’ capability to coordinate. For example, in a two-
agent traffic system with agents A and B, whose individual action space is
{go, stop}, we cannot find a joint policy that satisfies P (A goes & B stops) =
P (A stops & B goes) = 0.5 if both agents are making decisions independently.
Previous works [26,28] adopts peer-to-peer communication mechanism to facil-
itate coordination, but they require specially designed communication channels
to exchange information and the agents’ capability to coordinate is limited by
the accessibility and the bandwidth of the communication channel.

Inspired by the correlated equilibrium (CE) [1,17] concept in game theory, we
introduce a coordination signal to allow for more correlation of individual policies
and to further facilitate coordination among cooperative agents in decentralized
execution paradigms. The coordination signal is conceptually similar to the signal
sent by a correlation device to induce CE. It is sampled from a distribution at the
beginning of each episode of the game and carries no state-dependent informa-
tion. After observing the same signal, different agents learn to take corresponding
individual actions to formulate an optimal joint action. Such coordination signal
is of practical importance. For example, the previous traffic system example can
introduce a traffic policeman that sends a public signal via his pose to each agent.
The type of the pose may be dependent on the current time (state-free) as a traffic
light is, but agents can still coordinate their actions without any explicit commu-
nication among them. In addition, we prove that for a group of fully cooperative
agents, if the signal’s distribution satisfies some mild conditions, the joint policy
space is equal to the centralized joint policy space. Therefore, the coordination
signal expands the joint policy space while still maintains the decentralized exe-
cution setting, and is helpful to find a better joint policy.

To incentivize agents to make full use of the coordination signal, we propose
Signal Instructed Coordination (SIC), a novel plug-in module for learning coordi-
nated policies. In SIC, a continuous vector is sampled from a pre-defined normal
distribution as the coordination signal, and every agent observes the vector as an
extra input to its policy network. We introduce an information-theoretic regu-
larization, which maximizes the mutual information between the signal and the
resulting joint policy. We implement a centralized neural network to optimize the
variational lower bound [2,5,18] of the mutual information. The effects of opti-
mizing this regularization are three-fold: it (i) encourages each agent to align its
individual policy with the coordination signal, (ii) decreases the uncertainty of
policies of other agents to alleviate the difficulty to coordinate, and (iii) leads to a
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more diverse joint policy. Besides, SIC can be easily incorporated with most mod-
els that follow the decentralized execution paradigm, such as MADDPG [22] and
COMA [9].

To evaluate SIC, we first conduct insightful experiments on a multiplayer
variant of matrix game Rock-Paper-Scissors-Well to demonstrate how SIC incen-
tivize agents to coordinate in both one-step and multi-step scenarios. Then we
conduct experiments on Cooperative Navigation and Predator-Prey, two classic
games implemented in multi-agent particle worlds [22]. We empirically show that
by adopting SIC, agents learn to coordinate by interpreting the signal differently
and thus achieve better performance. Besides, the visualization of the distribu-
tion of collision positions in Predator-Prey provides evidence that SIC improves
the diversity of policies. An additional parameter sensitivity analysis manifests
that SIC introduces stable improvement.

2 Methods

2.1 Preliminaries

We consider a fully cooperative multi-agent game with N agents. The game can
be described as a tuple as 〈I,S,A, T, r, γ, ρ0〉. Let I = {1, 2, · · · , n} denote the
set of n agents. A = 〈A1, · · · ,An〉 is the joint action space of agents, and S
is the global state space. At time step t, the group of agents takes the joint
action at = 〈a1t, a2t, · · · , ant〉 with each ait ∈ Ai indicating the action taken by
the agent i. T (st+1|st,at) : S × A × S → [0, 1] is the state transition function.
r(st,at) : S × A → R indicates the reward function from the environment.
γ ∈ [0, 1) is a discount factor and ρ0 : S → [0, 1] is the distribution of the initial
state s0.

Let πi(ait|st) : S × Ai → [0, 1] be a stochastic policy for agent i, and denote
the joint policy of agents as π = 〈π1, · · · , πn〉 ∈ Π where Π is the joint policy
space. Let J(π) = Eπ [

∑∞
t=0 γtrt] denots the expected discounted cumulative

reward, where rt is the reward received at time-step t following policy π. We
aim to optimize the joint policy π to maximize J(π).

2.2 Joint Policy Space with Coordination Signal

In the fully centralized paradigm, a centralized controller is used to manipulate
a group of agents. We denote ΠC as the policy space of the centralized controller
and πC : S × A → [0, 1] as a joint policy in ΠC . In the decentralized execution
paradigm, the agents make decisions independently according to their individual
policies πD

i : S × Ai → [0, 1]. We define the policy space of agent i as ΠD
i and

the joint policy space as ΠD = ΠD
1 × · · · × ΠD

n , i.e. the Cartesian product of
the policy spaces of each agent. For a joint policy πD ∈ ΠD, we have πD(a|s) =
πD
1 (a1|s) · · · πD

n (an|s), ∀s ∈ S and ∀a = 〈a1, · · · , an〉 ∈ A. We conclude the
relation between ΠC and ΠD as the following proposition:



188 L. Chen et al.

Proposition 1. ΠD is a subset of ΠC .

This proposition is obvious and we provide a proof in the appendix. This propo-
sition reveals one critical issue: as the objective of optimization is J(π) instead
of J(π1×· · ·×πN ), it is possible that current CTDE methods can never perform
as good as centralized methods when the optimal policy is in the complement
space, i.e., ΠC\ΠD. An intuitive method to solve this problem is to assume
agents act sequentially and those who act later condition their policies on previ-
ous ones, e.g., πC(a|s) = π1(a1|s)π2(a2|s, a1) · · · πN (aN |s, a1, · · · , aN−1). How-
ever, this method is not practical as it requires stable communication channel
and large bandwidth to implement.

From a game-theoretic perspective, the decentralized agents try to reach
a Nash equilibrium, with each individual policy as a best response to others’
policies. Previous studies on computational game theory show that by following
the signal provided by a correlation device, agents may reach a more general
type of equilibrium, correlated equilibrium (CE) [17], which can potentially lead
to better outcomes for all agents [1,7,13]. Inspired by CE, we propose a signal
instructed framework. We introduce a coordination signal sent to every agent at
the beginning of a game, which is conceptually close to the signal sent by the
correlation device in CE. The usage of the signal changes ΠD to a different joint
policy space, ΠS . Every agent observes the same signal z ∈ Z sampled from a
conditional distribution Pz, where Z is the signal space, and learns an individual
policy as πS

i (ai|s, z). Therefore, the agents formulate a special joint policy, πS ,
which suffices that ∀s ∈ S, ∀a = 〈a1, · · · , an〉 ∈ A, and ∀z ∈ Z, πS(a, z|s) =
Pz(z|s) ·πS

1 (a1|s, z) · · · πS
n (an|s, z). πS is a conditional joint distribution of a and

z, and differs from aforementioned types of joint policies. However, by regarding
z as an extension of global state, we do not change the way we model the
individual policy of each agent, which is still πS

i (ai|s′) with s′ = (s, z).
In signal instructed approach, all agents observe the same z, and we assume

that every agent follows the instruction of z, i.e., takes only one specific
corresponding action az

i . We denote the corresponding joint action as az =
〈az

1, · · · , az
n〉. Intuitively, this assumption is like that agents make an “agree-

ment” on which joint action to take in current state when observing z, which is
common in real-world scenarios. For example, the cars in a traffic junction can
tell whether they should accelerate or stop from the same observed pose of a
policeman, and they can be regarded as reaching a CE. Following the assump-
tion still results in a stochastic joint policy, with the stochasticity conditioned
on z now. With this assumption, we derive Proposition 2:

Proposition 2. ΠS is equal to ΠC .

We provide a proof in the appendix. This proposition shows that the signal
instructed method enlarged the joint policy space to the same size as ΠC , while
still maintaining a mostly decentralized framework. Therefore, agents can still act
with their decentralized individual policies, while exploiting a larger joint policy
space. We illustrates the relationship among different joint policy spaces in Fig. 1.

A practical concern is that according to the assumption, agents need to assign
every joint action to a specific z, which means that the size of Z can be very
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Fig. 1. The relationship among ΠC , ΠD and ΠS is ΠC = ΠS ⊇ ΠD. The white circle
represents an element in the set.

large. Fortunately, the set of optimal joint actions is often small, and hence an
optimal πS needs only a small subspace of Z to instruct agents to take those
optimal joint actions. Another concern is that agents might choose a non-optimal
joint action when following the instruction of z, since the signal is drawn from
a random distribution. Intuitively, a signal z serves as a “consensus”, so that
agents can infer others’ actions and lean a good policy correspondingly. The
signal itself does not explicitly tell each agent which action to take. Hence, when
there is only one optimal joint action in current state, agents can learn to take
the corresponding individual action whatever the signal is. In other words, the
size of the signal space reduces to 1 in this case. In following sections, we show
how this is achieved.

2.3 Signal Instructed Coordination

When a coordination signal is observed, how to incentivize agents to follow its
instruction and coordinate is a critical issue. As a coordination signal is sampled
from Pz, it is possible for agents to treat it as random noise and ignores it during
the training process. Our idea is to facilitate the coordination signal to be entan-
gled with agents’ behaviors and thus encourage the coordination in execution.
We name our method as Signal Instructed Coordination (SIC). SIC introduces
an information-theoretic regularization to ensure the signal makes an impact in
agents’ decision making. This regularization aims to maximize the mutual infor-
mation between the signal z, and the joint policy πS , given current state s, as

I(z;πS) = −H(πS |z) + H(πS)
= −H(πS

i |z) − H(πS
−i|πS

i , z) + H(πS), (1)

where πS , πS
i and πS

−i are abbreviations for πS(a, z|s), πS
i (ai, z|s) and

πS
−i(a−i, z|s), and πS

−i and a−i are the joint policy and the joint action of all
agents except agent i respectively. The decomposition of πS into πS

i and πS
−i in

the second line holds in our decentralized approach.
Through decomposing the regularization term in Eq. (1), one can find that

the effects for maximizing the mutual information between signal and policy are
threefold. Minimizing the first term increases consistency between the coordina-
tion signal and the individual policy to suffice the assumption of Proposition 2.
Minimizing the second term ensures low uncertainty of other agents’ policies,
which is beneficial to establish coordination among agents. Maximizing the third
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term encourages the joint policy to be diverse, which prohibits the opponents
from inferring our policy in competition. These effects in combination improves
the performance of the joint policy. However, directly optimizing Eq. (1) is
intractable. Considering the symmetry property of mutual information, we aim
to maximize

I(z;πS(a, z|s)) = −H(z|πS(a, z|s)) + H(z)
= Ez∼Pz(·|s),a∼π(·|s,z)[Ez′∼P (·|s,a) log P (z′|s,a)] + H(z) (2)
≥ Ez,a [log U(z|s,a)] (3)

where U(z|s,a) is an approximation of P (z|s,a). A detailed derivation from
Eq. (2) to Eq. (3) can be found in the appendix. The inequality sign holds due
to DKL(·) ≥ 0 and H(·) ≥ 0, and the equality sign in the last line holds as
proved in Lemma 5.1 of [5]. Considering the visiting probability of s in sampled
trajectories τ following π, we derive a mutual information loss (MI loss) from
Eq. (3) as

LI(π,U) = −Es∼τ,z∼Pz(·|s),a∼π(·|s,z)[log U(z|s,a)]. (4)

Minimizing Eq. (4) facilitates agents to follow the instruction of the coordination
signal.

2.4 Implementation Details

In the proposed signal instructed coordination method, agents optimize their
joint policy to maximize expected returns and minimize the mutual information
loss. To integrate SIC with existing models, the first problem is how to model
Pz. Instead of using discrete signal space, we propose to adopt a continuous
signal space, and approximate Pz in a Monte Carlo way. In detail, we sample
a Dz-dimension continuous vector v from a normal distribution N (0, I), and
distribute it to all agents. v can be viewed as a proxy of the variable z. Agents
learn to divide the R

Dz space into several subspaces, with each corresponding
to one signal and hence one optimal joint action. The probability of sampling
a specific z, Pz(z|s), is approximated by the probability of sampling a vector v
that belongs to the corresponding subspace. Therefore, we can replace z in Eq.
(4) with v and change to compute U(v|s,a).

To compute U(v|s,a), we use a centralized multi-layer feed-forward network,
named as U-Net, as a parameterized function, fU . U-Net inputs s and a, and
outputs a continuous vector with the same dimension as v as the reconstructed
value of the signal, v′ = fU (s,a). Intuitively, we hope v′ = v, which means that
agents follow the instruction so well that we can infer what they see from their
behaviors. Therefore, U(v|s,a) is measured by the mean squared error between
v′ and v and minimized during training. One obvious advantage of SIC is that
it can be easily integrated with most existing models with policy networks, as
shown in Fig. 2. To pass gradients even when stochastic policy is used, we use a
simplified approximation U(z|s,h), where h is the concatenation of last layers of
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Fig. 2. Illustration of SIC. Black arrows indicate how variables are passed between
components. Note that in U-Net, we use the concatenation of last hidden vectors in
policy networks h, instead of a, to enable gradient flow when adopting stochastic
policies. Besides, in practice we sample a continuous vector v from a fixed normal
distribution N (0, I) as a proxy of z.

hidden vectors in policy networks. Parameters of the centralized U-net, ω, and
parameters of decentralized policies, θ = 〈θ1, · · · , θn〉, are jointly optimized as:

max
ω,θ

Eo∼τ,a∼πθ,v∼N (0,I)[Qi(o,a) − αLI(π,Uω)], (5)

where Qi(o,a|z) is the centralized critic function, and α > 0 is the hyperparam-
eter for information maximization term. By optimizing this objective, we aim to
find a trade-off between maximizing long-term returns and reaching consensus.
Qi(o,a|z) can also be substituted with the advantage function used by COMA.
We do not share parameters among agents. Note that oi may be a partial obser-
vation of agent i, and additional communication mechanism can be introduced
to ensure theoretical correctness of Eq. (4). However, we empirically show that
in some partially observable environments, e.g., particle worlds [22], where the
agent can infer global state from its local observation, SIC can still work with
oi. When applied to Multi-agent Actor-Critic frameworks [22], the objective of
updating critic remains unchanged.

3 Experiments

3.1 Rock-Paper-Scissors-Well (RPSW)

We use a 2 vs 2 variant of the matrix game, Rock-Paper-Scissors-Well (RPSW).
Each team consists of two independent agents, and the available actions of each
agent are Access(A) and Y ield(Y ). The joint action space of each team consists
of Rock (〈Y, Y 〉), Paper (〈Y,A〉), Scissors (〈A, Y 〉), and Well (〈A,A〉). The for-
mer three actions play as in the traditional Rock-Paper-Scissors (RPS) game,
while Well wins only against Paper and is defeated by Rock and Scissors. We
present the payoff matrix in Table 1. This game can reflect agents’ capability
to coordinate. Assume both teams are controlled by centralized controllers, the
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Table 1. Payoff matrix of the 2 vs 2 RPSW game (M4). Both row and column players
consist of two agents, who coordinate with individual actions as Y or A to play a joint
action, e.g., Paper (〈Y, A〉), and receive shared rewards from (rrow, rcol).

Rock
〈Y, Y 〉

Paper
〈Y, A〉

Scissors
〈A, Y 〉

Well
〈A, A〉

Rock 〈Y, Y 〉 (0, 0) (−1, 1) (1, −1) (1, −1)

Paper 〈Y, A〉 (1, −1) (0, 0) (−1, 1) (−1, 1)

Scissors 〈A, Y 〉 (−1, 1) (1, −1) (0, 0) (1, −1)

Well 〈A, A〉 (−1, 1) (1, −1) (−1, 1) (0, 0)

best πC is P (〈Y, Y 〉) = P (〈Y,A〉) = P (〈A, Y 〉) = 1
3 and P (〈A,A〉) = 0, since it is

better to take 〈A, Y 〉 instead of 〈A,A〉. To achieve this, agents within the same
team need to coordinate to avoid the disadvantaged joint action 〈A,A〉, and
choose others uniformly randomly. From a probabilistic perspective, the coor-
dination requires high correlation between teammates, otherwise either 〈A,A〉
is inevitable to appear as long as π1(A) · π2(A) > 0, or the joint action space
degenerates to {〈Y, Y 〉, 〈Y,A〉} or {〈Y, Y 〉, 〈A, Y 〉}, and their joint policy may be
easily exploited by the opponent.

We denote the matrix game in Table 1 as M4, since the fourth joint action
is undesired. By exchanging the fourth row with the i-th row, and the fourth
column with the i-th column sequentially, we turn the i-th joint action to Well
and denote the new matrix as Mi. In this way we obtain a set of matrices M =
{M1,M2,M3,M4}. We design a multi-step matrix game, where two teams play
according to a random payoff matrix drawn from M in each step. Each agent can
only observe the ID i ∈ {1, 2, 3, 4} of the current matrix and the coordination sig-
nal. To simulate sparse rewards, we only give agents the sum of rewards on each
step after an episode of game is finished, and train them with discounted returns.
We use REINFORCE algorithm with fully independent agents as the baseline
model, which we denote as IND-RE. We apply our SIC module to REINFORCE
algorithm, and denote it asSIC-RE. The team-shared coordination signal z ∈ R

2

is sampled from N (0, I). Note that each agent takes a stochastic policy, and sig-
nals received by the two teams are different. We conduct experiments and observe
that SIC-RE defeats IND-RE with averaged rewards close to 0.4, while both IND-
RE vs IND-RE and SIC-RE vs SIC-RE settings gradually converge to a tie with
averaged rewards equal to 0. We can see that although IND-RE also reaches an
equilibrium with a game value as 0 in IND-RE vs IND-RE, its ability to coordi-
nate is limited, as it can only formulate joint policy in ΠD. Therefore, in direct
competition as SIC-RE vs IND-RE, IND-RE is outperformed and stuck in a dis-
advantaged equilibrium with a negative averaged reward.

To better study which kind of equilibrium agents have reached, we test how
agents respond to 5000 randomly sampled signals before and after training on
M4 with SIC-MA vs SIC-MA, and plot results of row players in Fig. 3. Note that
results of column players are similar to Fig. 3. Before training (a), the frequency



SIC in CMARL 193

(a) Row player (0 ep). (b) Row player (100k ep).

Fig. 3. Correlations between signal distribution and joint actions of row players. Each
point represents a 2-dim signal, and red, green, blue, and cyan represent the corre-
sponding joint action as 〈Y, Y 〉, 〈Y, A〉, 〈A, Y 〉, and 〈A, A〉 respectively. The frequency
of different actions in these 5000 points is shown above each sub-figure.

of each joint action is roughly 0.25. each agent takes a random individual pol-
icy. In addition, the distribution of signals triggering different joint actions are
quite spreading. After training (b), the signal space is roughly divided into three
“zones”, with each zone representing one joint action. The “area” of each zone,
i.e., the probability of sampling one signal belonging to the zone, is roughly 1/3,
which indicates that the result is close to the best performance a centralized
controller can achieve.

3.2 Particle Worlds

In this section, we evaluate SIC on two particle world game, Cooperative Nav-
igation and Predator-Prey, following the implementation in [22]. In cooper-
ative navigation, N = 3 agents and L = 3 landmarks are randomly placed in
a two-dimensional world. In each timestep, agents are rewarded with a com-
mon reward, which is the sum of the negative Euclidean distance between a
landmark and the nearest agent. In addition, two agents are penalized simulta-
neously if they collide with each other. In Predator-Prey, M slow predators and
M fast preys are randomly placed in a two-dimensional world with L = 2 large
landmarks impeding the way, and predators need to collaborate to collide with
another team of agents, preys. Note that when collisions happen, the predators
are rewarded simultaneously, while the preys are penalized independently, which
is different from the original setting in [22].

We use three popular models as our baselines: MADDPG [22], COMA [9]
and MAAC [12]. All three models follow the CTDE framework, and MADDPG
and COMA especially model only individual policies. Therefore, we integrate SIC
with MADDPG and COMA and denote them as SIC-MA and SIC-COMA. We
use hyper-parameters of neural networks in the original paper, and inherit them
in SIC variants. For comparison, we also implement fully-decentralized and fully-
centralized actor-critic methods based on DDPG, and denote them as Dec-AC
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Fig. 4. Results of different models on Cooperative Navigation game.

Table 2. Results of different models on Predator-Prey game when playing against
MADDPG preys. Results are reported in terms of predator scores with 95% confidence
intervals in 30 repeated games.

Predator model 2 vs 2 4 vs 4

Dec-AC 6.70 ± 0.78 31.97 ± 2.08

COMA 1.50 ± 0.15 20.05 ± 2.46

MADDPG 12.11 ± 1.39 46.80 ± 3.29

MAAC 11.48 ± 2.01 50.33 ± 3.65

SIC-COMA 2.05 ± 0.12 26.33 ± 2.64

SIC-MA 16.56 ± 1.50 59.85 ± 2.89

Cent-AC 17.31 ± 1.14 40.33 ± 1.51

andCent-AC. Note that to evaluate the performance of different models, we com-
pare them with the same opponent prey model (MADDPG) and report predator
scores on predator-prey games. We report results of Cooperative Navigation in
Fig. 4 and Predator-Prey (2 vs 2 and 4 vs 4) in Table 2. We can see that

1. Although SIC requires additional learning budgets and slows down the learn-
ing speed in the initial stage, it stably improves performance when com-
bined with a baseline model. In addition, SIC-MA significantly outperforms
all other decentralized execution models including the complicated SOTA
baseline (MAAC).

2. On 2 vs 2 Predator-Prey game, the performance of SIC-MA is close to that
of the fully-centralized method. On 4 vs 4 Predator-Prey and Cooperative
Navigation games, where the training of the centralized method suffers, SIC-
MA learns better joint policies through decentralized paradigm. This shows
that even in high-dimensional space, coordination signal can still facilitate
coordination among decentralized agents.

To better understand how SIC improves performance, we conduct case study
on the mixed cooperative-competitive environment, 2 vs 2 Predator-Prey game.
We visualize the distribution of collision positions in Fig. 5. We repeat MAD-
DPG vs MADDPG, and SIC-MA vs MADDPG for 10000 games with different
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(a) MADDPG vs MAD-
DPG
(1002 collisions)

(b) SIC-MA vs MADDPG
(1637 collisions)

Fig. 5. The density and marginal distribution of positions of collision, (x, y), in 10000
repeated games initialized from the same environment. The orange, green and black
circles representing predators, preys and landmarks at the start of each game. The
result shows that compared to MADDPG, SIC-MA presents more diverse strategy and
better performance.

seeds. We reset each game to the same state in each episode, and collect posi-
tions of collisions in the total 250000 steps. We visualize the positions in Fig. 5,
where data points (x, y) with higher frequency are colored darker in the plane.
In Fig. 5-a, most collisions happen around the lower prey, which reflects that
both predators only collaborate to capture the lower prey. When SIC-MA plays
predators as in Fig. 5-b, collisions appears in more diverse positions, and we
observe two strategies: the two predators either chase the lower prey to the bot-
tom part of the map, or move upward together to catch both preys. In this case,
it is hard for preys to exploit the opponent strategies, but the two predators
need high level of coordination to conduct such strategies, otherwise the lower
prey may flee through the interval between them. Specifically, SIC-MA captures
more preys (1637) than MADDPG does (1002). This evidences that SIC-MA
learns better policies compared to MADDPG.

4 Related Works

Recent works [4] on MARL focus on complex scenarios with high dimensional state
and action spaces like particle worlds [22] and StarCraft II [30]. Among differ-
ent approaches to model the controlling of agents, centralized training with decen-
tralized execution [22,25] outperforms others for circumventing the exponential
growth of joint action space and the non-stationary environment problem [19].
Emergent communication [21] is proposed to enhance coordination and training
stability, which allows agents to pass messages between agents and “share” their
observations via communication vectors. [26,28] design special architectures to
share information among all agents. The noisy channel problem arises when all
other agents use the same communication channel to send information simulta-
neously, and the agent needs to distinguish useful information from useless or
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irrelevant noise. To alleviate this problem, [6,12,14] propose to introduce the
attention mechanism to control the bandwidth of different agents dynamically.
However, communication requires large bandwidth to exchange information, and
the effectiveness of communication is under question as discussed by [21].

The coordination problem [3], or the Pareto-Selection problem [23], has been
discussed by a series of works in fully cooperative environments. The solution
to the coordination problem requires strong coordination among agents, i.e., all
agents act as if in a fully centralized way. In the game theory domain, it can
also be viewed as pursuing Correlated equilibrium (CE) [1,17], where agents
make decisions following instructions from a correlation device. It is desired
that agents in the system can establish correlation protocols through adaptive
learning method instead of constructing a correlation device manually for specific
tasks [11] proposes to replace the value function in Q-learning with a new one
reflecting agents’ rewards according to some CE. [31] maintains coordination
sets and select coordinated actions within these sets.

A similar concept to our coordination signal is common knowledge, which
refers to common information, e.g., representations of states, among partially
observable agents. Common knowledge is used to enhance coordination [10,29]
and combined with communication [15]. Among them, [10] proposes MACKRL
which introduces a random seed as part of common knowledge to guide a hierar-
chical policy tree. To avoid exponential growth of model complexity, MACKRL
restricts correlation to pre-defined patterns, e.g., a pairwise one, which is too
rigid for complex tasks.

5 Conclusions

We propose a signal instructed paradigm to improve the popular decentralized
execution framework, which theoretically manipulates decentralized agents as
a centralized controller. Accordingly, we design a novel module named Signal
Instructed Coordination (SIC) to enhance coordination of agents’ policies by
introducing a mutual information regularization. Our experiments show the per-
formance improvement of popular centralized-training-decentralized-execution
algorithms with the help of SIC.
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A Algorithm

For completeness, we provide the SIC-MA algorithm as an example of application
of SIC in Algorithm 1. The main body of SIC-MA is the similar to MADDPG,
and the main change includes:
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1. a common signal is sampled and every agent observes it before taking actions,
and

2. a mutual information loss is computed to update parameters of U-Net and
policy networks.

We can see that SIC is easy to implement with existing actor-critic-based algo-
rithms.

B Proof of Proposition 1

Proof. ∀πD ∈ ΠD, we can construct πC ∈ ΠC , which suffices that for ∀s ∈ S,
∀a = 〈a1, · · · , an〉 ∈ A,

πC(a|s) = πD
1 (a1|s) · · · · πD

n (an|s) = πD(a|s).
Thus, we have every πD = πC ∈ ΠC and ΠD ⊆ ΠC .

We use a counterexample to show that not every joint policy in ΠC is an element
of ΠD. In a two-agent system where each agent has two actions x and y, ∀s ∈ S,
∃πC ∈ ΠC that suffices πC(〈a1 = x, a2 = x〉|s) = πC(〈a1 = y, a2 = y〉|s) = 0.5,
but πC /∈ ΠD, because there is no valid solution for π1(a1 = x|s)·π2(a2 = x|s) =
(1−π1(a1 = x|s))·(1−π2(a2 = x|s)) = 0.5. Since ΠC includes ΠD, the best joint
policy in ΠC is superior or equal to the best joint policy in ΠD. However, due
to computational complexity concerns, the decentralized execution paradigm is
more practical in large-scale environments. Thus, we have motivation to propose
a new framework which has centralized policy space ΠC and is executed in a
decentralized way.

C Proof of Proposition 2

Proof. We prove this proposition in two steps:

1. ΠC ⊆ ΠS : ∀πC ∈ ΠC , we can construct πS ∈ ΠS , which suffices that
∀s ∈ S, ∀a ∈ A, we assign a signal z ∈ Z to a with Pz(z|s) = πC(a|s), s.t.

πS(z,a|s) = Pz(z|s)[πS
1 (a1|s, z) · · · · πS

n (an|s, z)]
= Pz(z|s)[1 · · · · 1] = πC(a|s)

Thus, we have every πC = πS ∈ ΠS and ΠC ⊆ ΠS .
2. ΠS ⊆ ΠC : ∀πS ∈ ΠS , we can construct πC ∈ ΠC , which suffices that

∀s ∈ S, ∀a ∈ A, ∀z ∈ Z,

π(a|s) =

{
Pz(z|s) a = az

0 otherwise.

Thus, we have every πS = πC ∈ ΠC and ΠS ⊆ ΠC .

Given ΠS ⊆ ΠC and ΠS ⊇ ΠC , we have ΠS = ΠC .
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Algorithm 1. SIC-MADDPG Algorithm
for episode = 1 to M do

Initialize a random process N for action exploration
Receive initial state x
Generate random signal z according to pre-defined distribution.
for t = 1 to max-episode-length do

for each agent i, sample action ai according to πi(ai|oi, z)
Execute actions a = (a1, . . . , aN ) and observe reward r and new state x′

Store (x, a, r,x′, zj) in replay buffer D
x ← x′

for k = 1 to 2 do
Sample a random mini-batch of S samples (xj , aj , rj ,x′j , zj) from D
for agent i in team k do

Calculate hj
k by concatenating inputs to the last layer of policy networks

of all cooperative agents in team k
Calculate U j

k = U(zj
k|xj

k, hj
k)

Set yj = rj
i + γQπ′

i (x′j , πk)|
a′

k
=π′

k
(σ

j
k
)

Update critic by minimizing the loss

L (θi) =
1

S

∑

j

(yj − Qπ
i (xj , πj

k))2

Update actor using the sampled policy gradient

∇θiJ ≈ 1

S

∑

j

∇θiπi(o
j
i )∇ai [Q

π
i (xj , πj) + βLI(π, U)]|

ai=πi(σ
j
i )

Update U-Net by minimizing

L(w) =
1

S

∑

j

LI(π, U)]|
ai=πi(σ

j
i )

end for
end for
Update target network parameters for each agent i:

θ′
i ← τθi + (1 − τ)θ′

i

end for
end for
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D Derivation of the Lower Bound

The derivation of the lower bound mostly follows similar techniques used in
variational inference domain [2,5,18]. Firstly, we have

I(z;πS(a, z|s)) = −H(z|πS(a, z|s)) + H(z)
= Ez∼Pz(·|s),a∼π (·|s,z)[Ez′∼P (·|s,a)

log P (z′|s,a)] + H(z) (6)

where π(·|s, z) is the Cartesian product of individual policies after observing a
specific z, and P (·|s,a) is the posterior distribution estimating the probability
of a specific signal z′ after seeing the state s and the joint action a. Note that
P (·|s,a) is not the same as Pz(·|s). Since we have no knowledge of the posterior
distribution, we circumvent it by introducing a variational lower bound [2,5,18]
which defines an auxiliary distribution U(·|s,a) as:

Eq. (6) = Ez∼Pz(·|s),a∼π (·|s,z)[DKL(P (·|s,a)||U(·|s,a))
+Ez′∼P (·|s,a) log U(z′|s,a)] + H(z)

≥ Ez∼Pz(·|s),a∼π (·|s,Tz)[Ez′∼P (·|s,a) log U(z′|s,a)],
= Ez∼Pz(·|s),a∼π (·|s,z)[log U(z|s,a)] (7)

E Experiment Details

E.1 Matrix Game Experiment

We conduct three multi-step matrix game experiments: SIC-RE vs SIC-RE, SIC-
RE vs IND-RE, IND-RE vs IND-RE. For both SIC-RE and IND-RE models, we
use the Adam optimizer with a learning rate of 0.0001. The policy network is
parameterized by a one-layer ReLU MLP with 8 hidden units. We use a batch
size of 100000. For SIC-RE models, we use, a two-layer ReLU MLP with 8 hidden
units as U-Net, and set the coefficient of MI loss to be 0.01.

E.2 Particle World Experiment

We adopt 5 different models: MADDPG, SIC-MADDPG (SIC-MA), COMA,
SIC-COMA, and MAAC. We provide details of our setups here:

1. MADDPG We use the Adam optimizer with a learning rate of 0.001 and
δ = 0.01 (has the same meaning as in original MADDPG) for updating the
target network. Both Actor and Critic are parameterized by a two-layer ReLU
MLP with 64 units per layer. γ is set to be 0.95. We use a batch size of 1024
before making an update.

2. SIC-MADDPG We use the Adam optimizer with a learning rate of 0.0005
and δ = 0.01 for updating the target network. Gradient clipping is set to be
0.5. Both Actor and Critic are parameterized by a two-layer ReLU MLP
with 64 units per layer. γ is set to be 0.95. We use a batch size of 1024
before making an update. The dimension of signals is 20 and the coefficient
of information-theory regularization is 0.0001.
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3. COMA We use the Adam optimizer with a learning rate of 0.00005 and
δ = 0.01 for updating the target network. Gradient clipping is set to be 0.1.
Both Actor and Critic are parameterized by a two-layer ReLU MLP with 64
units per layer. γ is set to be 0.99 and λ is set to 0.8. We use a batch size of
1000 before making an update.

4. SIC-COMA We use the Adam optimizer with a learning rate of 0.00005
and δ = 0.01 for updating the target network. Gradient clipping is set to be
0.1. Both Actor and Critic are parameterized by a two-layer ReLU MLP with
64 units per layer. γ is set to be 0.99 and λ is set to 0.8. We use a batch size
of 1000 before making an update. The dimension of signals is 20.

5. MAAC We use the Adam optimizer and set the learning rate for policy and
critic networks as 0.001 and 0.01 respectively. Both policy and critic networks
adopt two-layer Leaky ReLU MLP with 128 units per layer. The number of
attention head is set to 4. We use a batch size of 100, and set the reward
rescaling factor to be 100 as in the original paper.

Except aforementioned models, we also implement two variants of MADDPG:
a fully-decentralized actor-critic and a fully-centralized actor-critic. The former
one can be viewed as MADDPG with a decentralized critic Qi(oi, ai), and the
latter one as MADDPG with a centralized agent that takes joint actions directly
a = π(o).

We report results of games with 95% confidence intervals in 30 repeated
games.

F Visualization for Joint Policy of Multi-step Matrix
Game

We plot the curves of joint policies of both row players and column players in
multi-step matrix games in Fig. 6, 7, and 8.

G Parameter Sensitivity

We conduct a parameter sensitivity analysis in 2 vs 2 Predator-Prey game on
two crucial parameters of SIC, the coefficient of mutual information loss α and
the dimension of signal Dz. We test SIC-MA vs MADDPG with different values
of parameters in the 2 vs 2 Predator-Prey game, We find that when adopting
signal without training U-Net (α = 0), the performance of SIC-MA is close
to MADDPG. Therefore, enforcing the mutual information constraint properly
(α = 1e − 4) is important in achieving better results. Besides, SIC-MA presents
a stable improvement over MADDPG (Dz = 0) and, most importantly, approxi-
mation through neural networks can compress Z and ensure good performance.
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Fig. 6. Joint Policy of SIC-RE vs SIC-RE. During training, the i-th joint action in Mi

is deprecated gradually, and all other joint actions are sampled uniformly randomly.
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Fig. 7. Joint Policy of SIC-RE vs IND-RE. SIC-RE adjusts its joint policy to counter
that of IND-RE, and achieves a positive game value.
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Fig. 8. Joint Policy of IND-RE vs IND-RE. IND-RE only finds worse joint policy in
the team-policy space, and in some cases (M2 and M3), players play only one kind of
joint action.
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